Reinforcement learning

Oliver Wallscheid

Wi /| AG igommenes OO

https://www.eti.uni-siegen.de/ias/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Table of contents

o Introduction to reinforcement learning 9 Supervised learning

e Markov decision processes @ Approximative on-policy prediction
9 Dynamic programming @ Approximative value-based control
e Monte Carlo methods @ Stochastic policy gradient methods
e Temporal-difference learning @ Deterministic policy gradient methods
@ Multi-step bootstrapping @ Further contemporary RL algorithms

@ Planning and learning with tabular methods @) Outlook and practical research insights

@ Summary of part I: finite state and action @ Summary of part Il: continuous state and
spaces action spaces

Oliver Wallscheid Reinforcement learning

Table of contents

@ Introduction to reinforcement learning
m Course framework
m Reinforcement learning: what is it?
m Application examples and historic review
m Basic terminology
m Main categories of reinforcement learning algorithms
m Small comparison to model predictive control

Oliver Wallscheid Reinforcement learning

The teaching team

Ali Oliver
Abdelwanis Wallscheid

» Email: see chair's homepage
» Offices: H-A building, 4th floor

» Individual appointments on request (remote or personally)

Oliver Wallscheid Reinforcement learning

https://www.eti.uni-siegen.de/ias/

The legacy team

A
>y |
’,\ (7/
Barnabas Darius Wilhelm Marvin Maximilian Hendrik Daniel
Haucke- Jakobeit Kirchgassner Meyer Schenke Vater Weber
Korber

This course and its content was originally created by a team at Paderborn University. Many
thanks to the above staff members for their contributions to the creation and maintenance of
the materials since the first course run in 2020.

Oliver Wallscheid Reinforcement learning 5

Examination regulations

» Oral examination

» Average 45 minutes for presentation and discussion

» Individual appointment request via email (at least 2 weeks in advance)

Pre-exam homework assignment

» Will be made available via moodle at end of the lecture series.
» Practical RL programming task, i.e., solve a typical RL problem.
» Further regulations:

» Submit your final programming solution via moodle at least two days before the exam.
> Prepare a concise, high-quality presentation to be given at the exam start (roughly 10-15
minutes). Analyze and evaluate your own results critically.

Oliver Wallscheid Reinforcement learning 6

Recommended textbooks

» Reinforcement learning: an introduction,
» R. Sutton and G. Barto
» MIT Press, 2nd edition, 2018
» Available here

» Reinforcement learning (lecture script)

> D. Silver
> Entire slide set available here
> YouTube lecture series (click here)

» Reinforcement learning and optimal control

» D. Bertsekas
» Athena Scientific, 2019

Oliver Wallscheid Reinforcement learning

http://www.incompleteideas.net/book/the-book.html
https://www.davidsilver.uk/teaching/
https://www.youtube.com/watch?v=2pWv7GOvuf0

Table of contents

@ Introduction to reinforcement learning

m Reinforcement learning: what is it?

Oliver Wallscheid Reinforcement learning

The basic reinforcement learning structure

u
o3 %ﬁj :

Tr Environment

j ReWard
Interpreter Tk
(0O]
Obw “a
Servatig -

n (B

Action

Agent

Fig. 1.1: The basic RL operation principle
(derivative of www.wikipedia.org, CCO 1.0)

Key characteristics:

>

>
>
>

v

No supervisor
Data-driven
Discrete time steps

Sequential data stream (not i.i.d.
data)

Agent actions affect subsequent
data (sequential decision
making)

Note: the nomenclature of this slide set is based on the default variable usage in control theory. In RL books, one

often finds s as state, a as action and o as observation.

Oliver Wallscheid Reinforcement learning

https://commons.wikimedia.org/wiki/File:Reinforcement_learning_diagram.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Agent and environment
At each step k the agent:
9(0‘6 % Uk » Picks an action uy.
Environment P Receives an observation yy.

» Receives a reward 7.

j ReWard At each step k the environment:
Interpret Tk

er

P> Receives an action uy.
vk o > Emit bservati
ObserVatio,-, E mits an observation Y.

Action

> ,
Agent Emits a reward 7.

The time increments k& < k + 1.

Remark on time

A one step time delay is assumed between executing the action and receiving the observation as
well as reward. We assume that the resulting time interval At =t — tx11 is constant.

Oliver Wallscheid Reinforcement learning 10

Some basic definitions from the literature

What is reinforcement?

“Reinforcement refers to consequences that increase the likelihood of an organism’s
future behavior, typically in the presence of a particular antecedent stimulus.[...] Re-
inforcers serve to increase behaviors whereas punishers serve to decrease behaviors;
thus, positive reinforcers are stimuli that the subject will work to attain, and nega-
tive reinforcers are stimuli that the subject will work to be rid of or to end.”, source:
wikipedia.org (obtained 2025-03-19)

What is learning?

“Acquiring knowledge and skills and having them readily available from memory so you
can make sense of future problems and opportunities.”, source: Make It Stick: The
Science of Successful Learning, Brown et al., Harvard Press, 2014

Oliver Wallscheid Reinforcement learning

https://en.wikipedia.org/wiki/Reinforcement

Context around reinforcement learning

Machine

Learning

Oliver Wallscheid

Develop models
to map input
and output data

Classification

Unsupervised A [Clustering j

Learning
Process and interpret — [Dimension Reduction j

data based only

on the input [j
) ® 0o 0
s -
Supervised A [Regression

Learning /

\[o0

4 Reinforcement
Learning

Learn optimal control
actions to maximize
long-term reward

2N

/[Single-Agent

Multi-Agent

)\A(

I

Fig. 1.2: Disciplines of machine learning

Reinforcement learning

12

Context around machine learning

Deep Learning (DL)
A class of ML which uses large, layered models
(e.g., vast artifical neural networks) to

progressively extract more information from the data.

Machine Learning (ML)

A subset of Al involved with the creation of
algorithms which can modify itself without
human intervention to produce desired output
by feeding itself through structured data.

Artifical Intelligence (Al)

Any device that perceives its environment and
takes actions that maximize its chance of
successfully achieving its goals. Al is often used to
describe machines that mimic "cognitive" functions
that humans associate with the human mind.

Fig. 1.3: The broader scope around machine learning

Oliver Wallscheid Reinforcement learning

13

Many faces of reinforcement learning

Oliver Wallscheid

Computer Science

Engineering achie Neuroscience
learning
Optimal eward
ontrol Systel
[’] ‘Operan
Resea (Conditionin
Mathematics i A Psychology
Economics

Fig. 1.4: RL and its neighboring domains
(source: D. Silver, “Reinforcement learning”, 2015. CC BY-NC 4.0)

Reinforcement learning 14

https://creativecommons.org/licenses/by-nc/4.0

Table of contents

@ Introduction to reinforcement learning

m Application examples and historic review

Oliver Wallscheid Reinforcement learning

15

Methodical origins

Fig. 1.5: Ivan Pavlov Fig. 1.6: Andrei Markov Fig. 1.7: Richard Bellman
(1849-1936) (1856-1922) (1920-1984)*
Classical conditioning Stochastic process Optimal sequential
formalism decision making

llustrative picture since an actual photo of Bellman is not freely available.

Oliver Wallscheid Reinforcement learning 16

History of reinforcement learning

Huge field with many interconnections to different fields. One could give a lecture only on the
historic development. Hence, interested readers are referred to:

» Chapter 1.7 of Barto/Sutton, Reinforcement learning: an introduction, 2nd edition, MIT
Press, 2018

» 30 minutes talk of A. Barto (YouTube link)

» Survey papers on historic as well as more recent developments:

> Kaelbling et al., Reinforcement learning: A survey, in Journal of Artificial Intelligence Research,
vol. 4, pp. 237 - 285, 1996

» Arulkumaran et al., Deep reinforcement learning: a brief survey, in IEEE Signal Processing
Magazine, vol. 34, no. 6, pp. 26-38, 2017

» Botvinick et al., Reinforcement learning, fast and slow, in Trends in Cognitive Sciences, vol. 23,
iss. b, pp. 408-422, 2019

Oliver Wallscheid Reinforcement learning 17

https://www.youtube.com/watch?v=ul6B2oFPNDM

Contemporary application examples

Limited selection from a broad field:

Controlling electric drive systems

Swinging-up and balance a cart-pole / an inverted pendulum
Flipping pancakes with a roboter arm

Drifting with a RC-car

Driving an autonomous car

Playing Atari Breakout

Play strategy board game Go at super-human performance
Nuclear fusion reactor plasma control

Training chat bots (like chatGPT)

VVYyVYVYVVVVYVYY

Oliver Wallscheid Reinforcement learning

18

https://www.youtube.com/watch?v=hQ49Mc6LV78
https://www.youtube.com/watch?v=Lt-KLtkDlh8
https://www.youtube.com/watch?v=W_gxLKSsSIE
https://www.youtube.com/watch?v=opsmd5yuBF0
https://www.youtube.com/watch?v=eRwTbRtnT1I
https://www.youtube.com/watch?v=eG1Ed8PTJ18
https://www.youtube.com/watch?v=9xlSy9F5WtE
https://www.youtube.com/watch?v=kvblookYjA8
https://www.youtube.com/watch?v=VPRSBzXzavo

Table of contents

@ Introduction to reinforcement learning

m Basic terminology

Oliver Wallscheid

Reinforcement learning

19

Reward

» A reward is a scalar random variable R with realizations ry.
» Often it is considered a real-number 7, € R or an integer r; € Z.

» The reward function (interpreter) may be naturally given or is a design degree of freedom
(i.e., can be manipulated).

» It fully indicates how well an RL agent is doing at step k.

» The agent's task is to maximize its reward over time.

Theorem 1.1: Reward hypothesis

All goals can be described by the maximization of the expected cumulative reward:

0
Z Ryt

=0

max E

Oliver Wallscheid Reinforcement learning 20

Reward examples

» Flipping a pancake:

» Pos. reward: catching the 180° rotated pancake
> Neg. reward: droping the pancake on the floor

» Stock trading:

» Trading portfolio monetary value
» Playing Atari games:

» Highscore value at the end of a game episode
» Driving an autonomous car:

» Pos. reward: getting save from A to B without crashing
» Neg. reward: hitting another car, pedestrian, bicycle,...

» Classical control task (e.g., electric drive, inverted pendulum,...):

» Pos. reward: following a given reference trajectory precisely
> Neg. reward: violating system constraints and/or large control error

Oliver Wallscheid Reinforcement learning

21

Reward characteristics

Rewards can have many different flavors and are highly depending on the given problem:

» Actions may have short and/or long term consequences.

» The reward for a certain action may be delayed.
» Examples: Stock trading, strategic board games,...

» Rewards can be positive and negative values.
> Certain situations (e.g., car hits wall) might lead to a negative reward.
» Exogenous impacts might introduce stochastic reward components.
» Example: A wind gust pushes an autonomous helicopter into a tree.

Remark on reward

The RL agent’s learning process is heavily linked with the reward distribution over time. Designing
expedient rewards functions is therefore crucially important for successfully applying RL. And
often there is no predefined way on how to design the “best reward function”.

Oliver Wallscheid Reinforcement learning 22

The reward function hassle

> “Be careful what you wish for - you might get it" (pro-verb)
> “_.it grants what you ask for, not what you should have asked for or what you intend.”
(Norbert Wiener, American mathematician)

Fig. 1.8: Midas and daughter (good as gold)
(source: www.flickr.com, by Robin Hutton CC BY-NC-ND 2.0)

Oliver Wallscheid Reinforcement learning

23

https://www.flickr.com/photos/robinhutton/16403846414/in/photostream/
https://www.flickr.com/photos/robinhutton/
https://creativecommons.org/licenses/by-nc-nd/2.0/

Task-dependent return definitions
Episodic tasks

» A problem which naturally breaks into subsequences (finite horizon).
» Examples: most games, maze,...
» The return becomes a finite sum:
9k = Tk41 + Thp2 + -+ TN .
» Episodes end at their terminal step £ = N.
Continuing tasks

» A problem which lacks a natural end (infinite horizon).
» Example: process control task
» The return should be discounted to prevent infinite numbers:

o0
) ,
Gk = Thit T ka2 + VT haz + o= > Y Thpign -
i=0

» Here, v € {R|0 < < 1} is the discount rate.

Oliver Wallscheid Reinforcement learning

24

Discounted rewards
Numeric viewpoint

» Ify=1and ry > 0 for k — oo, gi in (1.3) gets infinite.
» If v <1 and ry is bounded for kK — oo, g in (1.3) is bounded.

Strategic viewpoint

» If v~ 1: agent is farsighted.
» If v ~ 0: agent is shortsighted (only interested in immediate reward).

Mathematical options

» The current return is the discounted future return:

Gk = Thi1 +VThr2 + VP Thas3 + o = rpp1 7 (Pey2 + YrEas + o

=Tk+1 + VIk+1 -

» If r, = r is a constant and v < 1 one receives:

> > 1
ge=Y Ar=r> 4 =r
1=0 =0

1—~"

Oliver Wallscheid Reinforcement learning

(1.4)

(1.5)

25

State (1)

Environment state

» Random variable X} with realizations xj
» Internal status representation of the environment, e.g.,

» Physical states, e.g., car velocity or motor current
» Game states, e.g., current chess board situation
» Financial states, e.g., stock market status

» Fully, limited or not at all visible by the agent

P> Sometimes even 'foggy' or uncertain
> In general: Yy = f(X}) as the measurable outputs of the environment

» Continuous or discrete quantity

Bold symbols are non-scalar multidimensional quantities, e.g., vectors and matrices.
Capital symbols denote random variables and small symbols their realizations.

Oliver Wallscheid Reinforcement learning

26

State (2)

Agent state

Random variable X with realizations xj,

Internal status representation of the agent

Agent’s condensed information relevant for next action

>
>
» In general: 3 # xj, e.g., due to measurement noise or an additional agent’'s memory
>
» Dependent on internal knowledge / policy representation of the agent

>

Continuous or discrete quantity

Oliver Wallscheid Reinforcement learning

History and information state

Definition 1.1: History

The history is the past sequence of all observations, actions and rewards
Hk‘ = {yO’T07u0)'"7’u’k—17ykark} (16)
up to the time step k.

If the current state @x; contains all useful information from the history it is called an
information or Markov state (history is fully condensed in xy):

Definition 1.2: Information state
A state X is called an information state if and only if

P [X1 Xk] = P [Xit1| X0, X1, ..., Xi] - (1.7)

Oliver Wallscheid Reinforcement learning 28

Model examples with Markov states

Linear time-invariant (LTI) state-space model

1 = Azy + Buy,

yp = Cxp + Duy, .

Nonlinear time-invariant state-space model:

Tp1 = f (@, up)
Y = h (mk,uk) .

Oliver Wallscheid Reinforcement learning

(1.9)

29

Degree of observability
Full observability

> Agent directly measures full environment state (e.g., yr = Ixy).
» If xj is Markov: Markov decision process (MDP).

Partial observability

» Agent does not have full access to environment state (e.g., Yy = [I 0] k).
» If x;, is Markov: partial observable MDP (POMDP).
» Agent may reconstructs state information &j, ~ xj (belief, estimate).

POMDP examples

» Technical systems with limited sensors (cutting costs)
» Poker game (unknown opponents’ cards)
» Human health status (too complex system)

Oliver Wallscheid Reinforcement learning 30

Action

» An action is the agent’s degree of freedom in order to maximize its reward.
» Major distinction:

» Finite action set (FAS): uy € {ug 1, ug2,...} € R™

» Continuous action set (CAS): Infinite number of actions: u; € R™

» Deterministic u; or random U}, variable

> Often state-dependent and potentially constrained:uy € U(x) C R™
» Examples:

> Take a card during Black Jack game (FAS)

» Drive an autonomous car (CAS)

> Buy stock options for your trading portfolio (FAS/CAS)

Remark on state and action spaces

Evaluating the state and action spaces (e.g., finite vs. continuous) of a new RL problem should
be always the first steps in order to choose appropriate solution algorithms.

Oliver Wallscheid Reinforcement learning 31

Policy
> A policy 7 is the agent’s internal strategy on picking actions.
» Deterministic policies: maps state and action directly:

uy, = m(z) - (1.10)

» Stochastic policies: maps a probability of the action given a state:

W(Uk‘Xk) ZP[Uk‘Xk] . (1.11)

» RL is all about changing 7 over time in order to maximize the expected return.

Oliver Wallscheid Reinforcement learning 32

Deterministic policy example

Find optimal gains {K},, Ki, Kq} given the reward rj, = —e}:

» Agent’s behavior is explicitly determined by { K}, Ki, Kq}.

> Reference value is part of the environment state: @), = [y y;;]T
» Control output is the agent's action: uy = m(xi| Ky, Ki, Kq).

P Kpey

Plant / yk

Process

I Kizek

Y

Y

v

€k —€k—1
D Ki*xi—

Agent

Fig. 1.9: Classical PID control loop with scalar quantities (derivative of www.wikipedia.org, by Arturo
Urquizo CC BY-SA 3.0)

Oliver Wallscheid Reinforcement learning 33

https://en.wikipedia.org/wiki/PID_controller
https://creativecommons.org/licenses/by-sa/3.0/deed.en

Stochastic policy example
Two-player game of extended rock-paper-scissors:

» A deterministic policy can be easily exploited by the opponent.
» A uniform random policy would be instead unpredictable (assuming an ideal random

number generator).
O
T,

®
' NSS!

Fig. 1.10: Rock paper scissors lizard Spock game mechanics
(source: www.wikipedia.org, by Diriector Doc CC BY-SA 4.0)

@

Oliver Wallscheid Reinforcement learning

34

https://commons.wikimedia.org/wiki/File:Rock_paper_scissors_lizard_spock.svg
https://en.wikipedia.org/wiki/User:Diriector_Doc
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Value functions

» The state-value function is the expected return being in state xj, following 7: v, (xy).

» Assuming an MDP problem structure the state-value function is

vr (@) = Er [Gr| X, = a1 [Z’Y Riyita
=0

cck] . (1.12)

» The action-value function is the expected return being in state x; taken an action uj and,
thereafter, following a policy 7 ¢ (@, ug).

» Assuming an MDP problem structure the action-value function is

e .
> V' Ritin

=0

qr (g, u) = Ex |G| Xy = x4, Uy, = ug) = E

mk,uk] . (1.13)

> A key task in RL is to estimate v, (xy) and ¢ (g, ur) based on sampled data.

Oliver Wallscheid Reinforcement learning 35

Exploration and exploitation

» In RL the environment is initially unknown. How to act optimal?
» Exploration: find out more about the environment.

» Exploitation: maximize current reward using limited information.
» Trade-off problem: what's the best split between both strategies?

[N
.’/

Something new The usual stuff

Fig. 1.11: The exploration-exploitation dilemma

Oliver Wallscheid Reinforcement learning

36

Model

» A model predicts what will happen inside an environment.
» That could be a state model P:

P =P[Xyt1 = @41 Xp = 2p, Uy = wy] (1.14)

» Or a reward model R:

R =P[Riy1 = 41| Xk = @k, Uy, = uy] . (1.15)

» In general, those models could be stochastic (as denoted above) but in some problems relax
to a deterministic form.

» Using data in order to fit a model is a learning problem of its own and often called system
identification.

Oliver Wallscheid Reinforcement learning 37

Table of contents

@ Introduction to reinforcement learning

m Main categories of reinforcement learning algorithms

Oliver Wallscheid Reinforcement learning

38

Maze example

Start Problem statement:

» Reward: rp. = —1
P> At goal: episode termination
» Actions: u; € {N,E,S, W}

Goal > State: agent's location

» Deterministic problem (no stochastic
influences)

Fig. 1.12: Maze setup
(source: D. Silver, "Reinforcement learning”, 2015.
CC BY-NC 4.0)

Oliver Wallscheid Reinforcement learning

39

https://creativecommons.org/licenses/by-nc/4.0

Maze example: RL-solution by policy

sur 1 I £
= i
el e

Fig. 1.13: Arrows represent policy 7 () (source: D.
Silver, “Reinforcement learning”, 2015. CC BY-NC 4.0)

Oliver Wallscheid Reinforcement learning

Key characteristics:

» For any state there is a direct action
command.

» The policy is explicitly available.

40

https://creativecommons.org/licenses/by-nc/4.0

Maze example: RL-solution by value function

n

Start

Key characteristics:

» The agent evaluates neighboring
maze positions by their value.

.. Goal » The policy is only implicitly available.

Fig. 1.14: Numbers represent value v, (zy) (source: D.
Silver, "Reinforcement learning”, 2015. CC BY-NC 4.0)

Oliver Wallscheid Reinforcement learning 41

https://creativecommons.org/licenses/by-nc/4.0

Maze example: RL-solution by model evaluation

--
-

Start Key characteristics:

» Agent uses internal model of the
environment.

» The model is only an estimate
(inaccurate, incomplete).

» The agent interacts with the model
before taking the next action (e.g., by

Fig. 1.15: Grid layout represents state model P and numerical optimizers).

numbers depict the estimate by the reward model R.

(source: D. Silver, “Reinforcement learning”, 2015. CC
BY-NC 4.0)

Oliver Wallscheid Reinforcement learning 42

https://creativecommons.org/licenses/by-nc/4.0
https://creativecommons.org/licenses/by-nc/4.0

RL agent taxonomy

Value Function

Fig. 1.16: Main categories of reinforcement learning algorithms
(source: D. Silver, “Reinforcement learning”, 2015. CC BY-NC 4.0)

Oliver Wallscheid Reinforcement learning

43

https://creativecommons.org/licenses/by-nc/4.0

Table of contents

@ Introduction to reinforcement learning

m Small comparison to model predictive control

Oliver Wallscheid Reinforcement learning

44

RL vs. planning
Two fundamental solutions to sequential decision making:

» Reinforcement learning:
» The environment is initially unknown.
» The agents interacts with the environment.
» The policy is improved based on environment feedback (reward).
» Planning:
» An a priori environment model exists.
» The agents interacts with its own model.
» The policy is improved based on the model feedback ('virtual reward’).

Remark on learning and planning

Above the two extreme cases are confronted:

» RL = learning based on data obtained from interacting with the system.

» Planning = iterating on a model without improving it based on data.

Can one of these extreme cases lead alone to an efficient and optimal solution?

Oliver Wallscheid Reinforcement learning 45

Problem reconsideration
The reward hypothesis in Theo. 1.1 is basically an (discounted) infinite-horizon optimal control
problem (with 7y interpreted as costs):

o0

* — mi U A A
vp(Tg) = H}LLD;W’ Phtit1 (Thotis ki) - (1.16)

For certain cases closed-form solutions can be found, e.g., a LTI system with quadratic costs
and no further constraints can be optimally controlled by a linear-quadratic regulator (LQR).

However, for arbitrary cases that is not possible and one relaxes the problem to a finite-horizon
optimal control problem:

Np
vi(xg) = r%ianfylrkHJrl(wkH, Upti) - (1.17)
=0

Here, an internal model x;41 = f(x), uy) is utilized to predict the system behavior for IV,
future steps. This model predictive control (MPC) approach can be numerically solved.

Oliver Wallscheid Reinforcement learning 46

MPC and constraints

While in RL the desired system behavior must be solely represented by ri, MPC can directly
take into account system constraints:

Np
v = nqlLikIlz%’erk—i-i—&—l(ivk—&-i? Ukti) s (1.18)
1=
st @ipivt = F(@hi Whti),

Ty €EX, upp €U

 PAST
<

A FUTURE >

Reference Trajectory

P —e— Predicted Output
e Measured Output
Predicted Control Input

Past Control Input

Prediction Horizon

— 1
At
Sample Time
B k+l k42 e

Oliver Wallscheid

Fig. 1.17: Basic MPC scheme (source: www.wikipedia.org, by Martin Behrendt CC BY-SA 3.0)

Reinforcement learning

47

https://de.wikipedia.org/wiki/Model_Predictive_Control
https://creativecommons.org/licenses/by-sa/3.0/deed.en

MPC vs. RL

Hence, MPC and RL are two sides of the same coin. Both share the same general goal
(sequential optimal decision making), but follow their own philosophy:

Property MPC RL

Objective minimize costs maximize return
A priori model required X not required v/
Pre-knowledge integration easy v/ rather complex X
Constraint handling inherent v/ only indirect X
Adaptivity requires add-ons X inherent v/
Online complexity it depends v/ /X it depends v/ /X
Stability theory mature v/ immature X

Tab. 1.1: Key differences on MPC vs. RL
(inspired from D. Gorges, Relations between Model Predictive Control and Reinforcement Learning,
IFAC PapersOnine 50-1, pp. 4920-4928, 2017)

Oliver Wallscheid Reinforcement learning 48

Summary: what you've learned in this lecture

Understanding the role of RL in machine learning and optimal sequential decision making.
Become acquainted with the basic RL interaction loop (agent, environment, interpreter).
Finding your way around the basic RL vocabulary.

Internalize the significance of proper reward formulations (design parameter).

Differentiate solution ideas on how to retrieve an optimal agent behavior (policy).

vVvyVvyVvyYyvyy

Delimit RL towards model predictive control as a sequential decision making alternative.

Oliver Wallscheid Reinforcement learning 49

Table of contents

© Markov decision processes
m Finite Markov chains
m Finite Markov reward processes
m Finite Markov decision processes
m Optimal policies and value functions

Oliver Wallscheid Reinforcement learning

50

Preface

» Markov decision processes (MDP) are a mathematically idealized form of RL problems.

» They allow precise theoretical statements (e.g., on optimal solutions).

» They deliver insights into RL solutions since many real-world problems can be abstracted as
MDPs.

» In the following we'll focus on:

> fully observable MDPs (i.e., &x = yi) and
» finite MDPs (i.e., finite number of states & actions).

All states observable?

Yes No
G No Markov chain Hidden Markov
5 model
<t; Yes Markov decision Partially

process (MDP) observable MDP

Tab. 2.1: Different Markov models

Oliver Wallscheid Reinforcement learning 51

Scalar and vectorial representations in finite MDPs

» The position of a chess piece can be represented in two ways:

» Vectorial: © = [:ch IV] , i.e., a two-element vector with horizontal and vertical information,
» Scalar: simple enumeration of all available positions (e.g., x = 3).

» Both ways represent the same amount of information.

» We will stick to the scalar representation of states and actions in finite MDPs.

Oliver Wallscheid Reinforcement learning 52

Markov chain

Definition 2.1: Finite Markov chain

A finite Markov chain is a tuple (X, P) with

> X being a finite set of discrete-time states X € X,
» P =P,y =P[Xp1 = 2| X} = x] is the state transition probability.

» Specific stochastic process model

» Sequence of random variables Xy, Xp11,...

» 'Memoryless', i.e., system properties are time invariant
>

In continuous-time framework: Markov process!

"However, this results in a literature nomenclature inconsistency with Markov decision/reward 'processes’.

Oliver Wallscheid Reinforcement learning 53

State transition matrix

Definition 2.2: State transition matrix

Given a Markov state X = x and its successor X1 = z’ , the state transition probability
V{z,2'} € X is defined by the matrix

'me/ =P |:Xk-+1 = .%'"Xk = [17] . (21)

Here, P, € R™ ™ has the form

P11 P12 - DPin

P21 :
Poo = .

pnl e “ e pnn

with p;; € {R|0 < p;; < 1} being the specific probability to go from state x = X to state
x’ = X;. Obviously, }>; p;; = 1Vi must hold.

Oliver Wallscheid Reinforcement learning 54

Example of a Markov chain (1)

Small Medium Large x€{1,2,3,4}
r=1L=a @ l—a,=3 = {small, medium, large, gone}
o a Q I-a
0 1—« 0 a
0 0 l—-a «
z:i P=10 0 1-a a
0 0 0 1

Fig. 2.1: Forest tree Markov chain

» At z =1 a small tree is planted ('starting point’).

> A tree grows with (1 — «) probability.

» If it reaches x = 3 (large) its growth is limited.

» With a probability a natural hazard destroys the tree.
» The state x = 4 is terminal ('infinite loop").

Oliver Wallscheid Reinforcement learning 55

Example of a Markov chain (2)

Small Medium Large
r=1 1_O‘=@ 1_a=$:3
1l -«
(0 Q Q
r=4
Gone

Possible samples for the given Markov chain example starting from x = 1 (small tree):

» Small — gone

» Small — medium — gone

» Small — medium — large — gone

» Small — medium — large — large — ...

Oliver Wallscheid Reinforcement learning 56

Table of contents

© Markov decision processes

m Finite Markov reward processes

Oliver Wallscheid

Reinforcement learning

57

Markov reward process

Definition 2.3: Finite Markov reward process
A finite Markov reward process (MRP) is a tuple (X, P, R,~) with

» X being a finite set of discrete-time states X € X,

» P =P,y =P[Xp1 = 2| X = x] is the state transition probability,
» R is a reward function, R = R, = E [Rj41| X} =] and

» ~ is a discount factor, v € {R|0 < v < 1}.

v

Markov chain extended with rewards

v

Still an autonomous stochastic process without specific inputs

v

Reward Rj1 only depends on state Xy,

Oliver Wallscheid Reinforcement learning 58

Example of a Markov reward process
Small Medium Large

1\ 1 —«
a;—lrzl

87

Gone

Fig. 2.2: Forest Markov reward process

» Growing larger trees is rewarded, since it will be
» appreciated by hikers and
» useful for wood production.

» Loosing a tree due to a hazard is unrewarded.

Oliver Wallscheid Reinforcement learning

Recap on return

The return Gy, is the total discounted reward starting from step k onwards. For episodic tasks
it becomes the finite series

N
Gk = Riy1 +YRir2 +7°Reps +-- =Y V' Rein (22)
=0

terminating at step /N while it is an infinite series for continuing tasks

o0

Gk = Riy1 +YRey2 + 7V Reys + - = Z’YiRk-i-i—&-l . (2.3)
=0

» The discount -y represents the value of future rewards.

Oliver Wallscheid Reinforcement learning 60

Value function in MRP
Definition 2.4: Value function in MRP

The state-value function v(zy) of an MRP is the expected return starting from state xy,

v(zg) = E |G| Xk = k] - (2.4)

» Represents the long-term value of being in state Xj.

Fig. 2.3: Isolines indicate state value of different golf ball locations (source: R. Sutton and G. Barto,
Reinforcement learning: an introduction, 2018, CC BY-NC-ND 2.0)

Oliver Wallscheid Reinforcement learning 61

https://creativecommons.org/licenses/by-nc-nd/2.0/

State-value samples of forest MRP
Small Medium Large

Gone
Exemplary samples for © with v = 0.5 starting in x = 1:
r=1—4, 0 =1,
r=1—>2—4 0=1+0.5-2=2.0,
r=1—-2—3—4, 1=1+05-2+0.25-3=3.75,

r=1—-2—=23—-3—=4, 9=14+05-2+0.25-3+0.125-3 =4.13.

Oliver Wallscheid Reinforcement learning 62

Bellman equation for MRPs (1)

Problem: How to calculate all state values in closed form?
Solution: Bellman equation.

v(zg) = E[Gi| Xk =]
=E [Riy1 + YRit2 + vV’ Riys + - | Xk =]
=E[Rit1 +7 (Rrge +yRpyz + ..) [Xi = a4
= E[Ry11 +YGri1| Xi = 74
= E[Rpy1 + y0(Xpp1)|[Xk = m4]

v(zk) < Tk
Tk+1

V(T41) ¢ Tpi1

Fig. 2.4: Backup diagram for v(zy)

Oliver Wallscheid Reinforcement learning

(2.5)

63

Bellman equation for MRPs (2)

Assuming a known reward function R(z) for every state X =2 € X
T T
Ty = [R(l’l) s R($n)] = [Rl e Rn] (26)

for a finite number of n states with unknown state values

T T
vy = [v(z1) o v(wy)] =i o vy (2.7)
one can derive a linear equation system based on Fig. 2.4:
vy =Tx + ’Y,Pxx’v/YV
vl Ra Pir o Pin| |1 (2.8)
=]+ : :
Un, Rn Pn1 - Pnn Un

Oliver Wallscheid Reinforcement learning 64

Solving the MRP Bellman equation
Above, (2.8) is a normal equation in vy:

vy =Tx + fyPCB.T//UX?

And (I - ’)/Prz’) Vy = Tx . (29)
A z

Possible solutions are (among others):

» Direct inversion (Gaussian elimination, O(n?)),
» Matrix decomposition (QR, Cholesky, etc. , O(n?)),

> Iterative solutions (e.g., Krylov-subspaces, often better than O(n?)).

In RL identifying and solving (2.9) is a key task, which is often realized only approximately for
high-order state spaces.

Oliver Wallscheid Reinforcement learning 65

Example of a MRP with state values

Small Medium Large
_ 0.8
v=5.7 —1
0.2
v=0 |r=0
Gone

Fig. 2.5: Forest Markov reward process including state values

» Discount factor v = 0.8
» Disaster probability a = 0.2

Oliver Wallscheid Reinforcement learning

Table of contents

© Markov decision processes

m Finite Markov decision processes

Oliver Wallscheid

Reinforcement learning

67

Markov decision process

Definition 2.5: Finite Markov decision process
A finite Markov decision process (MDP) is a tuple (X, U, P, R,~) with

> X being a finite set of discrete-time states X € X,

» U{ as a finite set of discrete-time actions U € U,

> P =P, is the state transition probability P = P [X}1; = 2| X}, = xp, U, = wy],
» R is a reward function, R = R} = E [Ry41| Xk = x, Ur = uy] and

» ~ is a discount factor, v € {R|0 < v < 1}.

» Markov reward process is extended with actions / decisions.

v

Now, rewards also depend on action Uy.

Oliver Wallscheid Reinforcement learning 68

Example of a Markov decision process (1)

Small Medium Large 1 —«
CNu=w.od —a/l Nu=w.d—a /[Nu=w
r=1-—5 o r=2F—5 T=3F—
(04 o
r=1\u=c u=cfr=2 u=c =3

r=4
Gone

Fig. 2.6: Forest Markov decision process

» Two actions possible in each state:
» Wait u = w: let the tree grow.
» Cut u = c: gather the wood.

» With increasing tree size the wood reward increases as well.

Oliver Wallscheid Reinforcement learning

69

Example of a Markov decision process (2)

For the previous example the state transition probability matrix and reward function are given
as:

0 0 0 1 0 11—« 0 o
_ 0 0 0 1 _ 0 0 l—-a «
uU=c __ U=w __
P’“"'_OOOI’P”’_O 0 l—-a al’
0 0 0 1 0 0 0 1

rc=1 2 3 0", 7&* =[0 0 1 0.

» The term 7Y is the abbreviated form for receiving the output of R for the entire state space
X given the action u.

Oliver Wallscheid Reinforcement learning 70

Policy (1)
Definition 2.6: Policy in MDP (1)

In an MDP environment, a policy is a distribution over actions given states:

m(uglry) = P[Ug = ug| Xp = x| . (2.10)

» In MDPs, policies depend only on the current state.
» A policy fully defines the agent’s behavior (which might be stochastic or deterministic).

Fig. 2.7: What is you best Monopoly policy? (source: Ylanite Koppens on Pexels)

Oliver Wallscheid Reinforcement learning 71

https://www.pexels.com/de-de/foto/begrifflich-brettspiel-drinnen-farben-776654/

Policy (2)

Given a finite MDP (X,U,P,R,~) and a policy =:

» The state sequence Xy, Xj11,... is a Markov chain (X', P™) since the state transition
probability is only depending on the state:

Pr = Z 7 (ug|p)PY, . (2.11)

uk €U

» Consequently, the sequence Xy, Riy1, Xgt1, Rito,... of states and rewards is a Markov
reward process (X, P™, R”,~):

Riy = m(uplzp)RY. (2.12)
up €U

Oliver Wallscheid Reinforcement learning 72

Recap on MDP value functions

Definition 2.7: State-value function

The state-value function of an MDP is the expected return starting in z; following policy :

] |

Ur(21) = Er [Gr| Xp = 2] [Z’Y Rptiv1| X

Definition 2.8: Action-value function
The action-value function of an MDP is the expected return starting in xj taking action wug

following policy 7:

Xi, Uy

o)
qﬂ(l‘k, uk) = EW [Gk‘Xk = T, Uk = Uk] = EW [Z ’yiRk+i+1
=0

Oliver Wallscheid Reinforcement learning 73

Bellman expectation equation (1)
Analog to (2.5), the state value of an MDP can be decomposed into a Bellman notation:

Ur (k) = B [Ri1 + y0r (Xpeg1) [X = 2] - (2.13)
In finite MDPs, the state value can be directly linked to the action value (cf. Fig. 2.8):
vr(Tk) = Z m(uk|ek)gx (Tk, u) - (2.14)
ur €U

vr(xg) < Tk

Qr (Ty Uk) < Up &

PR 2 P22

Fig. 2.8: Backup diagram for v, (xy)

Oliver Wallscheid Reinforcement learning 74

Bellman expectation equation (2)
Likewise, the action value of an MDP can be decomposed into a Bellman notation:

G (Ths) = B [Rior1 + Y (Xpor1, Unr)| Xi = @, U = wg] - (2.15)
In finite MDPs, the action value can be directly linked to the state value (cf. Fig. 2.9):
Or(Tp,up) = Ry +7 Z DoV (Tht1) - (2.16)
Tpr1€EX

Gr(Th, up) < g, ur @,
’rk_‘_l’/.m
engl R
Fig. 2.9: Backup diagram for ¢, (zy, ug)

Oliver Wallscheid Reinforcement learning 75

Bellman expectation equation (3)

Inserting (2.16) into (2.14) directly results in:

ve(ze) = > wluloy) [RE+y D plyvnl(@rs) | - (2.17)

up €U Tpy1EX

Conversely, the action value becomes:

O (Tp, up) = Ry + v Z Dy Z (U1 [Thg1) @ (Thp1s k1) | (2.18)

Tpy1E€EX Up41E€EU

Oliver Wallscheid Reinforcement learning 76

Bellman expectation equation in matrix form

Given a policy 7 and following the same assumptions as for (2.8), the Bellman expectation
equation can be expressed in matrix form:

T T T T
Vy =Ty + 7P$$’UX7

=] A RE
Up Ry Pni 0 Panl [V

Here, %, and P7, are the rewards and state transition probability following policy . Hence,
the state value can be calculated by solving (2.19) for v7%,, e.g., by direct matrix inversion:

vy = (I —~PT) ' rE. (2.20)

Oliver Wallscheid Reinforcement learning 77

Bellman expectation equation & forest tree example (1)
Let’s assume following very simple policy ('fifty-fifty')

m(u = cut|lz) = 0.5, w(u=waitlz) =05 VzeX.

Applied to the given environment behavior

0 0 01 0 1—«o 0 «
_ 0 0 0 1 _ 0 0 l—-a «
u=c __ Uu=w __
Par =10 001" P=" |0 0 1-a af
0 0 0 1 0 0 0 1
u=c T u=w T
ri =123 0, %" =00 1 0],
one receives: . -
— (0%
0 == 10a HTa 0.5
0o o0 =& ==« 1
0O O 0 1 0

Oliver Wallscheid Reinforcement learning 78

Bellman expectation equation & forest tree example (2)
Small Medium Large 1 —«

v;=0

Gone
Fig. 2.10: Forest MDP with fifty-fifty policy including state values

» Discount factor v = 0.8
» Disaster probability a = 0.2

Oliver Wallscheid Reinforcement learning

79

Bellman expectation equation & forest tree example (3)
Using the Bellman expectation eq. (2.16) the action values can be directly calculated:

Small Medium Large
~=1.22 y= =1 = =2,
vr=1.11% =W 1 e L GITW o gl =2 —w
r=0 r=0 r=1
r=1 =2 r=3
— G==2.0 ==3.0
q-=1.0 U=C _q
u=c u=c
V=0
Gone

Fig. 2.11: Forest MDP with fifty-fifty policy plus action values

Oliver Wallscheid Reinforcement learning

80

Table of contents

© Markov decision processes

m Optimal policies and value functions

Oliver Wallscheid Reinforcement learning

81

Optimal value functions in an MDP

Definition 2.9: Optimal state-value function

The optimal state-value function of an MDP is the maximum state-value function over all polices:

v¥(x) = max vr(x) . (2.21)

Definition 2.10: Optimal action-value function

The optimal action-value function of an MDP is the maximum action-value function over all
polices:
¢ (x,u) = max Gr (2,). (2.22)

» The optimal value function denotes the best possible agent’s performance for a given MDP
/ environment.

» A (finite) MDP can be easily solved in an optimal way if ¢*(x, u) is known.

Oliver Wallscheid Reinforcement learning 82

Optimal policy in an MDP

Define a partial ordering over polices

a>7 if wg(z) >ve(x) VeeX. (2.23)

Theorem 2.1: Optimal policies in MDPs

For any finite MDP

» there exists an optimal policy 7* > 7 that is better or equal to all other policies,
» all optimal policies achieve the same optimal state-value function v*(z) = vy« (),

» all optimal policies achieve the same optimal action-value function ¢*(z,u) = ¢z« (z, u).

Oliver Wallscheid Reinforcement learning 83

Bellman optimality equation (1)

Theorem 2.2: Bellman's principle of optimality

“An optimal policy has the property that whatever the initial state and initial decision are, the
remaining decisions must constitute an optimal policy with regard to the state resulting from
the first decision.” (R.E. Bellman, Dynamic Programming, 1957)

» Any policy (i.e., also the optimal one) must satisfy the self-consistency condition given by
the Bellman expectation equation.

» An optimal policy must deliver the maximum expected return being in a given state:
v (zg) = Max g~ (zk,u)
= max E « [Gy| Xk = 21, U = 4]
“ (2.24)
= mBXEw* [Rit+1 + YGrs1| Xk = 2k, U = u

= max B [Ryy1 + 90" (Xpp)| Xp = 2, U =] -

Oliver Wallscheid Reinforcement learning 84

Bellman optimality equation (2)

Again, the Bellman optimality equation can be visualized by a backup diagram:

T

max

U ¢
Tk+1"

Letel \O (5 O b

Fig. 2.12: Backup diagram for v*(xy)

For a finite MDP, the following expression results:

v () = max RY+~ Z Dot Ve (Thot 1) (2.25)
Tp+1E€X

Oliver Wallscheid Reinforcement learning 85

Bellman optimality equation (3)

Likewise, the Bellman optimality equation is applicable to the action value:
q"(zr,up) = E [Rk—f—l + 'YEiii(q*(Xk—&-la Uk 1)1 Xk = 21, U = ug

And, in the finite MDP case:

O (Tpup) =R+ Y Pl Max ¢ (Tg41, Up+1)-
l‘k+1€X R

Tk, Uk B
Tkl

Th+1 (

max
Uk+1
Fig. 2.13: Backup diagram for ¢*(xy, ug)

Oliver Wallscheid Reinforcement learning

(2.26)

(2.27)

86

Solving the Bellman optimality equation

» In finite MDPs with n states, (2.25) delivers an algebraic equation system with n unknowns
and n state-value equations.

> Likewise, (2.27) delivers an algebraic equation system with up to n - m unknowns and n - m
action-value equations (m =number of actions).

» If environment is exactly known, solving for v* or ¢* directly delivers optimal policy.
> If v(x) is known, a one-step-ahead search is required to get ¢(x, u).
> If g(z,u) is known, directly choose ¢*.

» Even though above decisions are very short sighted (one-step-ahead search for v or direct
choice of ¢), by Bellman's principle of optimality one receives the long-term maximum of
the expected reward.

Oliver Wallscheid Reinforcement learning 87

Optimal policy for forest tree MDP

Remember the forest tree MDP example:

Small Medium Large Ll —«
_ N\uU=w 1 — __0o\U=wW] — __9\U=wW
r=1F"—5 = T=2F"—5 T=3F—

o «
r=IN\u=c u=cfr=2 u=c 1=3

r=4

Gone

» Two actions possible in each state:
> Wait u = w: let the tree grow.
» Cut u = c: gather the wood.
» Lets first calculate v*(x) and then ¢*(x, u).

Oliver Wallscheid Reinforcement learning

88

Optimal policy for forest tree MDP: state value (1)
Start with v(z = 4) ('gone’) and then continue going backwards:

v (z=4)=0,

v*(z = 3) = max {1 (1@ =3) + avi(z =4)],

3+ yv*(x =4),
1+y[(1—a)o™(z =3)],

= Inax

0+~[(1—-a)v*(x=3)+av*(z=4)],

{

ax{2+w “(a=4),
{ _
{

Oliver Wallscheid Reinforcement learning 89

Optimal policy for forest tree MDP: state value (2)

» Possible solutions:
> numerical optimization approach (e.g., simplex method, gradient descent,...)
» manual case-by-case equation solving (dynamic programming, cf. next lecture)

Small Medium Large 1 —«
U= \YU=W 1 — Ve = \XU=W
128 Jr=0 3.0 Jr=1
N (o'
r=1\u=c u=clr=2 u=c T=3

V=0

Gone
Fig. 2.14: State values under optimal policy (y = 0.8, a = 0.2)

Oliver Wallscheid Reinforcement learning 90

Optimal policy for forest tree MDP: state value (3)

Small Medium Large 1 —«

Vp* = U—W 1 - a
185 J7=0" \v

r=1\u=c u=clr=2

Vyer =0

Gone
Fig. 2.15: State values under optimal policy (v = 0.9, a = 0.2)

Oliver Wallscheid Reinforcement learning

91

Optimal policy for forest tree MDP: action value (1)

Use ug11 = u’ to set up equation system:

Fr=1Lu=c

(x=1lu=w

LS

I,
— (1 - a) maxq*(z = 2,u),
u/
2

= (1 — @) max¢*(z = 3,u),
u/

=3,
1

» There are six action-state pairs in total.
» Three of them can be directly determined.

» Three unknowns and three equations remain.

Oliver Wallscheid Reinforcement learning

+9(1 — a) max ¢*(z = 3,u') .
u/

92

Optimal policy for forest tree MDP: action value (2)

Rearrange max expressions for unknown action values:

1+9(1 - a)g*(3,w),

¢ (r =1,u=w) =v(1 — @) max ,

~7(1 — o) max {
27
1+7(1 - a)q* (3, w),

)

¢ (r=2u=w)=1(1 —Oé)max{
q*(l' = S,U = w) =1 _’_7(1 . O{) max{g*(?),ﬂi),

Again, retrieve unknown optimal action values by numerical optimization solvers or manual
backwards calculation (dynamic programming).

Oliver Wallscheid Reinforcement learning

93

Optimal policy for forest tree MDP: action value (3)

Small Medium Large
Ve =\ =128 U=W (0 =\0r=1.92U=W _ (1. = \Ir==2.92
qr+= =
u=c =3
U=C u=c
v,=0
Gone

Oliver Wallscheid

Fig. 2.16: Action values under optimal policy (v = 0.8, o = 0.2)

Reinforcement learning

U—W

04

Optimal policy for forest tree MDP: action value (4)

Small Medium Large
Vpr = x> =1.80 U=W Vpr = \0+ =2.5T U=W Vs = o+ =3.57
1.85 [7=0 257 r—=0 357 r—1
T:1 Q= T:2 9 7”:3
(17T*: *:(
u=c =3
U=C u=c
v,=0
Gone

Oliver Wallscheid

Fig. 2.17: Action values under optimal policy (v = 0.9, o = 0.2)

Reinforcement learning

U—W

95

Direct numerical state and action-value calculation

» Possible only for small action and state-space MDPs
> ’'Solving’ Backgammon with =~ 102" states?

» Another issue: total environment knowledge required

Framing the reinforcement learning problem

Facing the above issues, RL addresses mainly two topics:

» Approximate solutions of complex decision problems.

» Learning of such approximations based on data retrieved from environment interactions
potentially without any a priori model knowledge.

Oliver Wallscheid Reinforcement learning 96

Summary: what you've learned in this lecture

Differentiate finite Markov process models with or w/o rewards and actions.
Interpret such stochastic processes as simplified abstractions of real-world problems.
Understand the importance of value functions to describe the agent’'s performance.
Formulate value-function equation systems by the Bellman principle.

Recognize optimal policies.

vVvyVvYyVvyYyvyy

Setting up nonlinear equation systems for retrieving optimal policies by the Bellman
principle.

v

Solving for different value functions in MRP/MDP by brute force optimization.

Oliver Wallscheid Reinforcement learning

97

Table of contents

© Dynamic programming

m Policy evaluation
Policy improvement
Policy and value iteration
Further aspects

Oliver Wallscheid Reinforcement learning

98

What is dynamic programming (DP)?

Basic DP definition

» Dynamic: sequential or temporal problem structure

» Programming: mathematical optimization, i.e., numerical solutions

Further characteristics:

» DP is a collection of algorithms to solve MDPs and neighboring problems.

» We will focus only on finite MDPs.
> In case of continuous action/state space: apply quantization.

» Use of value functions to organize and structure the search for an optimal policy.
» Breaks problems into subproblems and solves them.

Oliver Wallscheid Reinforcement learning 99

Requirements for DP

DP can be applied to problems with the following characteristics.

» Optimal substructure:
» Principle of optimality applies.
» Optimal solution can be derived from subproblems.

» Overlapping subproblems:

» Subproblems recur many times.
» Hence, solutions can be cached and reused.

How is that connected to MDPs?

» MDPs satisfy above's properties:

» Bellman equation provides recursive decomposition.
» Value function stores and reuses solutions.

Oliver Wallscheid Reinforcement learning

Example: DP vs. exhaustive search (1)

1= Rheda-
eval = 0 Wiedenbriick Giitersloh

Paderborn

Horn-Bad Detmold
Meinberg

(=]

Fig. 3.1: Shortest path problem to travel from Paderborn to Bielefeld: Eshaustive search requires 14
travel segment evaluations since every possible travel route is evaluated independently.

Oliver Wallscheid Reinforcement learning 101

Example: DP vs. exhaustive search (2)

1— Rheda-
eval = 0 Wiedenbriick Gutersloh

Paderborn

Horn-Bad Detmold
Meinberg

S

Fig. 3.2: Shortest path problem to travel from Paderborn to Bielefeld: DP requires only 10 travel
segment evaluations in order to calculate the optimal travel policy due to the reuse of subproblem
results.

Oliver Wallscheid Reinforcement learning 102

Utility of DP in the RL context

DP is used for iterative model-based prediction and control in an MDP.

» Prediction:
» Input: MDP (X, U,P,R,~) and policy ©
» Output: (estimated) value function o, ~ v,
» Control:
» Input: MDP (X, U, P, R,~)
> Output: (estimated) optimal value function 9 ~ vX or policy 7* ~ 7*

In both applications DP requires full knowledge of the MDP structure.

» Feasibility in real-world engineering applications (model vs. system) is therefore limited.

» But: following DP concepts are largely used in modern data-driven RL algorithms.

Oliver Wallscheid Reinforcement learning 103

Policy evaluation background (1)

» Problem: evaluate a given policy 7 to predict v,.
» Recap: Bellman expectation equation for x; € X is given as
Un (k) = Ex [Gr| Xk = 2]
= Ex [Ret1 +7Grr1| Xk = 24]
=Er [Rit1 + y0r(Xp1)[Xk = 23] -
» Or in matrix form:
vy =1y + 1Pk,
vl Ri Plv - Pl [T
— e . .
R

T ™ ™
v Pn1 " Pnn Un

s3

» Solving the Bellman expectation equation for v, requires handling a linear equation system
with n unknowns (i.e., number of states).

Oliver Wallscheid Reinforcement learning 104

Policy evaluation background (2)

| 2

>

Problem: directly calculating v, is numerically costly for high-dimensional state spaces (e.g.,
by matrix inversion).

General idea: apply iterative approximations 0;(zy) = v;(zx) of vz(xy) with decreasing
errors:
|lvi(zg) = vrllo =0 for i=1,2,3,... (3.1)
The Bellman equation in matrix form can be rewritten as:
(I —yPry) v& = Tk . (3:2)
—_———
A ¢ b

To iteratively solve this linear equation A = b, one can apply numerous methods such as
» General gradient descent,

» Richardson iteration,

» Kyrlov subspace methods.

Oliver Wallscheid Reinforcement learning 105

Richardson iteration (1)

In the MDP context, the Richardson iteration became the default solution approach to
iteratively solve:

AC =b.

The Richardson iteration is
Cir1=Ci+wb— AE) (3.3)

with w being a scalar parameter that has to be chosen such that the sequence (; converges. To
choose w we inspect the series of approximation errors e; = ¢; — ¢ and apply it to (3.3):

eir1 =€ —wAe;, = (I —wA)e;. (3.4)
To evaluate convergence we inspect the following norm:

leitilloe = (T —wA) eil . - (3.5)

Oliver Wallscheid Reinforcement learning 106

Richardson iteration (2)

Since any induced matrix norm is sub-multiplicative, we can approximate (3.5) by the
inequality:

leitillo < I = @A)l ll€illoo - (3.6)
Hence, the series converges if
I —wA)| < 1. (3.7)
Inserting from (3.2) leads to:
(1 = w) +wyPip)llo < 1. (3.8)
For w =1 we receive:
TP oo < 1. (3.9)
Since the row elements of P7_, always sum up to 1,
v<1 (3.10)

follows. Hence, when discounting the Richardson iteration always converges for MDPs even if
we assume w = 1.

Oliver Wallscheid Reinforcement learning 107

lterative policy evaluation by Richardson iteration (1)
Applying the Richardson iteration (3.3) with w = 1 to the Bellman equation (2.17) for any

xp € X at iteration i results in:
Ui+1(xk) = Z ﬁ(uk’.%k) Rg +y Z pgzlvi($k+1> . (3.11)
uy €U Tpt1EX

Matrix form based on (2.19) then is:

i _ vy Yy ™
Vyit1 =Tx + YPopVx -

vip1(zk) o)
0y Uk

Tk+1.7

Vi (1) <—$k+1d b 6 b

Fig. 3.3: Backup diagram for iterative policy evaluation

(3.12)

Oliver Wallscheid Reinforcement learning 108

lterative policy evaluation by Richardson iteration (2)

» During one Richardson iteration the 'old’ value of z is replaced with a 'new’ value from the
'old’ values of the successor state 1.

> Update v;41(xg) from v;(zk41), see Fig. 3.3.

> Updating estimates (v;41) on the basis of other estimates (v;) is often called bootstrapping.
» The Richardson iteration can be interpreted as a gradient descent algorithm for solving

(3.2).

This leads to synchronous, full backups of the entire state space X.

v

» Also called expected update because it is based on the expectation over all possible next
states (utilizing full model knowledge).

» In subsequent lectures, the expected update will be supplemented by data-driven samples
from the environment.

Oliver Wallscheid Reinforcement learning 109

Iterative policy evaluation example: forest tree MDP
Let's reuse the forest tree MDP example from Fig. 2.10 with fifty-fifty policy:

1— 1
0 5 0 JTZ 0.5
0o 0 == == 1
0 0 0 1 0

i vilr=1) vi(r=2) vi(x=3) wvi(x=4)

0 0 0 0 0
1 0.5 1 2 0
2 0.82 1.64 2.64 0
3 1.03 1.85 2.85 0
00 1.12 1.94 2.94 0

Tab. 3.1: Policy evaluation by Richardson iteration (3.12) for forest tree MDP with v = 0.8 and a = 0.2

Oliver Wallscheid Reinforcement learning 110

Variant: in-place updates

Instead of applying (3.12) to the entire vector v% ;. in 'one shot’ (synchronous backup), an
elementwise in-place version of the policy evaluation can be carried out:

input: full model of the MDP, i.e., (X,U,P,R,~) including policy 7
parameter: § > 0 as accuracy termination threshold
init: vo(x) Vo € X arbitrary except vo(z) = 0 if x is terminal
repeat
A+ 0;
for Vx, € X do
0+ O(xg);
0(k) Lers (urlan) (RE+7 50, ex Pli(@ri));
A« max (A, |0 — 0(zk)]);
until A < §;

Algo. 3.1: Iterative policy evaluation using in-place updates (output: estimate of v7%)

Oliver Wallscheid Reinforcement learning 111

In-place policy evaluation updates for forest tree MDP

» In-place algorithms allow to update states in a beneficial order.

» May converge faster than regular Richardson iteration if state update order is chosen wisely
(sweep through state space).

» For forest tree MDP: reverse order, i.e., start with z = 4.

» As can be seen in Tab. 3.2 the in-place updates especially converge faster for the 'early
states'.

~.

vilz=1) wvi(x=2) vi(r=3) vi(z=4)

0 0 0 0 0
1 1.03 1.64 2 0
2 1.09 1.85 2.64 0
3 1.11 1.91 2.85 0
00 1.12 1.94 2.94 0

Tab. 3.2: In-place updates for forest tree MDP

Oliver Wallscheid Reinforcement learning 112

Table of contents

© Dynamic programming

m Policy improvement

Oliver Wallscheid

Reinforcement learning

113

General idea on policy improvement

» If we know v, of a given MDP, how to improve the policy?
» The simple idea of policy improvement is:
> Consider a new (non-policy conform) action u # m(zy).
» Follow thereafter the current policy .
» Check the action value of this 'new move'. If it is better than the 'old’ value, take it:

Or(xr, uk) = E[Rig1 + yvr (Xis1) | Xk = 2k, Up = ui] - (3.13)

Theorem 3.1: Policy improvement

If for any deterministic policy pair w and 7’
gr(z, 7' (2)) > ve(x) VZeXx (3.14)

applies, then the policy @' must be as good as or better than 7. Hence, it obtains greater or

equal expected return
v (x) > vgr(x) Vo e X. (3.15)

Oliver Wallscheid Reinforcement learning 114

Proof of policy improvement theorem
Start with (3.14) and recursively reapply (3.13):

On (1) < gr (g, 7 (21))
=E [Rpt1 + r (Xir1) | Xi = 2, Uy, = 7' (a1]
Err [Riy1 + y0r (Xp+1) [Xk = wg]
Err [Ris1 + VGr (@rp1, 7 (2r41)) | Xp = 2]
Ew/ [Rit1 + VB [Rira + y0r (Xpy2) [Xppr, 7' (wp11) | [Xg = 2]
=Ew [Ret1 + YRiso2 + 720 (Xit2) | Xy = 2]
< Er [Ris1 + vRit2 + 7V Riys + 7 0r (Xioy3) | Xp = 2y

(3.16)

Er [Ris1 + YRit2 + Y Riss + Y Riya + -+ | X =]

= v ().

Oliver Wallscheid Reinforcement learning 115

Greedy policy improvement (1)

» So far, policy improvement addressed only changing the policy at a single state.

» Now, extend this scheme to all states by selecting the best action according to ¢ (xy, ug) in
every state (greedy policy improvement):

7' (zy) = arg max qr (v, ug)
up €U

= argmax E [Ri11 + Y (Xgr1)| Xk = g, Up = ug]

= argmax R, + 7 Z Dot Ve (Tht 1) -

up €U Tpi1€EX

Oliver Wallscheid Reinforcement learning 116

Greedy policy improvement (2)

>

| 2

Each greedy policy improvement takes the best action in a one-step look-ahead search and,
therefore, satisfies Theo. 3.1.

If after a policy improvement step v (xg) = v (k) applies, it follows:

o (k) = gclaelz)jE [Ris1 + Yor (Xpy1) [X = 2, U = ug]

=max R+ Y, Pravw(@ri).

(3.18)

Tp1E€EX

This is the Bellman optimality equation, which guarantees that ©’ = m must be optimal
policies.

Although proof for policy improvement theorem was presented for deterministic policies,
transfer to stochastic policies 7(ug|xy) is possible.

Takeaway message: policy improvement theorem guarantees finding optimal policies in finite
MDPs (e.g., by DP).

Oliver Wallscheid Reinforcement learning 117

Table of contents

© Dynamic programming

m Policy and value iteration

Oliver Wallscheid

Reinforcement learning

118

Concept of policy iteration

» Policy iteration combines the previous policy evaluation and policy improvement in an
iterative sequence:

Mo — Ung —> T —> Uy —> =+ T —> Ups (3.19)

» Evaluate — improve — evaluate — improve ...

» In the 'classic’ policy iteration, each policy evaluation step in (3.19) is fully executed, i.e.,
for each policy 7; an exact estimate of vy, is provided either by iterative policy evaluation
with a sufficiently high number of steps or by any other method that fully solves (3.2).

Oliver Wallscheid Reinforcement learning 119

Policy iteration example: forest tree MDP (1)

Small Medium Large 1l — «
e 1 — PO\ U=W 1 — = 3U=W
r=0" "\« r=0 7, r=1 ¢
r=1\u=c u=clr=2 u=c 1T=3
r=4
Gone

» Two actions possible in each state:

» Wait u = w: let the tree grow.
» Cut u = c: gather the wood.

Oliver Wallscheid Reinforcement learning

Policy iteration example: forest tree MDP (2)

Assume o« = 0.2 and v = 0.8 and start with 'tree hater’ initial policy:
@ 7w = w(u = c|zg) ka cX.

@ Policy evaluation: vj? =[1 2 3 0}

@ Greedy policy improvement:

7T1(:17k) = al“gInuaXE [Rk:—l—l + ’YUﬂO(Xk+1)|Xk =z, U = uk]
Uk €

= {m(ux = wlzg = 1), 7(ur = c|zg = 2), 7(ug = clzp = 3)}

@ Policy evaluation: vy [1 28 2 3 0}
® Greedy policy improvement:

mo(xy) = arg n}/laxE [Ri+1 + Yr, (Xg+1)| Xk = xp, Up, = ug]
U €

={m(ur = wlzg = 1), m(ur = clzg = 2),m(ux, = c|lz, = 3)},
= 7T1($k)
= 7‘[‘*

Oliver Wallscheid Reinforcement learning

121

Policy iteration example: forest tree MDP (3)

Assume o« = 0.2 and v = 0.8 and start with 'tree lover’ initial policy:
@ 7mp = w(ug = wlxg) Vl‘k cX.

@ Policy evaluation: v = [1.14 1.78 2.78 0]"

@ Greedy policy improvement:

7T1(:17k) = al“gInuaXE [Rk:—l—l + ’YUﬂO(Xk+1)|Xk =z, U = uk]
Uk €

= {m(ug = wlzg = 1), 7(ur = c|zg = 2), 7(ug, = clzp = 3)}

@ Policy evaluation: vy [1 28 2 3 0}
® Greedy policy improvement:

mo(xy) = arg HLaXE [Ri+1 + Yr, (Xg+1)| Xk = xp, U, = ug]
U €

= {m(uk = wlzp = 1), 7(up = clog = 2), w(up = clag = 3)}
= m1(2k)

Oliver Wallscheid Reinforcement learning

122

Value iteration (1)

» Policy iteration involves full policy evaluation steps between policy improvements.

» In large state-space MDPs the full policy evaluation may be numerically very costly.

» Value iteration: One step iterative policy evaluation followed by policy improvement.

» Allows simple update rule which combines policy improvement with truncated policy
evaluation in a single step:

vip1(xg) = gklgﬁE (Rt + v0i(Xig 1) | X = 2p, U = ug]

u u 3.20
=max Ry + 7 Z Do Vi (Thy1) - (3.20)

up €U
Tpy1€X

Oliver Wallscheid Reinforcement learning 123

Value iteration (2)

input: full model of the MDP, i.e., (X, U, P, R,7)
parameter: ¢ > 0 as accuracy termination threshold
init: vo(z) Vo € X arbitrary except vo(z) = 0 if x is terminal
repeat
A+ 0;
for Vz, € X do
0« 0(zg);
d(zy) < maxy, ey (RZ R D DY pzxfﬁ(xm)):
A < max (A, |0 — 0(zg)]);
until A < §;

output: deterministic policy m ~ 7*, such that

m(w) argmax, o (RE+7 Loy, ex Plard(@ri1))

Algo. 3.2: Value iteration (note: compared to policy iteration, value iteration does not require an
initial policy but only a state-value guess)

Oliver Wallscheid Reinforcement learning 124

Value iteration example: forest tree MDP

» Assume again a = 0.2 and v = 0.8.

» Similar to in-place update policy evaluation, reverse order and start value iteration with
x =4.

» As shown in Tab. 3.3 value iteration converges in one step (for the given problem) to the
optimal state value.

i vilr=1) vi(r=2) vi(z=3) wvi(x=4)
0 0 0 0 0
1 1.28 2 3 0
* 1.28 2 3 0

Tab. 3.3: Value iteration for forest tree MDP

Oliver Wallscheid Reinforcement learning

125

Table of contents

© Dynamic programming

m Further aspects

Oliver Wallscheid

Reinforcement learning

126

Summarizing DP algorithms

» All DP algorithms are based on the state value v(x).
» Complexity is O(m - n?) for m actions and n states.
> Evaluate all n? state transitions while considering up to m actions per state.
» Could be also applied to action values g(x, u).
> Complexity is inferior with O(m? - n?).
» There are up to m? action values which require n? state transition evaluations each.

Problem Relevant Equations Algorithm
prediction Bellman expectation eq. policy evaluation
Bellman expectation eq. & - .
control S policy iteration
greedy policy improvement
control Bellman optimality eq. value iteration

Tab. 3.4: Short overview addressing the treated DP algorithms

Oliver Wallscheid Reinforcement learning 127

Curse of dimensionality

» DP is much more efficient than an exhaustive search over all n states and m actions in
finite MDPs in order to find an optimal policy.

» Exhaustive search for deterministic policies: m™ evaluations.
» DP results in polynomial complexity regarding m and n.

» Nevertheless, DP uses full-width backups:

» For each state update, every successor state and action is considered.

» While utilizing full knowledge of the MDP structure.
» Hence, DP is can be effective up to medium-sized MDPs (i.e., million finite states)
» For large problems DP suffers from the curse of dimensionality:

» Single update step may become computational infeasible.
» Also: if continuous states need quantization, number of finite states n grows exponentially with
the number of state variables (assuming fixed number of discretization levels).

Oliver Wallscheid Reinforcement learning 128

Generalized policy iteration (GPI)

» Almost all RL methods are well-described as GPI.
» Push-pull: Improving the policy will deteriorate value estimation.
» Well balanced trade-off between evaluating and improving is required.

evaluation

Vs v
™ |4
7 ~~ greedy(V)

improvement v, T
. Usey T

=g
P e— T

Fig. 3.4: Interpreting generalized policy iteration to switch back and forth between (arbitrary)

evaluations and improvement steps (source: R. Sutton and G. Barto, Reinforcement learning: an
introduction, 2018, CC BY-NC-ND 2.0)

Oliver Wallscheid Reinforcement learning 129

https://creativecommons.org/licenses/by-nc-nd/2.0/

Summary: what you've learned in this lecture

DP is applicable for prediction and control problems in MDPs.

But requires always full knowledge about the environment (i.e., it is a model-based solution).
DP is more efficient than exhaustive search.

But suffers from the curse of dimensionality for large MDPs.

(Iterative) policy evaluations and (greedy) improvements solve MDPs.

Both steps can be combined via value iteration.

This idea of (generalized) policy iteration is a basic scheme of RL.

VVyVvyVvVVYyVYVYY

Implementing DP algorithms comes with many degrees of freedom regarding the update
order.

Oliver Wallscheid Reinforcement learning 130

Table of contents

@ Monte Carlo methods
m Basic Monte Carlo prediction
m Basic Monte Carlo control
m Extensions to Monte Carlo on-policy control
m Monte Carlo off-policy prediction and control

Oliver Wallscheid Reinforcement learning

131

Monte Carlo methods vs. dynamic programming

Dynamic programming:
» Model-based prediction and control

» Planning inside known MDPs

Monte Carlo methods:

» Model-free prediction and control
» Estimating value functions and optimize policies in unknown MDPs
» But: still assuming finite MDP problems (or problems close to that)

» In general: broad class of computational algorithms relying on repeated random sampling to
obtain numerical results

Oliver Wallscheid Reinforcement learning 132

General Monte Carlo (MC) methods’ characteristics

» Learning from experience, i.e., sequences of samples (xy, ug, 7k+1)

» Main concept: Estimation by averaging sample returns

» To guarantee well-defined returns: limited to episodic tasks

» Consequence: Estimation and policy updates only possible in an episode-by-episode way
compared to step-by-step (online)

o

Fig. 4.1: Monte Carlo port
(source: www.flickr.com, by Miguel Mendez CC BY 2.0)

Oliver Wallscheid Reinforcement learning

133

https://www.flickr.com/photos/flynn_nrg/40890124713/
https://www.flickr.com/photos/flynn_nrg/
https://creativecommons.org/licenses/by/2.0/

Task description and basic solution

MC prediction problem statement

» Estimate state value v, (z) for a given policy 7.

» Available are samples (xy, j, ug j, ri+1,5) for episodes j =1,...,J.

MC solution approach:

» Average returns after visiting state x; over episodes j =1, ...

J T;
Uﬁ(a}k) ~ ’UW JZk J ngJ Z Z Y Tk+i+1,5 - (4'1)
j=1 i=0

» Above, T} denotes the terminating time step of each episode j.

» First-visit MC: Apply (4.1) only to the first state visit per episode.

» Every-visit MC: Apply (4.1) each time visiting a certain state per episode (if a state is
visited more than one time per episode).

Oliver Wallscheid Reinforcement learning 134

Algorithmic implementation: MC-based prediction

input: a policy 7 to be evaluated
output: estimate of v, (i.e., value estimate for all states z € X)
init: 0(x)Vx € X arbitrary except vg(z) = 0 if x is terminal
l(x) - an empty list for every z € X
for j =1,...,J episodes do

Generate an episode following 7: o, ug, 71, - . ., TT;, UT;, TTj 41 ;
Set g + 0;
for k=1T; —1,T; —2,1; — 3,...,0 time steps do

979+ T4,

if z; ¢ (zo,x1,...,25_1) then

Append g to list I(xg);
0(xk) + average(l(zk));

Algo. 4.1: MC state-value prediction (first visit)

Oliver Wallscheid Reinforcement learning 135

Incremental implementation

» Algo. 4.1 is inefficient due to large memory demand.
» Better: use incremental / recursive implementation.

» The sample mean p1, u9, ... of an arbitrary sequence g1, go, . . . is:

97+ Zgz]

= —[g7+(J = Dpy_1] :NJ%*%[

(4.2)
97 — Hj-1]-

» |f a given decision problem is non-stationary, using a forgetting factor o € {R|0 < o < 1}
allows for dynamic adaption:

py = pg-1+algr —pr-1]. (4.3)

Oliver Wallscheid Reinforcement learning 136

Statistical properties of MC-based prediction (1)
First-time visit MC:

» Each return sample g is independent from the others since they were drawn from separate
episodes.

» One receives i.i.d. data to estimate E [0;] and consequently this is bias-free.

» The estimate's variance Var [0;] drops with 1/n (n: available samples).

Every-time visit MC:

» Each return sample g is not independent from the others since they might be obtained
from same episodes.

» One receives non-i.i.d. data to estimate E [0;] and consequently this is biased for any
n < o0.

» Only in the limit n — oo one receives (v (z) — E [0(z)]) — 0.

More information: S. Singh and R. Sutton, “Reinforcement Learning with Replacing Eligibility Traces”, Machine
Learning, Vol. 22, pp. 123-158, 1996

Oliver Wallscheid Reinforcement learning 137

Statistical properties of MC-based prediction (2)

» State-value estimates for each state are independent.

» One estimate does not rely on the estimate of other states
(no bootstrapping compared to DP).

» Makes MC particularly attractive when one requires state-value knowledge of only one or

few states.
°

O’ O (5 o :

Fig. 4.2: Back-up diagrams for DP (left) and MC (right) prediction: shallow one-step back-ups with
bootstrapping vs. deep back-ups over full epsiodes

» Hence, generating episodes starting from the state of interest.

Oliver Wallscheid Reinforcement learning 138

MC-based prediction example: forest tree MDP (1)

Let's reuse the forest tree MDP example with fifty-fifty policy and discount factor v = 0.8 plus
disaster probability o = 0.2:

Small Medium Large 1l —«
vr=1.1 ’l;/.iBV L — o vr=1.9 ’LLiW L—q vW:Q.Q’U’i\iV
= 8] r=0 7, r= 4
r=IN\u=c u=clr=2 u=c =3
v,=0
Gone

Fig. 4.3: Forest MDP with fifty-fifty-policy including state values

Oliver Wallscheid Reinforcement learning 139

MC-based prediction example: forest tree MDP (2)

T

mean

) 50 100 150 200
Number of episodes
Fig. 4.4: State-value estimate of forest tree MDP initial state using MC-based prediction over the

number of episodes being evaluated (mean and standard deviation are calculated based on 2000
independent runs)

Oliver Wallscheid Reinforcement learning 140

MC estimation of action values

Is a model available (i.e., tuple (X, U, P,R,~))?

P> Yes: state values plus one-step prediction deliver optimal policy.
» No: action values are very useful to directly obtain optimal choices.
» Recap policy improvement from last lecture.

Estimating ¢, (x,u) using MC approach:

» Analog to state values summarized in Algo. 4.1.

» Only small extension: a visit refers to a state-action pair (z,u).
» First-visit and every-visit variants exist.

Possible problem when following a deterministic policy 7:

» Certain state-action pairs (x,u) are never visited.

» Missing degree of exploration.

» Workaround: exploring starts, i.e., starting episodes in random state-action pairs (x,u) and
thereafter following .

Oliver Wallscheid Reinforcement learning 141

Table of contents

@ Monte Carlo methods

m Basic Monte Carlo control

Oliver Wallscheid

Reinforcement learning

142

Applying generalized policy iteration (GPI) to MC control

GPI concept is directly applied to MC framework using action values:

T = Gng —> M1 —> Gy —> =+ T = (= . (4.4)

» Degree of freedom: Choose number of episodes to approximate gr,.
» Policy improvement is done by greedy choices:

m(x) = argmax q(z,u) Ve X. (4.5)

evaluation

Q ~ qr
/\ Fig. 4.5: Transferring GPI to MC-based control
T Q

(source: R. Sutton and G. Barto,
Reinforcement learning: an introduction, 2018,
7~ greedy(Q) CC BY-NC-ND 2.0)

improvement

Oliver Wallscheid Reinforcement learning 143

https://creativecommons.org/licenses/by-nc-nd/2.0/

Policy improvement theorem

Assuming that one is operating in an unknown MDP, the policy improvement theorem
Theo. 3.1 is still valid for MC-based control:

Policy improvement for MC-based control

qr; (:Ba Ti+1 (13)) = dqr, (l‘, argmaxqr, (l’, u))
i
i i, (1)

Z qr; (1‘) Wz(x))
> U, ().

» Each ;41 is uniformly better or just as good (if optimal) as ;.
» Assumption: All state-action pairs are evaluated due to sufficient exploration.
» For example using exploring starts.

Oliver Wallscheid Reinforcement learning 144

Algorithmic implementation: MC-based control

output: Optimal deterministic policy 7*
init: m—o(x) € U arbitrarily Yz € X
G(z,u) arbitrarily V {z € X,u € U}
n(z,u) < an empty list for state-action visits V {z € X, u € U}
repeat
14—14+1;
Choose {xg, uo} randomly such that all pairs have probability > 0 ;
Generate an episode from {xg, uo} following m; until termination step T5;

Set g + 0;
for k=T, —1,T;, —2,T; —3,...,0 time steps do
g < Y9+ Tkt

if {zx,ur} & {zo,uo0},...,{xr—1,ur—1}) then
n(xg, uk) < n(zk, ug) + 1;
G(xk, uk) < §(xk,ur) + 1/n(zk, ur) - (9 — §(xk, uk));
mi(xk) < argmax, §(zk,u);
until Tit1 = T4

Algo. 4.2: MC-based control using exploring starts (first visit)

Oliver Wallscheid Reinforcement learning 145

Table of contents

@ Monte Carlo methods

m Extensions to Monte Carlo on-policy control

Oliver Wallscheid Reinforcement learning

146

Off- and on-policy learning

» On-policy learning
» Evaluate or improve the policy used to make decisions.
> Agent picks own actions.
> Exploring starts (ES) is an on-policy method example.
» However: ES is a restrictive assumption and not always applicable

(in some cases the starting state-action pair cannot be choosen freely).

» Off-policy learning

» Evaluate or improve a policy different from that used to generate data.

» Agent cannot apply own actions.
» Will be focused in the next sections.

Oliver Wallscheid Reinforcement learning

147

e-greedy as an on-policy alternative

» Exploration requirement:
» Visit all state-action pairs with probability:

m(ulz) >0 V{zeX,uel}. (4.7)

P Policies with this characteristic are called: soft.
» Level of exploration can be tuned during the learning process.

» c-greedy on-policy learning
> With probability the agent’s choice (i.e., the policy output) is overwritten with a random action.

» Probability of all non-greedy actions:
e/|U|. (4.8)

» Probability of the greedy action:
1—e+e/|U]|. (4.9)

> Above, || is the cardinality of the action space.

Oliver Wallscheid Reinforcement learning 148

Algorithmic implementation e-greedy MC-control

output: Optimal e-greedy policy 7" (u|z), parameter: ¢ € {R|0 < e << 1}
init: m;—o(u|z) arbitrarily soft V {z € X,u € U}

G(z,u) arbitrarily V {z € X,u € U}

n(z,u) < an empty list counting state-action visits V {z € X, u € U}
repeat

Generate an episode following mi: o, uo, 71, ..., T1;, U, , T,
i+ 1+1;
Set g + 0;
fork=T,—1,T;, —2,T; — 3,...,0 time steps do
g =Yg+ Tkt

if {xk,uk} ¢ <{330,’LLO} Sy {xk_l, uk_1}> then
n(zk, ur) < n(zk,ur) + 1;
G(z, uk) < 4(x, uk) + 1/n(xe, uk) - (9 — 4(r, ur));
U argmax,, §¢(zr,u);

l—e+e/lU], u=1u
mi(u|zk) _
e/l u#ta
until Tig1 = Tq;

Algo. 4.3: MC-based control using e-greedy approach

Oliver Wallscheid Reinforcement learning

149

e-greedy policy improvement (1)

Theorem 4.1: Policy improvement for e-greedy policy

Given an MDP, for any e-greedy policy 7 the e-greedy policy ©’ with respect to ¢, is an im-
provement, i.e., v > v, Ve € X.

Small proof:
qﬂ-(l‘,ﬂ',(l‘)) = Zﬂ'/(u‘x)%r('rv u)

_ IZ%;%(%“) + (1 = &) max gr(z, u) (4.10)

m(ul|z) — 7
> ;{T;qﬁ(x,u) +(fs);%qn(x,u)-

In the inequality line, the second term is the weighted sum over action values given an e-greedy
policy. This weighted sum will be always smaller or equal than max, g (z, u).

Oliver Wallscheid Reinforcement learning 150

e-greedy policy improvement (2)

Continuation:

qn(z, ‘U|Zqﬂxu 1—£)Z7r(u1x)_;|uqﬁ(x,u)

u

- W Eu: G (2, 0) — qu(z,u)) + zu:ﬂ(um)qﬁ(%u) (4.11)
= m(ulz)ge(z, u)

= v ().

» Policy improvement theorem is still valid when comparing e-greedy policies against each
other.

» But: There might be a non-e-greedy policy which is better.

Oliver Wallscheid Reinforcement learning 151

MC-based control example: forest tree MDP (1)

=15 B B
I 05 1 i
= & &
< 0 <0 < 0
0 250 500 0 250 500 0 250 500
! T T
= = =
705 i 0.5: : 705
= 0 = 0 \N - = 0 .
0 250 500 0 250 500 0 250 500
5 < 100 -3
I I I
= = = 20
250 ~ 50 o5
I I I 10
B B — B
= 0 = 0 = 0 :
0 250 500 0 250 500 0 250 500
Number of episodes Number of episodes Number of episodes

Fig. 4.6: Different estimates of forest tree MDP (a = 0.2,y = 0.8) using MC control with = = 0.2 over
the number of episodes. Mean is red and standard deviation is light blue, both calculated based on 2000
independent uns.

Oliver Wallscheid Reinforcement learning 152

MC-based control example: forest tree MDP (2)

=15 B B
I 05 1 i
& & &
s 0 0 0 —
0 250 500 0 250 500 0 250 500
! T T
= = : 2
i 05 / i o ﬁ o
= 0 4 = o - = 0 .
0 250 500 0 250 500 0 250 500
% 500 < 100 <30
L L L 20
~ 250 ~ 50 o5
I I I 10
B B B
0 = 0 : = 0 :
0 250 500 0 250 500 0 250 500
Number of episodes Number of episodes Number of episodes

Fig. 4.7: Different estimates of forest tree MDP (o = 0.2, = 0.8) using MC control with £ = 0.05 over
the number of episodes. Mean is red and standard deviation is light blue, both calculated based on 2000
independent runs.

Oliver Wallscheid Reinforcement learning 153

MC-based control example: forest tree MDP (3)

Observations on forest tree MDP with e-greedy MC-based control:

» Rather slow convergence rate: quite a number of episodes is required.
» Significant uncertainty present in a single sequence.

» Later states are less often visited and, therefore, more uncertain.

>

Exploration is controlled by &: in a totally greedy policy the state x = 3 is not visited at all
(cf. Fig. 2.16). With e-greedy this state is visited occasionally.

» Nevertheless, the above figures highlight that MC-based control for the forest tree MDP
tend towards the optimal policies discovered by dynamic programming (cf. Tab. 3.3).

Oliver Wallscheid Reinforcement learning 154

Greedy in the limit with infinite exploration (GLIE)

Definition 4.1: Greedy in the limit with infinite exploration (GLIE)

A learning policy 7 is called GLIE if it satisfies the following two properties:

> If a state is visited infinitely often, then each action is chosen infinitely often:
lim m(ulz) =1 V{zeX,uecl}. (4.12)
1—00

» In the limit (i — co) the learning policy is greedy with respect to the learned action value:

lim 7;(u|x) = w(x) = argmax g(z,u) Ve e X. (4.13)
i—00 u

Oliver Wallscheid Reinforcement learning 155

GLIE Monte Carlo control

Theorem 4.2: Optimal decision using MC-control with e-greedy

MC-based control using e-greedy exploration is GLIE, if ¢ is decreased at rate

1
1

with 7 being the increasing episode index. In this case,

j(xz,u) = ¢ (z,u) (4.15)
follows.

Remarks:

» Limited feasibility: infinite number of episodes required.

» c-greedy is an undirected and unmonitored random exploration strategy. Can that be the
most efficient way of learning?

Oliver Wallscheid Reinforcement learning 156

Table of contents

@ Monte Carlo methods

m Monte Carlo off-policy prediction and control

Oliver Wallscheid Reinforcement learning

157

Off-policy learning background

Drawback of on-policy learning:

» Only a compromise: comes with inherent exploration but at the cost of learning action
values for a near-optimal policy.

Idea off-policy learning:

» Use two separated policies:

» Behavior policy b(u|z): explores in order to generate experience.
» Target policy w(u|z): learns from that experience to become the optimal policy.

» Use cases:

» Learn from observing humans or other agents/controllers.
> Re-use experience generated from old policies (7, 71, .. .).
» Learn about multiple policies while following one policy.

Oliver Wallscheid Reinforcement learning 158

Off-policy prediction problem statement

MC off-policy prediction problem statement

» Estimate v, and/or ¢, while following b(u|x).

» Both policies are considered fixed (prediction assumption).

Requirement:

» Coverage: Every action taken under m must be (at least occasionally) taken under b, too.
Hence, it follows:
m(ulz) >0=0b(ulzr) >0 V{reX,uecl}. (4.16)

» Consequences from that:

» In any state b is not identical to m, b must be stochastic.
> Nevertheless: m might be deterministic (e.g., control applications) or stochastic.

Oliver Wallscheid Reinforcement learning 159

Importance sampling
Probability of observing a certain trajectory on random variables Uy, Xy11, Ugt1, ..., X1
starting in X} while following m:

P Uk, Xit1, Upt1s - - -, Xo| Xpp, 7] = (Ulek) (Xnr1| X, Up) 1 (Up 1| Xpoy1) - - -

(4.17)
H (Uk| Xk)p(X1 X, Ug).-
K

Above p is the state-transition probability (cf. Def. 2.5).

Definition 4.2: Importance sampling ratio

The relative probability of a trajectory under the target and behavior policy, the importance
sampling ratio, from sample step k to T is:

(U Xi)p(X1 X» U _ T (U X)
;" b(Ul Xe)p (X | Xi, Un) TTi 0(Uk|X)

Pk:T = (4.18)

Oliver Wallscheid Reinforcement learning 160

Importance sampling for Monte Carlo prediction

Definition 4.3: State-value estimation via Monte Carlo importance sampling

Estimating the state value v, following a behavior policy b using (ordinary) importance sampling

(OIS) results in scaling and averaging the sampled returns by the importance sampling ratio per

episode:

D keT (ay) PhT(k) Ik
T (k)]

Or () = (4.19)
Notation remark:

» T (xp): set of all time steps in which the state zy, is visited.
» T'(k): Termination of a specific episode starting from k.

General remark:

» From (4.18) it can be seen that ¢ is bias-free (first-visit assumption).
» However, if p is large (distinctly different policies) the estimate’s variance is large (i.e.,
uncertain for small numbers of samples).

Oliver Wallscheid Reinforcement learning 161

Off-policy Monte Carlo control

Just put everything together:
» MC-based control utilizing GPI (cf. Fig. 4.5),

» Off-policy learning based on importance sampling (or variants like weighted importance
sampling, cf. Barto/Sutton book chapter 5.5).

Requirement for off-policy MC-based control:

» Coverage: behavior policy b has nonzero probability of selecting actions that might be taken
by the target policy .

» Consequence: behavior policy b is soft (e.g., e-soft).

Oliver Wallscheid Reinforcement learning 162

Summary: what you've learned today

» MC methods allow model-free learning of value functions and optimal policies from
experience in the form of sampled episodes.

» Using deep back-ups over full episodes, MC is largely based on averaging returns.

» MC-based control reuses generalized policy iteration (GPI), i.e., mixing policy evaluation
and improvement.

» Maintaining sufficient exploration is important:

» Exploring starts: not feasible in all applications but simple.

» On-policy e-greedy learning: trade-off between optimality and exploration cannot be resolved
easily.

> Off-policy learning: agent learns about a (possibly deterministic) target policy from an
exploratory, soft behavior policy.

» Importance sampling transforms expectations from the behavior to the target policy.

» This estimation task comes with a bias-variance-dilemma.
» Slow learning can result from ineffective experience usage in MC methods.

Oliver Wallscheid Reinforcement learning 163

Table of contents

© Temporal-difference learning
m Temporal-difference prediction
m Temporal-difference on-policy control: SARSA
m Temporal-difference off-policy control: Q)-learning
m Maximization bias and double learning

Oliver Wallscheid Reinforcement learning

164

Temporal-difference learning and the previous methods

Temporal-difference (TD) learning combines the previous ideas introduced in DP and MC:

» From Monte Carlo (MC) methods: Learns directly from experience.

» From dynamic programming (DP): Updates estimates based on other learned estimates
(bootstrap).

Hence, TD characteristics are:

» Allows model-free prediction and control in unknown MDPs.

» Updates policy evaluation and improvement in an online fashion (i.e., not per episode) by
bootstrapping.

» Still assumes finite MDP problems (or problems close to that).

Oliver Wallscheid Reinforcement learning 165

General TD prediction updates
Recap the every-visit MC update rule (4.3) for non-stationary problems:

O(xg) < O(zk) + o lgr — 0(xk)] - (5.1)

» o € {R|0 < a < 1} is the forgetting factor / step size.
» g is the target of the incremental update rule.
» To execute (5.1) one has to wait until the episode’s termination to get gy.

One-step TD / TD(0) update

f)(xk) — @(:Ek) + « [’I“k+1 = ")/QA}(.CBkJrl) — @(l‘k)] (5.2)

» Here, the TD target is rgi1 + Y0(2pa1)-
» TD is bootstrapping: estimate 0(x) based on 0(xgy1).

» Delay time of one step and no need to wait until the episode’s end.

Oliver Wallscheid Reinforcement learning 166

Algorithmic implementation: TD-based prediction

input: a policy 7 to be evaluated
output: estimate of v7% (i.e., value estimates for all states = € X)
init: 0(x)Vx € X arbitrary except vo(z) = 0 if x is terminal
for j =1,...,J episodes do
Initialize zg;
for k=0,1,2... time steps do
ug, < apply action from 7 (zy);
Observe xg11 and rgy1;
d(zk) ¢ O(zk) + o [rigr + 70(zpg1) — O(zp)]
Exit loop if xjy1 is terminal;
Algo. 5.1: Tabular TD(0) prediction

» Note that the algorithm can be directly adapted to action-value prediction as it will be used
for the later TD-based control approaches.

Oliver Wallscheid Reinforcement learning 167

TD error

» TD as well as MC use sample updates.

é » Looking ahead to a sample successor state including its value and
the reward along the way to compute a backed up value estimate.

Fig. 5.1: Back up diagram
for TD(0)

The TD error is:
Ok = Tig1 +Y0(Tpt1) — O(ap). (5.3)

» ;. is available at time step k + 1.

> lteratively &5 converges towards zero.

Oliver Wallscheid Reinforcement learning 168

TD error and its relation to the MC error
Let’s assume that the TD(0) estimate 9(z) is not changing over one episode as it would be for

MC prediction:
gk — 0(@k) = Tht1 + VGkr1 — 0(@k) + Y0 (@h41) — Y0 (Tp41)
—_——
MC-error
= 0 + V(g1 — 0(Thg1))
= Ok + Y0kt1 + 7 (gry2 — D(wr12)) (5.4)
= 0k + YOkt1 + 1 0kt2 + 7 (Ghss — O(Tpys)) =+

T-1 '
-3
i=k

» MC error is the discounted sum of TD errors in this simplified case.
» If O(x) is updated during an episode (as expected in TD(0)), the above identity only holds
approximately.

Oliver Wallscheid Reinforcement learning 169

Overview of the RL methods considered so far

width

Temporal- of update Dynamic
difference f\ /0\ programming
learning O O 00 O

depth
(length)
of update

Exhaustive
Monte s ", search
Carlo o0 &]

Fig. 5.2: Comparison of the RL methods considered so far with regard to the update rules (source: R.
Sutton and G. Barto, Reinforcement learning: an introduction, 2018, CC BY-NC-ND 2.0)

Oliver Wallscheid Reinforcement learning 170

https://creativecommons.org/licenses/by-nc-nd/2.0/

Driving home example

45 45
actual outcome

actual

outcome
" 40 40
Predicted
total
travel g5 35
time
30 30
T T T T T T T T T T
leaving reach exiting 2ndary home arrive leaving reach exiting 2ndary home arrive
office car highway road street home office car highway road street home
Situation Situation

Fig. 5.3: Updates by MC (left) and TD (right) for &« = 1 (source: R. Sutton and G. Barto,
Reinforcement learning: an introduction, 2018, CC BY-NC-ND 2.0)

» TD can learn before knowing the final outcome.
> TD learns after every step.
» MC must wait until the episode’s end.
» TD could learn without a final outcome.
> MC is only applicable to episodic tasks.
» TD can learn from incomplete sequences, i.e., in continuing tasks.

Oliver Wallscheid Reinforcement learning

https://creativecommons.org/licenses/by-nc-nd/2.0/

TD(0) prediction example: forest tree MDP (1)

Let's reuse the forest tree MDP example with fifty-fifty policy and discount factor v = 0.8 plus
disaster probability o = 0.2:

Small Medium Large —
v,=1.1 77{?8] 1 —q vr=1.9 ui‘g L —q vW:2.9ui§V
= Q r=0 7, r= 4
r=1\u=c u=clr=2 u=c =3
Vn=—
Gone

Fig. 5.4: Forest MDP with fifty-fifty-policy including state values

Oliver Wallscheid Reinforcement learning 172

TD(0) prediction example: forest tree MDP (2)

arp=0.2
15 =, L o~
14 Il Il
05 21 B
0 & S
0 200 400 0 200 400 0 200 400
amp=0.1
15 =, i 5 —
1t == Il | £ Il
05 =21 &
0 S0 &
0 200 400 0 200 400 0 200 400
app=0.05
15 N 2 bt Co) ———
1t == Il T = Il
05 k1 8
0 &0 <0
0 200 400 0 200 400 0 200 400
Episodes Episodes Episodes

Fig. 5.5: State-value estimate of forest tree MDP using TD(0) prediction over the number of episodes
being evaluated (mean and standard deviation are calculated based on 2000 independent runs)

Oliver Wallscheid

Reinforcement learning

173

TD(0) vs. MC prediction example: forest tree MDP (1)

4 T T T T T T T T T
— — — -TD(ayp=0.2)
35 \ Mc(a:,[[;:m) T
TD(ap=0.1)
3 MC(ayc=0.1) | T
— — — - TD(ay,=0.05)
MC(apc=0.05) |

2 - -

%5 15} -
AN
Iz,

~— 1r]

05 I B

0 I 1 N e - :ij\inij*ifgﬁ‘—,———

0 50 100 150 200 250 300 350 400 450 500
Episodes

Fig. 5.6: Averaged mean of state-value estimates of forest tree MDP using TD(0) and MC over 1000
independent runs with 9g(z) = 0Vz € X

Oliver Wallscheid Reinforcement learning 174

TD(0) vs. MC prediction example: forest tree MDP (2)

0.15 T T T T T T T T T

— — — - TD(ap=02)
MC(ay-=0.2)
TD(ap=0.1)
MC(ay=0.1)
— — — - TD(ayp=0.05)
MC(cty,.=0.05)

Episodes

Fig. 5.7: Averaged mean of state-value estimates of forest tree MDP using TD(0) and MC over 1000
independent runs with 0y (z) ~ v(z) Vo € X

Oliver Wallscheid Reinforcement learning 175

Convergence of TD(0)

Theorem 5.1: Convergence of TD(0)

Given a finite MDP and a fixed 7 the state-value estimate of TD(0) converges to the true v,

» in the mean for a constant but sufficiently small step-size o and
» with probability 1 if the step-size holds the condition

o o
Zak =00 and Za% < 0. (5.5)
k=1 k=1

Above k is the sample index (i.e., how often the TD update was applied).

> In particular, a; = 1 meets the condition (5.5).
» Often TD(0) converges faster than MC, but there is no guarantee.

» TD(0) can be more sensitive to bad initializations 0y(z) compared to MC.

Oliver Wallscheid Reinforcement learning 176

Batch training

> If experience — oo both MC and TD converge 0(z) — v(x).
» But how to handle limited experience, i.e., a finite set of episodes

Z1,1,U1,1,72,15---,%Ty,1,
T1,2,U1,2,72,2,- -+, XT,,2,
L1,5,U1,5,72,55- - 733T]',j7
T1,J,U1,JyT2, 05y TTy,J-

Batch training

» Process all available episodes j € [1, J] repeatedly to MC and TD.
» If the step size « is sufficiently small both will converge to certain steady-state values.

Oliver Wallscheid Reinforcement learning 177

Batch training: AB-example (1)

» Only two states: A, B
» No discounting

» 8 episodes of experience available
(see Tab. 5.1)

Fig. 5.8: Example environment (source: R. Sutton and G. > What is 9(A) and o(B) using

Barto, Reinforcement learning: an introduction, 2018, CC batch training TD(0) and MC?
BY-NC-ND 2.0)
A 0 B0 B,1
B,1 B,1
B,1 B,1
B,1 B,0

Tab. 5.1: Example state-reward sequences for Fig. 5.8

Oliver Wallscheid Reinforcement learning 178

https://creativecommons.org/licenses/by-nc-nd/2.0/
https://creativecommons.org/licenses/by-nc-nd/2.0/

Batch training: AB-example (2)
First, recap MC and TD(0) update rules:
MC: 0(xzk) « 0(zk) + algr — 0(zk)],
TD: o(xg) < 0(xg) + o [rpe1 + y0(2pr1) — 0(zk)] -
Then, in steady state one receives:
MC: 0= algr — 0(zk)] = gr — 0(a),
TD: 0= alrest +70(wke) — 0@ = Tt +70(@041) — D).

Considering a batch learning sweep over j = 1,...,J episodes:

O_ng,] xk]

TD: 0= Zrkﬂ,j +Y0(Thg1,5) — O(Tk)
j=1

Oliver Wallscheid Reinforcement learning 179

Batch training: AB-example (3)

Apply the previous equations first to state B. Since B is a terminal state, 0(xx41) = 0 and
Gk,j = Tk+1,; apply, i.e., the MC and TD updates are identical for B:

J
R 1
MC|,_g: 0= § :glw O(w ;) & 1(B) = 7 E Gk.js
=1

J
. 1
TD|:c:B » 0= Zrkﬂj o(rp;) & 0(B)= Wi ng,j-
j=1
This is the average return of the available episodes from Tab. 5.1 , i.e.,, 6 x 1 and 2 x 0:

3(B)lpmc = 0(B)ITp = g —0.75. (5.6)

Oliver Wallscheid Reinforcement learning 180

Batch training: AB-example (4)

Now consider state A assuming the steady state of batch learning process:

» The instantaneous reward is always r = 0.

» The TD bootstrap estimate of B is ©(z441,;) = 9(B) = 3.
J
0= ng,j O(zg,5) ng,g
j=1
J
TD: 0= ZT’“HJ + Y0(2py1,5) — O(wk) Z’yv
j=1

Looking at Tab. 5.1 there is only one episode visiting state A, where the sample return is
gk,; = 0. Hence, it follows:

O - R 3

U(A)‘MC =0, U(A)|TD =~0(B) = 7

Where does this mismatch between the MC and TD estimates come from?

Oliver Wallscheid Reinforcement learning

181

Certainty equivalence

» MC batch learning converges to the least squares fit of the sampled returns:

J T1j
> (gny — 0lakg)* (5.7)

j=1k=1
» TD batch learning converges to the maximum likelihood estimate such that
<X,U,75,7%,y> explains the data with highest probability:

J T
. 1
Diar = () DY 1 Xpyr = 2| Xy = 2, Uy = u),
P =1 k=1 (5 8)
1 J T '
R = o 2 2 M =l = e

1

B
Il
—

J

» Here, TD assumes a MDP problem structure and is absolutely certain that its internal
model concept describes the real world perfectly (so-called certainty equivalence).

Oliver Wallscheid Reinforcement learning 182

Table of contents

© Temporal-difference learning

m Temporal-difference on-policy control: SARSA

Oliver Wallscheid Reinforcement learning

183

Applying generalized policy iteration (GPI) to TD control

GPI concept is directly applied to the TD framework using action values:

T = Gng —> M1 —> Gy —> =T = (= . (5.9)

One-step TD / TD(0) action-value update (SARSA)

The TD(0) action-value update is:

§(x, ug) < §(@k, up) + a [rppr + Y4 @Tpp1, vrt1) — §(@k, ug)] - (5.10)

SARSA: state, action, reward, (next) state, (next) action evaluation

» In contrast to MC: continuous online updates of policy evaluation and improvement.
» On-policy approach requires exploration, e.g., by an e-greedy policy:

i (u|z) {

l—e+e/U], u=a,

e/lUl, u+a (5.11)

Oliver Wallscheid Reinforcement learning 184

TD-based on-policy control (SARSA)

parameter: ¢ € {R|0 <e << 1}, ac{R0<a<1}
init: §(z,u) arbitrarily (except terminal states) V {z € X,u € U}
for j =1,2,... episodes do
Initialize xo;
Choose ug from zo using a soft policy (e.g., e-greedy) derived from §(z,u);
k < 0;
repeat
Take action uy, observe 7,41 and xg41;
Choose ugy1 from xi41 using a soft policy derived from §(x, u);
4(zk, uk) < §(@r, ur) + o [rer + ¥4 Trr1, urt1) — §(Tr, wr)];
k+k+1;
until z is terminal,

Algo. 5.2: TD-based on-policy control (SARSA)
Convergence properties are comparable to MC-based on-policy control:
» Policy improvement theorem Theo. 4.1 holds.

» Greedy in the limit with infinite exploration (GLIE) from Def. 4.1 and step-size requirements
in Theo. 5.1 apply.

Oliver Wallscheid Reinforcement learning 185

SARSA example: forest tree MDP (1)

1 2% 0 1 2
Episodes jg* Episodes o4 Episodes o4

Fig. 5.9: SARSA-based control with agarsa = 0.2 and e-greedy policy with ¢ = 0.2 of forest tree MDP

over the number of episodes being evaluated (mean and standard deviation are calculated based on
2000 independent runs)

Oliver Wallscheid Reinforcement learning 186

SARSA example: forest tree MDP (2)

x10%

1 2
Episodes jg* Episodes o4 Episodes o4

Fig. 5.10: SARSA-based control with agarsa = 0.1 and e-greedy policy with € = 0.2 of forest tree
MDP over the number of episodes being evaluated (mean and standard deviation are calculated based
on 2000 independent runs)

Oliver Wallscheid Reinforcement learning 187

SARSA example: forest tree MDP (3)

5 5 5
I 2 I3 I 4
3 S 3
— 1 C\lr C"J" 2
I Il I
Eo0 20 Eo
& 0 1 2 & 0 1 2 & 0 1 2
. x10* x10* x10*
— o [a\] [3p)
o1 I I 0.6
5 & 04 04
z 0.5 B 02 B
I e 02 |
AL 20 20
E 0 1 2 & 0 1 2& 0 1 2
Episodes o4 Episodes 104 Episodes , jo*
Fig. 5.11: SARSA-based control with adaptive agarsa = % (j =episode) and e-greedy policy with

€ = 0.2 of forest tree MDP over the number of episodes being evaluated (mean and standard deviation
are calculated based on 2000 independent runs)

Oliver Wallscheid Reinforcement learning 188

Table of contents

© Temporal-difference learning

m Temporal-difference off-policy control: Q)-learning

Oliver Wallscheid Reinforcement learning

189

(-learning approach
Similar to SARSA updates, but Q-learning directly estimates ¢*:

(2-learning action-value update

The @Q-learning action-value update is:
q(zg,ug) < §(zg,up) + « [Tk+1 + 7m3xé(ack+1,u) — §(zg, uk)] . (5.12)

This is an off-policy update, since the optimal action-value function is updated independent of
a given behavior policy.

Requirement for ()-learning control:

» Coverage: behavior policy b has nonzero probability of selecting actions that might be taken
by the target policy .
» Consequence: behavior policy b is soft (e.g., e-soft).

> Step-size requirements (5.5) regarding a apply.

Oliver Wallscheid Reinforcement learning 190

TD-based off-policy control (Q-learning)

parameter: ¢ € {R|0 <e << 1}, ac{R0<a<1}
init: g(x,u) arbitrarily (except terminal states) V {z € X,u € U}
for j =1,2,... episodes do
Initialize xo;
k<« 0;
repeat
Choose uy, from xi using a soft behavior policy;
Take action ug, observe 7,41 and Tg41;
G(zr, uk) < 4(xr, uk) + o [ret1 +ymaxu §(Trt1,w) — §(Tr, uk)];
k+k+1;
until zx is terminal;

Algo. 5.3: TD-based off-policy control (Q-learning)

» As discussed with MC-based off-policy control: avoidance of the exploration-optimality
trade-off for on-policy methods.

» No importance sampling required as for off-policy MC-based control.

Oliver Wallscheid Reinforcement learning 191

()-learning control example: cliff walking

R=-1
Safer path
Optimal path [1
i ;
S The Cliff S
X*/ R=-100 _—
e
Sarsa
-25
Sum of 59
rewards Q-learning
during
episode 5
-100+ T T T T 1
0 100 200 300 400 500

Episodes

Fig. 5.12: Cliff walking environment (source: R. Sutton and
G. Barto, Reinforcement learning: an introduction, 2018,
CC BY-NC-ND 2.0)

Oliver Wallscheid Reinforcement learning

vvyyy

r = —1 per time step

Large penalty if you fall off the cliff
No discounting

e=0.1

Why is SARSA better in this

example?

And what policy’s performance is
shown here in particular?

192

https://creativecommons.org/licenses/by-nc-nd/2.0/

Table of contents

© Temporal-difference learning

m Maximization bias and double learning

Oliver Wallscheid Reinforcement learning

193

Maximization bias

All control algorithms discussed so far involve maximization operations:

» ()-learning: target policy is greedy and directly uses max operator for action-value updates.

» SARSA: typically uses an e-greedy framework, which also involves max updates during
policy improvement.

This can lead to a significant positive bias:

» Maximization over sampled values is used implicitly as an estimate of the maximum value.
» This issue is called maximization bias.

Small example:

» Consider a single state & with multiple possible actions .

» The true action values are all g(x,u) =0 .

» The sampled estimates ¢(x,u) are uncertain, i.e., randomly distributed. Some samples are
above and below zero.

» Consequence: The maximum of the estimate is positive.

Oliver Wallscheid Reinforcement learning 194

Double learning approach

Split the learning process:

» Divide sampled experience into two sets.

> Use sets to estimate independent estimates G (x,u) and Go(x, u).

Assign specific tasks to each estimate:
» Estimate the maximizing action:

u* = arg max g1 (x, u).
u

» Estimate corresponding action value:

q(z,u”) ~ G2z, u") = ga(x, arg max G (z, u)).

u

Oliver Wallscheid Reinforcement learning

(5.13)

(5.14)

195

Double ()-learning algorithm

parameter: ¢ € {R|0 <e << 1}, ac{R0<a<1}
init: §i(z,u), §2(z,u) arbitrarily (except terminal states) V {z € X, u € U}
for j =1,2,... episodes do
Initialize zo;
k<« 0;
repeat
Choose uy, from xj using the policy e-greedy based on i1 (z, u) + d2(z, u);
Take action uy, observe 1,41 and xg41;
if n ~N(u=0,0)>0 then
G1(zr,uk) < Gi(xk, uk) + & [res1 + YG2(Trt1, arg max,, G1 (Tr41,w)) — G (Tr, ur)];
else
G2(wk, uk) <= G2(xn, uk) + & [Pt + Y41 (Te41, arg max,, G2(Tr+1, w)) — G2(n, ur)];
k+k+1;
until z is terminal,

Algo. 5.4: TD-based off-policy control with double learning

» Doubles memory demand while computational demand per episode is remains unchanged

> Less sample efficient than regular Q-learning (samples are split between two estimators)

Oliver Wallscheid Reinforcement learning 196

Maximization bias example

O
100% N(0.1,1)
75% g left <> right |:|
% left
actions 50%;! Q-learning
fromA
Double
25% Q-learning
{7177 S g g g i LA e s optimal
0
1 100 200 300

Episodes

Fig. 5.13: Comparison of @-learning and double @-learning on a simple episodic MDP. Q-learning
initially learns to take the left action much more often than the right action, and always takes it
significantly more often than the 5% minimum probability enforced by e-greedy action selection with
€ = 0.1. In contrast, double @Q-learning is essentially unaffected by maximization bias. These data are
averaged over 10,000 runs. The initial action-value estimates were zero. (source: R. Sutton and G.
Barto, Reinforcement learning: an introduction, 2018, CC BY-NC-ND 2.0)

Oliver Wallscheid Reinforcement learning 197

https://creativecommons.org/licenses/by-nc-nd/2.0/

Summary: what you've learned today

» TD unites two key characteristics from DP and MC:
» From MC: Sample-based updates (i.e., operating in unknown MDPs).
» From DP: Update estimates based on other estimates (bootstrapping).
» TD allows certain simplifications and improvements compared to MC:
» Updates are available after each step and not after each episode.
Off-policy learning comes without importance sampling.
» Exploits MDP formalism by maximum likelihood estimates.
» Hence, TD prediction and control exhibit a high applicability for many problems.

v

» Batch training can be used when only limited experience is available, i.e., the available
samples are re-processed again and again.

» Greedy policy improvements can lead to maximization biases and, therefore, slow down the
learning process.

» TD requires careful tuning of learning parameters:

» Step size a: how to tune convergence rate vs. uncertainty / accuracy?
» Exploration vs. exploitation: how to visit all state-action pairs?

Oliver Wallscheid Reinforcement learning 198

Table of contents

@ Multi-step bootstrapping
m n-step TD Prediction
m n-step Control
m n-step Off-Policy Learning
m TD())

Oliver Wallscheid

Reinforcement learning

199

Lets unify MC and TD learning

width

of update D ;
Temporal- ynamic _
difference /0\ programming
learning O O OO

depth
(length)
of update

Exhaustive
Monte A 2. search
Carlo ? o [5)
L]

oo ---

Fig. 6.1: MC and TD are the 'extreme options’ in terms of the update’s depth: what about intermediate
solutions? (source: R. Sutton and G. Barto, Reinforcement learning: an introduction, 2018, CC
BY-NC-ND 2.0)

Oliver Wallscheid Reinforcement learning 200

https://creativecommons.org/licenses/by-nc-nd/2.0/
https://creativecommons.org/licenses/by-nc-nd/2.0/

n-step bootstrapping idea

1-step TD 2-step TD 3-step TD n-step TD CO-step TD

T?TT?
1.
0

> n-step update: consider n
rewards plus estimated value
C) (i) n-steps later (bootstrapping).

&

Consequence: Estimate update

v

: is available only after an n-step
C’) delay.
: » TD(0) and MC are special cases
Iﬁ included in n-step prediction.

Fig. 6.2: Different backup diagrams of n-step state-value
prediction methods

Oliver Wallscheid Reinforcement learning 201

Formal notation (1)
Recap the update targets for the incremental prediction methods (4.3):

» Monte Carlo: builds on the complete sampled return series

O = Th1 + Vi + V2rras + - T e, (6.1)

» gr.7 denotes that all steps until termination at T" are considered to derive an estimate target
adressing step k.

» TD(0): utilizes a one-step bootstrapped return

Gkik1 = Tkt + YOR(Thg1)- (6.2)

» For TD(0), gk.x+1 highlights that only one future sampled reward step is considered before
bootstrapping.
» ;. is an estimate of v, at time step k.

Oliver Wallscheid Reinforcement learning 202

Formal notation (2)

n-step state-value prediction target

Now, the target is generalized to an arbitrary n-step target:

Gkcktn = Thtl T VTh42 + + V" hin + Y Ok tn—1(Tktn)- (6.3)

» Approximation of full return series truncated after n-steps.
» If k+n>T (i.e., n-step prediction exceeds termination lookahead), then all missing terms
are considered zero.

The state-value estimate using the n-step return approximation is

Oktn(Zk) = Oktn—1(2k) + & [ghiktn — Ok4n—1(zx)], 0<Ek<T. (6.4)

» Delay of n-steps before v(x) is updated.
» Additional auxiliary update steps required at the end of each episode.

Oliver Wallscheid Reinforcement learning 203

Convergence

Theorem 6.1: Error reduction property

The worst error of the expected n-step return is always less than or equal to 4™ times the worst
error under the estimate U4 p_1:

max IEr [Griktn| Xk = 2] — va(x)] <A™ max |0k +n—1(x) — v ()] (6.5)

» Assuming an infinite number of steps/episodes and an appropriate step-size control
according to Theo. 5.1, n-step TD prediction converges to the true value.
» In a more practical framework with limited number of steps/episodes:

» Choosing the best n-step lookahead horizon is an engineering degree of freedom.
» This is highly application-dependent (i.e., no predefined optimum).
> Prediction/estimation errors can remain due to limited data.

Oliver Wallscheid Reinforcement learning 204

Algorithmic implementation: n-step TD prediction

input: a policy 7 to be evaluated, parameter: step size « € (0, 1], prediction steps n € Z*
init: o(x) Y € X arbitrary except vo(z) = 0 if = is terminal
for j =1,...,J episodes do

initialize and store xg;

T < oo;
repeat £k =10,1,2,...
if K <T then

take action from 7(xy), observe and store xxy1 and rgy1;
if £x11 is terminal: T < k + 1,
T <k —n+1 (7 time index for estimate update);
if 7> 0 then
g Yt yimrety
ifr+n<T: g g+7"0(Trin);
o(zr) « 0(zr) + g — 0(zr)];

until =T —1;

Algo. 6.1: n-step TD prediction (output is an estimate 0, (x))

Oliver Wallscheid Reinforcement learning

205

Example: 19 state random walk

-1 0 0 0 0 +1
Start
Fig. 6.3: Exemplary random walk Markov reward process (MRP)

» Early stage performance after

Average 045 .

RMS error onIy 10 eplsodes

over 19 states 04r

andfist1o » Averaged over 100 independent
episodes all

runs

03

» Best result here: n =4,a ~ 0.4

0.25
L

a ' » Picture may change for longer
episodes (no generalizable

Fig. 6.4: n-step TD performance (source: R. Sutton and G.
results)

Barto, Reinforcement learning: an introduction, 2018, CC
BY-NC-ND 2.0)

Oliver Wallscheid Reinforcement learning 206

https://creativecommons.org/licenses/by-nc-nd/2.0/
https://creativecommons.org/licenses/by-nc-nd/2.0/

Table of contents

@ Multi-step bootstrapping

m n-step Control

Oliver Wallscheid

Reinforcement learning

207

Transfer the n-step approach to state-action values (1)

» For on-policy control by SARSA action-value estimates are required.
» Recap the one-step action-value update as required for 'SARSA(0)':

G(@p, u) < §(xg, ur) + @ | Trp1 + Y4(Tht1, Uks1) —G(@p, ug) | - (6.6)

target g

n-step state-action value prediction target

Analog to n-step TD, the state-action value target is rewritten as:

Gkckrn = Tkl + VTkt2 + + V" hin + V" Gktrn—1(Thtn Ukn)- (6.7)

» Again, if an episode terminates within the lookahead horizon (k + n > T') the target is
equal to the Monte Carlo update:

Gkiktn = k- (6.8)

Oliver Wallscheid Reinforcement learning 208

Transfer the n-step approach to state-action values (2)

» For n-step expected SARSA, the update is similar but the state-action value estimate at
step k + n becomes the expected approximate value of = under the target policy valid at
time step k:

_ n—1 n ~\A .
ikt = Thatl + Wkt + -+ Thgn +7"D> 7(ulz) G2, u). (6.9)

u

» Finally, the modified n-step targets can be directly integrated to the state-action value
estimate update rule of SARSA:

n-step SARSA

Gktn(Thy Uk) = Qrtn—1(Tk, Uk) + O [Ghiktn — Ghtn—1(Tk, Uk)]

0<k<T. (6.10)

Oliver Wallscheid Reinforcement learning 209

n-step bootstrapping for state-action values

1-step 2-step 3-step n-step CO-step Sarsa n-step
Sarsa Sarsa Sarsa Sarsa (MC) expected Sarsa
2K I
? N T B
? :6 ~/f\

Fig. 6.5: Different backup diagrams of n-step state-action value update targets

Oliver Wallscheid Reinforcement learning

210

Algorithmic implementation: n-step SARSA

parameter: o € (0,1], n € ZT, e € {R|0 < e << 1}
init: §(z,u) arbitrarily (except terminal states) V {x € X, u € U}
init: 7 to be e-greedy with respect to ¢ or to a given, fixed policy
for j =1,...,J episodes do

initialize zo and action ug ~ 7(+|zo) and store them;

T + o0;
repeat £k =10,1,2,...
if Kk <T then

take action uy, observe and store xx41 and 7541;

if xi+1 is terminal then T < k + 1 else store up4+1 ~ 7(+|Tk+1);
T+ k—n+1 (7 time index for estimate update);
if 7 > 0 then

g T

fr+n<T: g g+7"¢(Trin, Urtn);

4(x7,ur) < §(zr, ur) + alg — §(zr, ur)l;

if 7~ 7" is being learned, ensure 7 (-|x.) is e-greedy w.r.t §;

until 7 =T — 1;

Algo. 6.2: n-step SARSA (output is an estimate . or ¢*)

Oliver Wallscheid Reinforcement learning

211

lllustration with grid-world example

Action values increased Action values increased
Path taken by one-step Sarsa by 10-step Sarsa
{] el
J ['
m m| el
e 6l 1] G el [y
A } } el

Fig. 6.6: Executed updates (highlighted by arrows) for different n-step SARSA implementations during
an episode (source: R. Sutton and G. Barto, Reinforcement learning: an introduction, 2018, CC
BY-NC-ND 2.0)

» For one-step SARSA, one state-action value is updated.
» For ten-step SARSA, ten state-action values are updated.
» Consequence: a trade-off between the resulting learning delay and the number of updated

state-action values results.

Oliver Wallscheid Reinforcement learning 212

https://creativecommons.org/licenses/by-nc-nd/2.0/
https://creativecommons.org/licenses/by-nc-nd/2.0/

Table of contents

@ Multi-step bootstrapping

m n-step Off-Policy Learning

Oliver Wallscheid

Reinforcement learning

213

Recap on off-policy learning with importance sampling

Consider two separate policies in order to break the on-policy optimality trade-off:
» Behavior policy b(u|x): Explores in order to generate experience.

» Target policy m(u|z): Learns from that experience to become the optimal policy.

» Important requirement is coverage: Every action taken under m must be (at least
occasionally) taken under b, too. Hence, it follows:

m(ulz) >0=b(ulxr) >0 V{reX,uecl}. (6.11)

Importance sampling ratio (revision from Def. 4.2)

The relative probability of a trajectory under the target and behavior policy, the importance
sampling ratio, from sample step k to 7' is:

_ ;—cp_l 7 (ug|zK)P(Tpt1 | Tp, uk) H;‘:_l 7 (ug|zk)
ple - T—1 - T—1 . (612)
K O(uklzr)p(Trt |zr, uk) b(ug |y

Oliver Wallscheid Reinforcement learning 214

Transfer importance sampling to n-step updates

For a straightforward n-step off-policy TD-style update, just weight the update by the
importance sampling ratio:

Ot (Th) = Okn—1(Tk) + Pk k-1 [Ghktn — Okgn—1(xk)], 0<k <T,

min(h,T—1) 7T(U ‘33)

klLk
= — 6.13
P 1;[b(ug|xr) (613

» pi:k+n—1 is the relative probability under the two polices taking n actions from wuy to U4y
Analog, an n-step off-policy SARSA-style update exists:
Qetn(Th, Uk) = Gryn—1(Tk, ug)

) (6.14)
+ i tidiin Grktn — Qhn—1(Tk,uk)], 0<k <T.

» Here, p starts and ends one step later compared to the TD case since state-action pairs are
updated.

Oliver Wallscheid Reinforcement learning 215

Algorithmic implementation: off-policy n-step TD-based prediction

input: a target policy m and a behavior policy b with coverage of m
parameter: step size a € (0, 1], prediction steps n € Z*
init: 9(z)Vx € X arbitrary except vo(x) = 0 if z is terminal
for j=1,...,J episodes do
initialize and store xy and set T + oo;
repeat £k =0,1,2,...
if k < T then
take action from b(xy), observe and store zj11 and 711;
if x4 is terminal: T <+ k + 1;
7+ k—n—+1 (7 time index for estimate update);
if 7> 0 then

p Hmm (t4+n—2,T—-1) 7(u;|zy) .

=T buil|z;)
g ST i
ifr+n<T: g g+y"0(Trin);
o(z7) + 0(x7) + apg — d(z,)];
until T =T —1;

Algo. 6.3: Off-policy n-step TD prediction (output is an estimate U, (x))

Oliver Wallscheid Reinforcement learning 216

Algorithmic implementation: off-policy n-step SARSA

input: an arbitrary behavior policy b with b(u|z) > 0V {z € X,u € U}
parameter: o € (0,1, n € ZT, e € {RI0 < e << 1}
init: g(z,u) vV {x € X,u € U} and a policy 7 to be greedy with respect to § or to a given, fixed policy
for j =1,...,J episodes do
initialize zo and action ug ~ b(:|z¢) and store them, set also T" + oo;
repeat £k =0,1,2,...
if £ <T then
take action ug ~ b(:|zy), observe and store xy4+1 and riy1;
if xx+1 is terminal then T < k + 1 else store up41 ~ b(:|Trt1);
T+ k—n+1 (7 time index for estimate update);

if 7> 0 then
min(t4+n—1,T7—1) 7w(u;|z;).
p = Hz:‘r+l b(ug|zy) !
g Z;r;u;{::—n,T) ’Yszflri;

fr+n<T: g+ g+7"4(Trin, Urin);

q(l'm UT) — (j('rT7u7') +ap [g - Cj(xTa u-,—)];

if T~ 7" is being learned, ensure w(-|z.) is e-greedy w.r.t to ¢;
until =7 —1;

Algo. 6.4: Off-policy n-step SARSA (output is an estimate §, or ¢*)

Oliver Wallscheid Reinforcement learning

217

Table of contents

@ Multi-step bootstrapping

m TD()\)

Oliver Wallscheid

Reinforcement learning

218

Averaging of n-step returns

1-step TD 3-step TD

I
.
(;_) >

Fig. 6.7: Exemplary averaging of
n-step returns

Oliver Wallscheid

Averaging different n-step returns is possible without
introducing a bias (if sum of weights is one).

Example on the left:

1 2

= —(0g- + —gz-
g 3gk.k+1 39k.k+3

Horizontal line in backup diagram indicates the averaging.

Enables additional degree of freedom to reduce prediction
error.

Such updates are called compound updates.

Reinforcement learning 219

A-return (1)
x
8 ¢

> \-return: is a compound update with
exponentially decaying weights:

Lo
? ? 9 = ZA Dgtin. (6.15)

» Parameter is A € {R|0 < A < 1}.

» Geometric series of weights is one:

- . L= A =1
* n=1

AT=k=1)

Fig. 6.8: Backup diagram for A-returns

Oliver Wallscheid Reinforcement learning 220

A-return (2)

» Rewrite A-return for episodic tasks with termination at k =T
T—k—1

gp=0=X) > A Vg, + AT,

n=1

> Return g, after termination is weighted with residual weight AT—%=1,

» Above, (6.16) includes two special cases:
» If A\ =0: becomes TD(0) update.
» If A =1: becomes MC update.

weight given to
the 3-step return total area = 1
is (12

decay by A

Weighting 1-2 weight given to

actual, final return
is ATt

V///////////%/'/////////////////////
T

Time —

(6.16)

Fig. 6.9: Weighting overview in A-return series (source: R. Sutton and G. Barto, Reinforcement learning:

an introduction, 2018, CC BY-NC-ND 2.0)

Oliver Wallscheid Reinforcement learning

221

https://creativecommons.org/licenses/by-nc-nd/2.0/

Truncated A-returns for continuing tasks

» Using A-returns as in (6.15) is not feasible for continuing tasks.
» One would have to wait infinitely long to receive the trajectory.

» Intuitive approximation: truncate A-return after h steps

h—k—

gli\:h = (1 -)‘)
n=1

» Horizon h divides continuing tasks in rolling episodes.

Oliver Wallscheid Reinforcement learning

1
)‘(n_l)gk:k-l—n +)‘h_k_lgk:h .

(6.17)

222

Forward view

» Both, n-step and A-return updates, are based on a forward view.

» We have to wait for future states and rewards to arrive before we are able to perform an
update.

» Currently, A-returns are only an alternative to n-step updates with different weighting
options.

Fig. 6.10: The forward view: an update of the current state value is evaluated by future transitions
(source: R. Sutton and G. Barto, Reinforcement learning: an introduction, 2018, CC BY-NC-ND 2.0)

Oliver Wallscheid Reinforcement learning 223

https://creativecommons.org/licenses/by-nc-nd/2.0/

Backward view of TD(\)

General idea:

» Use A\-weighted returns looking into the past.

» Implement this in a recursive fashion to save memory.

» Therefore, an eligibility trace z; denoting the importance of past events to the current state
update is introduced.

Fig. 6.11: The backward view: an update of the current state value is evaluated based on a trace of past
transitions (source: R. Sutton and G. Barto, Reinforcement learning: an introduction, 2018, CC
BY-NC-ND 2.0)

Oliver Wallscheid Reinforcement learning 224

https://creativecommons.org/licenses/by-nc-nd/2.0/
https://creativecommons.org/licenses/by-nc-nd/2.0/

Eligibility trace
The eligibility trace z;(x) € R is defined and tracked for each state x separately:

0, ifxg#x, (6.18)
1, if T = T.

zp(r) = yAzgp_1(x) + {

Eligibility trace n
>~

[N T I | k

Visits of a certain state x

Fig. 6.12: Simplified representation of updating an eligibility trace of an arbitrary state in a finite MDP

Oliver Wallscheid Reinforcement learning 225

TD(\) updates using eligibility traces

Based on the eligibility trace definition from (6.18) we can modify our value estimates:
TD(\) state-value update

The TD(\) state-value update is:

d(zk) < 0(xk) + a [rrr +Y0(zp41) — O(zk)] 28 (k) (6.19)

SARSA(\) action-value update
The SARSA()) action-value update is:

G(xr, ur) < §(xp, up) + a[repr + Y4 Tpr1, vrt1) — G2k, ur)] 26 (2, ug)- (6.20)

Already known prediction and control methods can be modified accordingly. In contrast to
n-step forward updates, one can conclude:

» Advantage: recursive updates based on past updates (no additional waiting time),
» Disadvantage: effort for storing an eligibility trace for each state (scaling problem).

Oliver Wallscheid Reinforcement learning 226

Algorithmic implementation: SARSA())

parameter: o € (0,1], A € (0,1], e € {R|0 < e << 1}
init: g(x,u) arbitrarily (except terminal states) V {z € X,u € U}
init: 7 to be e-greedy with respect to § or to a given, fixed policy
for j =1,...,J episodes do
initialize zo and action ug ~ 7(+|z0);
initialize zo(z,u) =0V {z € X,u e U}
repeat
take action uy, observe xx4+1 and ri41;
choose uk41 ~ 7(-|Tr+1)
0, if xx # x or ux # u,

2k (x,u) — yAzp—1(z,u) +)
1, ifzr =z and ux = u.

V{xeX,uelU}

8 < Thy1 +YG(Trr1, ub1) — §(2n, ur)
G(z,u) + §(z,u) + adzi(z,u) V{z € X,u e U}
k+—k+1;

until z;, is terminal;

Algo. 6.5: SARSA()) (output is an estimate ¢, or ¢*)

Oliver Wallscheid Reinforcement learning

227

SARSA learning comparison in gridworld example

»)\ can be interpreted as the discounting factor acting on the eligibility trace (see right-most
panel below).

> Intuitive interpretation: more recent transitions are more certain/relevant for the current
update step.

Action values increased Action values increased Action values increased
Path taken by one-step Sarsa by 10-step Sarsa by Sarsa()) with A=0.9
[] >y i e e
\ \ v ' t
I 4 -y BN -4
: 6l [] G Gl [y G[[y
t] 4 Al [e

Fig. 6.13: SARSA variants after an arbitrary episode within a gridworld environment — arrows indicate
action-value change starting from initially zero estimates (source: R. Sutton and G. Barto,
Reinforcement learning: an introduction, 2018, CC BY-NC-ND 2.0)

Oliver Wallscheid Reinforcement learning 228

https://creativecommons.org/licenses/by-nc-nd/2.0/

Summary: what you've learned today

» n-step updates allow for an intermediate solution in between temporal difference and Monte
Carlo:

» n =1: TD as special case,
» n =T: MC as special case.

» The parameter n is a delicate degree of freedom:

P It contains a trade-off between the learning delay and uncertainty reduction when considering
more or less steps.
» Choosing it is non-trivial and sometimes more art than science.

» A-returns lead to compound updates which introduce an exponential weighting to visited
states.

» Rationale: states which have been already visited long ago are less important for the current
learning step.

» TD(\) transfers this idea into a recursive, backward oriented approach.
» Eligibility traces store the long-term visiting history of each state in a recursive fashion.

Oliver Wallscheid Reinforcement learning 229

Table of contents

@ Planning and learning with tabular methods
m Repetition: model-based and model-free RL
m Dyna: integrated planning, acting and learning
m Prioritized sweeping
m Planning at decision time

Oliver Wallscheid Reinforcement learning

230

Recap: RL agent taxonomy

Model-Free,

Value Function Actor Policy
Critic

Value-Based Policy-Based

Madel-Baset

Model

Fig. 7.1: Main categories of reinforcement learning algorithms
(source: D. Silver, “Reinforcement learning”, 2015. CC BY-NC 4.0)

» Up to now: independent usage of model-free (MC, TD) and model-based RL (DP)
» Today: integrating both strategies (on finite state & action spaces)

Oliver Wallscheid Reinforcement learning 231

https://creativecommons.org/licenses/by-nc/4.0

Model-based RL

» Plan/predict value functions and/or policy from a model.
» Requires an a priori model or to learn a model from experience.
» Solves control problems by planning algorithms such as

» Policy or value iteration.

Fig. 7.2: A model for discrete state and action space problems is generally an MDP (source:
www.wikipedia.org, by Waldoalvarez CC BY-SA 4.0)

Oliver Wallscheid Reinforcement learning

232

https://commons.wikimedia.org/wiki/File:Markov_Decision_Process.svg
https://commons.wikimedia.org/wiki/User:Waldoalvarez
https://creativecommons.org/licenses/by-sa/4.0/deed.en

What is a model?

» A model M is an MDP tuple (X,U, P, R,~).
» In particular, we require the
» state-transition probability
P:P[Xk+1 :wk+1|Xk ::l‘:k,Uk Zuk] (71)
» and the reward probability

R =P[Ri+1 = ri41| Xk = @, Uy = ug] - (7.2)

» State space X and action space U/ are assumed to be known.

» Discount factor v might be given by environment or engineer's choice.
» What kind of model is available?

> If M is perfectly known a priori: true MDP.
» If M ~ M needs to be learned: approximated MDP.

Oliver Wallscheid Reinforcement learning 233

Model learning / identification

» In many real-world applications, a model might be too complex to derive or not exactly
available. Hence, estimate a model M from experience { X, Uy, Ry, ..., X7}
» This is a supervised learning / system identification task:

{Xo, Uo} — {X1, Rl}

{X7r-1,Ur—1} = {X1,Rr}

» Simple tabular / look-up table approach (with n(x,u) visit count):

T
u 1
Prar = n(x,u) Z W Xpq1 = 2'[X = 2, U = w),
’ k=0
1 - (7.3)
RY = 1(Xy = z|Uk = w)Tg1.
n(x,u) kzo

Oliver Wallscheid Reinforcement learning 234

Distribution vs. sample models

» A model based on P and R is called a distribution model.
» Contains descriptions of all possibilities by random distributions.
» Has full explanatory power, but is still rather complex to obtain.
» Alternatively, use sample models to receive realization series.

» Remember black jack examples: easy to sample by simulation but hard to model a full
distributional MDP.

Fig. 7.3: Depending on the application distribution models are easily available or not (source: Josh
Appel on Unsplash)

Oliver Wallscheid Reinforcement learning

235

https://unsplash.com/photos/PHwdpTVUlXw

Model-free RL

» Learn value functions and/or policy directly from experience.

» Requires no model at all (policy can be considered an implicit model).
» Solves control problems by learning algorithms such as
» Monte-Carlo,

» SARSA or
> (Q-learning.
value/policy
acting
planning direct
RL
model experience
model
learning

Fig. 7.4: If a perfect a priori model is not available, RL can be realized directly or indirectly (source: R.
Sutton and G. Barto, Reinforcement learning: an introduction, 2018, CC BY-NC-ND 2.0)

Oliver Wallscheid Reinforcement learning 236

https://creativecommons.org/licenses/by-nc-nd/2.0/

Advantages & drawbacks: model-free vs. model-based RL
Pro model-based / indirect RL:

» Efficiently uses limited amount of experience (e.g., by replay).
» Allows integration of available a priori knowledge.
Pro model-free / direct RL:

» Is simpler to implement (only one task, not two consequent ones).
» Not affected by model bias / error during model learning.

Fig. 7.5: What way is better? (source: Mike Kononov on Unsplash)

Oliver Wallscheid Reinforcement learning

237

https://unsplash.com/photos/FY0nQ-I3H_U

Table of contents

@ Planning and learning with tabular methods

m Dyna: integrated planning, acting and learning

Oliver Wallscheid Reinforcement learning

238

The general Dyna architecture (1)

» Proposed by R. Sutton in 1990's
» General framework with many different implementation variants

/SN

| Policy/value functions |

planning update

direct RL simulated
update experience
real
experience
search
learning control
Model

[Environment]

Fig. 7.6: Dyna framework (source: R. Sutton and G. Barto, Reinforcement learning: an introduction,
2018, CC BY-NC-ND 2.0)

Oliver Wallscheid Reinforcement learning 239

https://creativecommons.org/licenses/by-nc-nd/2.0/

The general Dyna architecture (2)

» Direct RL update: any model-free algorithm: @Q-learning, SARSA, ...
» Model learning:
» In tabular case: simple distribution estimation as in (7.3)
» Simple experience buffer to re-apply model-free algorithm
» For large or continuous state/action spaces: function approximation by supervised learning /
system identification (next lecture)
» Search control: strategies for selecting starting states and action to generate simulated

experience

Policy/value functions

planning update

simulated
experience

real
experience

Environment

Oliver Wallscheid Reinforcement learning 240

search
control

Model

Algorithmic implementation: Dyna-()

parameter: a € {R|0 < a <1}, n € {Njn > 1} (planning steps per real step)
init: G(z,u) arbitrary (except terminal) and M(z,u) V {z € X,u € U}
for j =1,2,... episodes do
Initialize zo;
k < 0;
repeat
Choose uy, from xj using a soft policy derived from §(x, u);
Take action uy, observe 1,41 and xg41;
4(@k, ur) < 4(@k, ur) + a[res1 + ymaxu §(zrt1, w) — §(2k, ur)];
M (zy, ur) + {rkt1,Tri1} (assuming deterministic env.);
fori=1,2,... ndo
Z; < random previously visited state;
U; <— random previously taken action in Z;;
{Fit1, Tix1} — M(Zi, Us);
4@,) < G(T0, i) + o [Figr +ymaxu §(Tivr, w) — (T, @)l;
k<« k+1;
until z is terminal,

Algo. 7.1: Dyna with @-learning (Dyna-Q)

Oliver Wallscheid Reinforcement learning

241

Remarks on Dyna-() implementation
The specific Dyna-Q) characteristics are:

» Direct RL update: @-learning,
» Model: simple memory buffer of previous real experience,
» Search strategy: random choices from model buffer.

Moreover:

» Number of Dyna planning steps n is to be delimited from n-step bootstrapping (same
symbol, two interpretations).

» Without the model M one would receive one-step (-learning.

» The model-based learning is done n times per real environment interaction:
» Previous real experience is re-applied to @Q-learning.

» Can be considered a background task: choose maxn s.t. hardware limitations (prevent
turnaround errors).

» For stochastic environments: use a distributional model as in (7.3).
» Update rule then may be modified from sample to expected update.

Oliver Wallscheid Reinforcement learning 242

Maze example (1)

Steps
per
episode

Fig. 7.7: Applying Dyna-Q with different planning steps n to
simple maze (source: R. Sutton and G. Barto, Reinforcement
learning: an introduction, 2018, CC BY-NC-ND 2.0)

Oliver Wallscheid

800

|
600

400

2004
‘

|
14

F

[o] |

—H

0 planning steps
(direct RL only)

AW A

5 planning steps

50 planning steps

T
10

T T
20 30

Episodes

40

Reinforcement learning

+

actions

vVvvyVvVvVvVvyyypy

Maze with obstacles (gray blocks)
Start at S and reach GG
rr=+4+1atG

Episodic task with v = 0.95

Step size a« = 0.1

Exploration £ = 0.1

Averaged learning curves

243

https://creativecommons.org/licenses/by-nc-nd/2.0/

Maze example (2)

» Blocks without an arrow depict a neutral policy (equal action values).

» Black squares indicate agent’s position during second episode.

» Without planning (n = 0), each episodes only adds one new item to the policy.
» With planning (n = 50), the available experience is efficiently utilized.
» After the third episode, the planning agent found the optimal policy.

WITHOUT PLANNING (Nn=0)

WITH PLANNING (N=50)

G

|- —-| 4

t

t

—-

* | | ||)

M Rl 0

nalb AR AR el

1
'
1

—-

t

—-

Fig. 7.8: Policies (greedy action) for Dyna-@Q agent halfway through second episode (source: R. Sutton

and G. Barto, Reinforcement learning: an introduction, 2018, CC BY-NC-ND 2.0)

Oliver Wallscheid

Reinforcement learning

244

https://creativecommons.org/licenses/by-nc-nd/2.0/

The shortcut maze example
I I R < I

I A :
[LIsT T[] : [T IsI L]

» Maze opens a shortcut after 3000
steps

» Start at S and reach G
» rp =41 at G

» Dyna-@Q with random exploration
is likely not finding the shortcut

4007

Cumulative
reward

» Dyna-Q+ exploration strategy is

0 3000 6000 able to correct internal model
Time steps

» Averaged learning curves
Fig. 7.9: Maze with an additional shortcut after 3000 steps
(source: R. Sutton and G. Barto, Reinforcement learning: an
introduction, 2018, CC BY-NC-ND 2.0)

Oliver Wallscheid Reinforcement learning 245

https://creativecommons.org/licenses/by-nc-nd/2.0/

Dyna-(Q+ extensions

Compared to default Dyna-@) in Algo. 7.1, Dyna-QQ+ contains the following extensions:

» Search heuristic: add /7 to regular reward.

» 7: is the number of time steps a state-action transition has not been tried.
> k: is a small scaling factor x € {R|0 < x}.
P> Agent is encouraged to keep testing all accessible transitions.

» Actions for given states that had never been tried before are allowed for simulation-based
planning.
» Initial model for that: actions lead back to same state without reward.

Oliver Wallscheid Reinforcement learning 246

Table of contents

@ Planning and learning with tabular methods

m Prioritized sweeping

Oliver Wallscheid Reinforcement learning

247

Background and idea

» Dyna-Q randomly samples from the memory buffer.

» Many planning updates maybe pointless, e.g., zero-valued state updates during early training.
P In large state-action spaces: inefficient search since transitions are chosen far away from optimal
policies.

» Better: focus on important updates.

» In episodic tasks: backward focusing starting from the goal state.
» In continuing tasks: prioritize according to impact on value updates.

» Solution method is called prioritized sweeping.

» Build up a queue of every state-action pair whose value would change significantly.
» Prioritize updates by the size of change.
» Neglect state-action pairs with only minor impact.

Oliver Wallscheid Reinforcement learning 248

Algorithmic implementation: prioritized sweeping

parameter: a € {R0 < a <1}, ne{Nn>1}, 6¢c{R|§>0}
init: G(z, u) arbitrary and M(z,u) V {z € X,u € U}, empty queue Q
for j =1,2,... episodes do
Initialize =9 and k < 0;
repeat
Take uy, from z using a soft policy derived from G(x,u), observe rr11 and xg41;

M(zp,ur) < {re+1, Ze+1} (assuming deterministic env.);
P+ |rpqr + ymaxy §(Trt1,u) — §(zk, ur)|;
if P > 0 then insert {z),ur} in Q with priority P;
for i =1,2,... n while queue Q is not empty do
{Zi,0:} + argmaxp(Q);
{Fit1, Tig1} — M(Zi, Us);
4@,) <= G(Ti, Ui) + o [Figr +ymaxu §(Tiyr, w) — (i, @));
for V {Z,u} predicted to lead to ; do
T < predicted reward for {T,u, Z;};
P« |F +ymaxy §(Z:,u) — 4(Z,0)|;
if P > 0 then insert {Z,u} in Q with priority P;
k+k+1;
until z is terminal,

Oliver Wallscheid Reinforcement learning

249

Remarks on prioritized sweeping implementation

The specific prioritized sweeping characteristics are:

» Direct RL update: Q-learning,
» Model: simple memory buffer of previous real experience,

» Search strategy: prioritized updates based on predicted value change.

Moreover:

» 0 is a hyperparameter denoting the update significance threshold.

» Prediction step regarding Z; is a backward search in the model buffer.

» For stochastic environments: use a distributional model as in (7.3).
» Update rule then may be modified from sample to expected update.

Oliver Wallscheid Reinforcement learning

250

Comparing against Dyna-() on simple maze example

107_
1064 Dyna-Q
o | . .
Updates 10 > Ermronment framework as in
UflffiI 104 Prioritized Fig. 7.7

Oplt'?ﬁm sweeping » But: changing maze sizes
solution 4

10° (number of states)

102+ » Both methods can utilize up to

o n = 5 planning steps

T T T T T T T 1
0 47 94 186 376 752 1504 3008 6016 » Prioritized sweeping finds optimal

Gridworld size (#states) solution 5-10 times quicker

Fig. 7.10: Comparison of prioritized sweeping and Dyna-@Q on
simple maze (source: R. Sutton and G. Barto, Reinforcement
learning: an introduction, 2018, CC BY-NC-ND 2.0)

Oliver Wallscheid Reinforcement learning 251

https://creativecommons.org/licenses/by-nc-nd/2.0/

Table of contents

@ Planning and learning with tabular methods

m Planning at decision time

Oliver Wallscheid Reinforcement learning

252

Background planning vs. planning at decision time

Background Planning (discussed so far):

» Gradually improves policy or value function if time is available.
» Backward view: re-apply gathered experience.

» Feasible for fast execution: policy or value estimate are available with low latency
(important, e.g., for real-time control).

Planning at decision time! (not yet discussed alternative):

» Select single next future action through planning.

» Forward view: predict future trajectories starting from current state.

» Typically discards previous planning outcomes (start from scratch after state transition).
» If multiple trajectories are independent: easy parallel implementation.

» Most useful if fast responses are not required (e.g., turn-based games).

1Can be interpreted as model predictive control in an engineering context.
Oliver Wallscheid Reinforcement learning 253

Heuristic search

» Develop tree-like continuations from each state encountered.

» Approximate value function at leaf nodes (using a model) and back up towards the current
state.

» Choose action according to predicted trajectory with highest value.

» Predictions are normally discarded (new search tree in each state).

Fig. 7.11: Heuristic search tree with exemplary order of back-up operations (source: R. Sutton and G.
Barto, Reinforcement learning: an introduction, 2018, CC BY-NC-ND 2.0)

Oliver Wallscheid Reinforcement learning 254

https://creativecommons.org/licenses/by-nc-nd/2.0/

Rollout algorithms

» Similar to heuristic search, but: simulate trajectories following a rollout policy.

» Use Monte Carlo estimates of action value only for current state to evaluate on best action.

» Gradually improves rollout policy but optimal policy might not be found if rollout sequences
are too short.

» Predictions are normally discarded (new rollout in each state).

Tk, U

8

o e
pe
¥

)

v

C\-'~—()--'-—:>--o\

O @90

O e—Cmer a0 —

Orre—Grra— Ot /
>

O+ 4O a—Omei—])

O 4—Orreaerd’

O--o-—()--'-—’_‘--o\

Rollout policy

0o Crrram—red’|

Fig. 7.12: Simplified processing diagram of rollout algorithms

Oliver Wallscheid Reinforcement learning 255

Monte Carlo tree search (MCTS)

» Rollout algorithm, but:
P accumulates values estimates from former MC simulations,
P> makes use of an informed tree policy (e.g., e-greedy).

(_’—{ Repeat while time remains)ﬁ
Selection ——— Expansion —— Simulation ——— Backup

AL AL AR AR
f\/’/’\/>l/’/’

Tree Rollout
Policy Policy
|

b

Fig. 7.13: Basic building blocks of MCTS algorithms (source: R. Sutton and G. Barto, Reinforcement
learning: an introduction, 2018, CC BY-NC-ND 2.0)

Oliver Wallscheid Reinforcement learning 256

https://creativecommons.org/licenses/by-nc-nd/2.0/

Basic MCTS procedure

Repeat the following steps while prediction time is available:

@

Selection: Starting at root node, use a tree policy (e.g., e-greedy) to travel through the tree
until arriving at a leaf node.

» The tree policy exploits auspicious tree regions while maintaining some exploration.

> It is improved and (possibly) extended in every simulation run.

Expansion: Add child node(s) to the leaf node by evaluating unexplored actions (optional

step).

Simulation: Simulate the remaining full episode using the rollout policy starting from the

leaf or child node (if available).

» The rollout policy could be random, pre-trained or based on model-free methods using real
experience (if available).

Backup: Update the values along the traveled trajectory but only saves those within the

tree policy.

Oliver Wallscheid Reinforcement learning 257

Further MCTS remarks

What is happening after reaching the feasible simulation runs?

>

| 2

After time is up, MCTS picks an appropriate action regarding the root node, e.g.:
» The action visited the most times during all simulation runs or

» The action having the largest action value.

After transitioning to a new state, the MCTS procedure re-starts:

» Either with a new tree incorporating only the root node or

» by re-utilizing the applicable parts from the previous tree.

Further reading on MCTS:

| 2

MCTS-based algorithms are not limited to game applications but were able to achieve
outstanding success in this field.

> Famous AlphaGo (cf. Keynote lecture from D. Silver)

More in-depth lectures on MCTS can be found (among others) here:

» Stanford Online: CS234

» MIT OpenCourseWare

» Extensive slide set from M. Sebag at Universite Paris Sud

Oliver Wallscheid Reinforcement learning

258

https://www.youtube.com/watch?v=Wujy7OzvdJk
https://www.youtube.com/watch?v=vDF1BYWhqL8
https://www.youtube.com/watch?v=xmImNoDc9Z4
https://www.lri.fr/~sebag/Slides/InvitedTutorial_CP12.pdf

Summary: what you've learned today

>

| 2

Model-free RL is easy to implement and cannot suffer any model learning error while
model-based approaches use a limited amount of experience much more efficient.
Integrating these two RL branches can be achieved using the Dyna framework (background
planning) incorporating the steps:

» Direct RL updates (any model-free approach, e.g., Q-learning),

» Model learning: use real experience to improve model predictions,

P Search control: strategies on how to generate simulated experience.

The Dyna framework allows many different algorithms such as Dyna-Q(+) or prioritized
sweeping.

> Learning efficiency is much increased compared to pure model-based/free approaches.

» Many degrees of freedom regarding internal update rules exist.

In contrast, planning at decision time predicts future trajectories starting from the current
state (forward view).

» Rather computationally expensive leading to high latency responses.

» The Monte Carlo tree search rollout algorithm is a well-known example.

Oliver Wallscheid Reinforcement learning 259

Table of contents

Summary of part |

Reinforcement learning in finite state and
action spaces

@ Introduction to reinforcement learning
9 Markov decision processes

e Dynamic programming

e Monte Carlo methods

e Temporal-difference learning

@ Multi-step bootstrapping

0 Planning and learning with tabular methods

Oliver Wallscheid Reinforcement learning

260

Common key ideas to all discussed RL methods so far

@ Estimating and comparing value functions
@ Backing up values along actual or possible state trajectories
@ Usage of GPI mechanism to maintain an approximate value function and policy trying to

improve each of them on the basis of the other

evaluation

Vs vg
m \%4
7~ greedy(V)

improvement
. Vsey Ty

™ —'. Vx

Fig. S-1.1: Generalized policy iteration (GPI) as a mutual building block of all previously discussed RL
methods (source: R. Sutton and G. Barto, Reinforcement learning: an introduction, 2018, CC
BY-NC-ND 2.0)

Oliver Wallscheid Reinforcement learning 261

https://creativecommons.org/licenses/by-nc-nd/2.0/
https://creativecommons.org/licenses/by-nc-nd/2.0/

Two important RL dimensions: update depth and width

width

Temporal- ? of update i Dynamic
difference t OA programming
learning O i [ofRe) o)

depth
(length)
of update

/O\ Exhaustive
Monte 2. search
Carlo .’ . o
® *
i obd b
o

Fig. S-1.2: A slice through the RL method space (source: R. Sutton and G. Barto, Reinforcement
learning: an introduction, 2018, CC BY-NC-ND 2.0)

Oliver Wallscheid Reinforcement learning

262

https://creativecommons.org/licenses/by-nc-nd/2.0/

Other important rl dimensions

Selected, non-exhaustive list:

» Problem space: How many states and actions? Stochastic vs. deterministic environment?
Stationary?

Policy objective: on-policy vs. off-policy? Explicit vs. implicit policy?

Task: Episodic vs. continuing?

Return definition: Discounting? General reward design?

Value: State vs. action value estimation?

vVvyVvyyvyy

Model: Required? Distribution vs. sample models? Learning vs. a priori (expert)
knowledge?

Exploration: How to search for new policies?
Update order: synchronous vs. asynchronous? If latter, which order?

Experience: simulated vs. real experience? Memory length and style?

vVvyyvyy

Oliver Wallscheid Reinforcement learning 263

Outlook

First part of the course:

Reinforcement learning on small finite action and state spaces

The problem space is such small that RL methods based on look-up tables are applicable.

Second part of the course::

Reinforcement learning using function approximators

The problem space is either continuous or contains an unfeasible large amount of discrete state-
action pairs. Value estimates, models or explicit policies stored in look-up tables would let the
memory demand explode. Modifications and extensions of available RL algorithms using function
approximators are required.

Oliver Wallscheid Reinforcement learning 264

Table of contents

© Supervised learning
m Supervised learning problem statement
m Feature engineering
m Typical machine learning models
m Linear regression
m Artificial neural networks

Oliver Wallscheid Reinforcement learning

265

The machine learning triad

Machine

Learning

(Unsupervised

[Clustering

)

Develop models
to map input
and output data

—> [Classification

Learning
Process and interpret —}(Dimension Reduction]
data based only
on the input (o0 o]
J
. N\
(" supervised [Regression
Learning /

N ..

4 Reinforcement
Learning

Learn optimal control
actions to maximize

long-term reward

[Single-Agent

—> [Multi-Agent

)\[® 0o o0

— N

Fig. 9.1: Disciplines of machine learning

Oliver Wallscheid

Reinforcement learning

266

Introductory material

Machine learning (ML) and especially the field of supervised learning (SL) is extensively
researched and taught.

» Renowned online courses

» Coursera ML by Stanford's Andrew Ng
» Practical deep learning for coders by fast.ai
» Intro to ML by Kaggle Courses

» Books classics

» Pattern Recognition and Machine Learning by C. M. Bishop
» The Elements of Statistical Learning by Hastie et al.
» Deep Learning by |. Goodfellow, Y. Bengio, and A. Courville

Oliver Wallscheid Reinforcement learning

267

https://de.coursera.org/learn/machine-learning
https://www.fast.ai/
https://www.kaggle.com/learn/overview
http://users.isr.ist.utl.pt/~wurmd/Livros/school/Bishop%20-%20Pattern%20Recognition%20And%20Machine%20Learning%20-%20Springer%20%202006.pdf
http://www-stat.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf
https://www.deeplearningbook.org/

Machine learning in industry

Machine learning applications are a fast growing industry itself, and enhance more and more
automation in classical industry as well.
Among others, popular industries are:

» Embedded systems,
» Mobility, and
» Digital assistants

Most applications are of the supervised type.
The demand for highly skilled ML engineers is growing correspondingly.

Oliver Wallscheid Reinforcement learning

268

https://magazine.startus.cc/how-machine-learning-is-changing-the-major-industries/

Instances of ML applications

» Recommendation systems

» Which ads to display on a website?
» Which items are most likely put into cart next by the user?

» Forecasting

> Weather, sales, geospatial Uber calls, restaurant/website traffic
> Material attrition in engineering processes (predictive maintenance)

» Classification/Regression

> Speech assistants (Alexa/Siri), pedestrial detection (autonomous driving), fault detection in
engineering processes
> large language models (LLM), credit scoring (fintech)

» Generative models

Oliver Wallscheid Reinforcement learning

269

https://tech.instacart.com/deep-learning-with-emojis-not-math-660ba1ad6cdc
https://eng.uber.com/forecasting-introduction/
https://www.kaggle.com/c/recruit-restaurant-visitor-forecasting
https://towardsdatascience.com/web-traffic-forecasting-f6152ca240cb
https://www.kaggle.com/c/severstal-steel-defect-detection
https://www.kaggle.com/c/severstal-steel-defect-detection
https://openai.com/blog/chatgpt
https://stablediffusionweb.com/

ML competitions with price pool

caggle DRIVENBATA

Fig. 9.2: Kaggle and DrivenData

Open ML competition platforms like kaggle or DrivenData offer a multitude of diverse
competitions to participate in at no cost.

» Most competitions come with a decent price pool of 15 tsd. dollars up to 1 mil. dollars
hosted by stakeholders from the industry and government.

» These competitions are almost exclusively of the supervised type, but RL challenges are
increasing.

Oliver Wallscheid Reinforcement learning

270

https://www.kaggle.com/
https://www.drivendata.org/competitions/

Typical supervised learning pipeline

Data Acquisition
ooo

Iﬁ) Exploratory Data Analysis
.;.I] Feature Engineering and Resampling

@ Machine Learning (ML) Evaluation

@ ML Optimization
g Written Report and Visualizations

Fig. 9.3: A typical supervised learning pipeline — sometimes more art than science

Oliver Wallscheid Reinforcement learning

271

Supervised learning in reinforcement learning

SL approximates functions, RL approximates policies.

However, there are two situations where SL is auxiliary in RL:

» Function approximation of (action-)state values, if the number of possible states exceeds
any reasonable memory capabability, which is often the case.

> v.(z) = 0(z,w) with w being a trainable weight vector.

» Imitation learning. A simple-to-implement, deterministic baseline policy is often available,
but an RL agent might fail to achieve that performance when learning from scratch. With
SL, this baseline policy can be approximated to be the initial behavior of the agent.

» Expert moves in board games.
» Basic linear controllers in engineering applications with feedback-loops.

Oliver Wallscheid Reinforcement learning 272

Supervised learning problem statement

Supervised learning

Given a labeled data set (xp,yi) € D with k € [0, K — 1] and K being the data set size,
approximate the mapping function f* : @y — yi with a parameterizable ML model f,, : ¢ —
Yk R Yk k.

» Goodness of fit can be measured by a manifold of metrics
(e.g., mean squared error, classification accuracy, etc.).

» Reducing the look-up-table-like mapping f* to a parameterized function f,, degrades any
metric on the data set but enables interpolation to unseen data.

» The dimension & of model parameters w € R¢ is adjustable in many model families, which
trades off bias with variance (among other factors, leading to so-called under- and
overfitting).

» On top of w, an ML model might also have hyperparameters that can be optimized (e.g.,
number of layers in a neural network).

Oliver Wallscheid Reinforcement learning 273

Bias and variance

g
\

Fig. 9.4: Left: Decision boundaries in binary classification, k-nearest neighbors with one (bright) and
nine (dark) neighbors. Right: Regression example, least squares (dark) and 2-nearest neighbors (bright).

Oliver Wallscheid Reinforcement learning 274

Generalization error

Supervised learning performance

SL performance is measured by a model's generalization error, i.e., goodness of fit on unseen
data.

A data set is often finite as opposed to RL environments generating arbitrarily many
observations.

» How to generate unseen data?
» Hold out portions of the data set for cross-validation.

Oliver Wallscheid Reinforcement learning 275

k-fold cross-validation

| All data |
Training set [Testset | ™ Cross-validation (CV) can be
— conducted with k-fold CV.
. Generalization
soit 1| [Fold 1 || Fola 2 || Fola 3 ” Fold 4 | Fold s | error » Training is repeated k times with &
Split 2 | [Fold 1 || Fold 2 || Fold 3 || Fola 4 |[Fold 5 | different splits of the training set.

spiit 3 | [Fold 1 [Fold 2 |[Fold 3 |[Fola 4 |[Folas || \ validation » Each observation serves as unseen
error instance at least once.

Split 4 | | Fold 1]| Fold 2 || Fold 3 |[Fola 4 |[Fola 5 |

» The validation error is an indicator for
tuning hyperparameters.

split 5 | | Fold 1 |[Fold 2 || Fola 3 || Fold 4 [Fold 5 |

Fig. 9.5: k-fold CV with five folds

Oliver Wallscheid Reinforcement learning 276

Means to improve an SL model

SL performance can be improved by:

» Collecting more data, i.e., increasing K (more data is always better).
» Choosing a more appropriate model.

» Optimizing hyperparameters of the model.

» Averaging over several different models (ensembling).

» Most effectively: Revealing the most predictive patterns in the data to the model (feature
engineering).

Oliver Wallscheid Reinforcement learning 277

Table of contents

© Supervised learning

m Feature engineering

Oliver Wallscheid

Reinforcement learning

278

Feature engineering

Additional features might be:
» Coming from the real world via additional sensors or additional tracking mechanisms (think
of a user's click behavior on a website)

» Hand-designed (engineered) by experts in the corresponding domain from the original
feature set

» Automatically built according to properties of each feature in the original set (Auto-ML)

Adding more features is not equivalent to having more data (which is always better). Having a
fixed data set size, adding arbitrarily many features, regardless of their origin, increases chances
to align statistical fluctuations with the target yj - overfitting is the result.

Oliver Wallscheid Reinforcement learning 279

Feature engineering example (classification)

. * eoey . " :_';
o .
o Yo’ T e Lot T
e, . fei N e W e
S el . . R e,
st .ﬂ,.;«‘ ot ESTEE KT
sg® a a’ o a0 e ®
. P -‘..s-:,'s e N R IR ¥ .
o q P It PO . . « o £ Y
c ooy O e ‘_-:’ e R T “a e, .
9 . . et ., v on) .- @ - ...’,l .o ae
oo AT . .
[7] . wae Cga Jag e 1'.‘ . M .
Sl aeSaes'n e N . .
L LY -):... liy. -.. ':. :
e a0, e o e o _.." . o
. LA . *e o a® B
. ..:\ . .:'- -~ 5. .
* . ¢ * . * e te o ¢
. o] ome % e g
o’
e class1 e class?2 EEIE N A S
width r

Fig. 9.6: Features = \/width” + height® and 0 = arctan('\‘:iifth;) reveal linearly separable class
distribution

Oliver Wallscheid Reinforcement learning

Feature engineering example (regression)

e
. - DR
_ °* (_CU .. I.'
o R o 5 L., I.'. e
> ° . c . n o 0 A o
n ‘e o’ (o)) K o % et
- ° ¢ . ! X LI
S0 "eete ° . N e
. BV L T
. R . P ot e
L s, 4 v e e
fwg s eee e . X
ARSI R FS 2 W s
regressor regressor

Fig. 9.7: Log-transform of the target signal exhibits linear relationship to the regressor

Oliver Wallscheid Reinforcement learning

Normalization

Most models require data to be normalized before training (apart from tree-based models).
Typical normalizaton schemes:

» Standard scaling: & = (z — Avg(x))/Std(x)
» Min-Max scaling: & = (& — min(x))/(max(x) — min(x))
» Plain scaling: £ = x/max(|x|)

In an unnormalized data set, features with high variance will eclipse patterns in other features.

Oliver Wallscheid Reinforcement learning 282

Data types

Several different data types can be utilized for ML:
» Binary: 1 or 0 (True or False).

» Integer: N (e.g., number of rooms in a building).

» Real-valued: R (e.g., temperature).

» Categorical: like {blue, green, red}

» Ordinal: Categoricals that can be ordered, e.g., educational experience (From elementary
school to Ph.D.)

Oliver Wallscheid Reinforcement learning

Data type specific normalization

How to normalize categorical data?

» One-hot encoding
» Replace a categorical of n values with n binary features.
P Feature space gets sparse and might get too big for memory.
» Mean target encoding
> Replace each value of a categorical with the average (regression) or mode (classification) of the
dependent variable being observed with the corresponding value.
» This might lead to information leaking from the dependent variables into the independent
variables, and might exhibit high performance that cannot be reproduced on unseen data.
» Entity embeddings

» Let a neural network find a cardinality-constrained set of real-valued features for each categorical.
» Works well in practice but is more intricate than alternatives.

Oliver Wallscheid Reinforcement learning 284

Typical feature engineering schemes

Feature design is often of the following form (tricks of the trade):
Given K feature vectors x;, € R” with, e.g., P = 3 (two real-valued regressors and a
categorical independent variable x = (g, , Tk o, T e)):

» &) = X, + i, (Or any other combination, e.g., product, division, subtraction, also cf.
Fig. 9.6),

Ty = T, — |—é‘ YoienTip Vr={ri,ro} with B={i:2;. = 2.},
Clip/drop/aggregate outliers away,

Coordinate transformations for spatial features (e.g., rotation),

vvyyvYyy

In time domain:

> ZTp = (Thyry s Tl The2,01 5 Thyrg > Thye) (lag features),
> %, = (1 — a)Zp—1 + axg, (moving averages).

» In frequency domain:
> Amplitude and index of frequencies from a fast fourier transform (FFT)

Oliver Wallscheid Reinforcement learning

285

Table of contents

© Supervised learning

m Typical machine learning models

Oliver Wallscheid

Reinforcement learning

286

Model landscape

When trying to find an appropriate mapping between input and output data, one can choose
from a variety of models:

» Linear/logistic regression (with regularization)
» The simplest data-fitting algorithm

» Support vector machines (SVM)
» Most popular algorithm before 2012

» (Deep) neural networks (DNN)

» Also coined as deep learning, soared in popularity since 2012
> Most prevalent in the domains of natural language processing (NLP) and image processing

» Gradient Boosting Machines (GBM)

» Chaining of weak models (most of the time decision trees)
» The best performing stand-alone model in tabular ML competitions

Oliver Wallscheid Reinforcement learning 287

Model choice

Fig. 9.8: Choose models appropriate for the problem! (Source: Adapted from reddit)

Oliver Wallscheid Reinforcement learning

288

https://www.reddit.com/r/toolporn/comments/1kw63x/hilti_30c_in_your_hands_feels_huge_1050_x_750/

Table of contents

© Supervised learning

m Linear regression

Oliver Wallscheid

Reinforcement learning

289

Linear regression (1)

Linear models assume a linear relationship between xj, = (1,21, k2, ..., 2k p) and y; via
trainable coefficients w € RP*1;

P
Fl@r) = gk = wo + Y _ zppwp, (9.1)
p=1
y = 2w, (9.2)
where E = (1, ...,xx). Among other methods, w can be estimated from K samples by

minimizing the residual sum of squares (RSS), which is coined the least squares method:

K
RSS(w) =) (y — f(1))* = (y — Ew)' (y - Ew). (9.3)
k=1

Oliver Wallscheid Reinforcement learning 290

Linear regression (2)
Deriving (9.3) with respect to w and setting it to zero while assuming 2T = is positive-definite,
yields an analytically closed solution form:

y:

[1]

(ET=) =Ty (9.4)

[

w =

Multicollinearity

If two regressors exhibit strong linear correlation, their coefficients can grow indeterministically.
This corresponds to high variance in w. Regularization of w alleviates this effect - it induces
bias for less variance. Most prevalent linear regularized techniques are LASSO and Ridge:

1]

w)' (y — Ew) + Al|wl]i,

w)T (y — Ew) + Alfwl]2,

RSSiasso(w) = (y —
RSSRidge (W) = (y —

(1

where A controls the growth penalty.

Oliver Wallscheid Reinforcement learning 291

Table of contents

© Supervised learning

m Artificial neural networks

Oliver Wallscheid

Reinforcement learning

292

Artificial neural networks
Artificial neural networks (ANNSs) describe nonlinear approximators y = f(E;w) that are
end-to-end differentiable.
Input
Weights

w1

o » An ANN consists of nodes or neurons in one or
2 Sum Activation Output

more layers.
3 > : by .
» Each node transforms the weighted sum of all

previous nodes through an activation function.

s

» The weighted connections are called edges,
which represent the ANN's parameters.

@ ° T

Fig. 9.9: A typical neuron as the key building
block of ANNs.

Oliver Wallscheid Reinforcement learning 293

Multi-layer perceptron
A vanilla ANN is the so-called feed-forward ANN or multi-layer perceptron.

Layer L » Only forward-flowing edges.
» The depth L and width H® are
revertd hyperparameters.

Layer 2

With ¢ and Z(denoting the activation func-
Layer 1 tion and activation of layer [respectively, we get
for the output matrix H O

O — (p(l)(q.t(l—l)w(l) + 0).
=z

Fig. 9.10: Multi-layer perceptron.

Weight matrix W) € R xHY 5pg (broadcasted) bias matrix b(!) € REXHY re
iteratively optimized and denote the full set of parameters w.

Oliver Wallscheid Reinforcement learning 294

Activation functions
1.0

Within hidden layers most

prevalent activation functions ¢(-) are 07

» h =tanh(z) 00T —
_ 1 ; ; -0.5 1 1 m sigmoid

» h = 1~ (sigmoid) E — siam

» h = max(0,2) 1.0 —— J(,) —

(rectified linear unit (ReLU))

Fig. 9.11: Common activation functions

Whereas ¢(L)(-) is task-dependent:
» Regression: § = h(L) = (L)
» Binary classification: sigmoid

» Multi-class classification: B
e C

c
> iy €7

Oliver Wallscheid Reinforcement learning

h{l) = (softmax)

Training neural networks (1)

ANN parameters are usually iteratively optimized via a variant of gradient descent, e.g.,
stochastic gradient descent (SGD).

WO WO —av 0Ly, 9),
b(l) — b(l) — onme(y, jl)), (9-8)
with « being the step size and L(-) denoting the loss between the ground truth vector and the

estimation vector.
Typical loss functions:

> Regression: (root) mean squared error (RMSE), mean absolute error
» Classification: Cross-entropy (CE)

Several iterations over the data set D are called epochs.

Oliver Wallscheid Reinforcement learning 296

Training neural networks (2)

Gradient descent alternatives:

» Batch gradient descent (BGD): Average
gradients over all samples, then update
weights.

> Stochastic gradient descent (SGD): Update
weights after each sample.

Fig. 9.12: BGD vs. SGD

SGD is more computationally efficient, but steps are more random.
Nowadays, mini-batch gradient descent (mix of SGD and BGD) and further improvements are
used, e.g., momentum and second derivatives, to ensure faster convergence to better optima.

Oliver Wallscheid Reinforcement learning 297

Training neural networks (3)

How to retrieve the gradients:
Recall chain rule for vector derivatives, e.g., with y = g(x) and z = f(y) where g : R™ — R"
and f: R"” - R:

9z gy ' 0z dy; 0z
Voo 2 () T 02 5n0y D2 09
ox ox oy —~ Oz 0Oy;
—— ~—~ J
Jacobian of g gradient
This can be used equivalently for matrices/tensors of any shape Vzy = g—é when we assume
to enumerate each element of the tensor consecutively and loop through them.

Error Backpropagation

After a forward step through the network, make a backward step in which the gradient + of the
loss L£(y,y) is computed w.r.t the ANN's parameters from the output layer back to the input
layer.

Oliver Wallscheid Reinforcement learning 298

Training neural networks (4)

init: H «+ 2

// forward propagation

fori=1,...,L layers do
Z0 =D O 4 pD)
HO — pO(20)

// backward propagation

v+ Vi L(y,9) // note that A(H) = g

fori=1L,...,1 layers do
v 70 d(eW)(2W) = Vz0Ll(y,y) // ©: elementwise mult.
Append v = V) L(y,) to list of bias gradients
Append (’H(l*l))T v = Vo £(y,) to list of weight gradients
77 WO =V Ly 9)

Algo. 9.1: Error backpropagation

Oliver Wallscheid Reinforcement learning

299

Error backpropagation example (1)

Assume xp = [2,5,7],yo = 2.5, and a two-layered ANN with the MSE cost, and sigmoid
activation functions o(z) = 1+i—Z' The hidden layer contains two neurons with output
h() € R?, while the weight vectors are initialized with

w = [01-03 0277 3(1) — [0.05,—0.03], and W@ = [0.2, —0.8]T, 5@ = [0.1].
Applying SGD, we start with forward propagation:

A0 = o0 (g 4 p0)
= 5([0.1, —4.3] + [0.05, —0.03]) = [0.53, 0.01]
jo = hOW® 4 p@ = 0.198

Oliver Wallscheid Reinforcement learning

300

Error backpropagation example (2)

Backpropagation (with ¢/(z) = 0,0(2) = 0(2)(1 — 0(2))):

() = Vy(yo — 90)* = —2(yo — fo) = —4.604

(0, %0) = v* © () (21) = 4
Vi@ Lo, 9o) = (AT - 42 = [-2.44, —0.046]"

(0, 50) =¥ - W = [-0.921, 3.683]

(%0, 40) =M © (M) (V) = 4 © o' (W™ + bV)
=~ o (rM(1 - rW)) =[-0.229,0.036]

_ _ _ T

Vv LYo, 9o) = 5130 W = [7%{381 1§1ff?§ 256.'%17}

Now update weights and biases according to (9.7) and (9.8).

Oliver Wallscheid Reinforcement learning

301

Weight initialization

Early in deep learning research, it was found that random uniform or random normal weight
initialization leads to poor training.

According to Glorot and Bengio®, use the following layer-specific initialization schemes (with
H;i, and H,,: denoting amount of hidden units of previous and current layer, respectively):

: . 6 6
> Unlform- w Z/l(- \/I_Iin\{‘;Hout7 \/Hi:{‘leout)

) V2
> normal. w NN(O, \/ﬁ)

Please note that generally due to the random weight initialization the result of repeated error
backpropagation training is always different regardless of having the same hyperparameters and
the same data.

This equals to local optimization in highly non-linear parameter spaces at random starting
points.

1X. Glorot and Y. Bengio, " Understanding the difficulty of training deep feedforward neural networks” , Proceedings
of Machine Learning Research, 2010

Oliver Wallscheid Reinforcement learning 302

Regularizing neural networks

In order to mitigate overfitting, ANNs must be regularized by

> weight decay, i.e., adding an {2 penalty term to the weights, see (9.6),
» layer normalization during training,

» i.e all layers’ activations are normalized by standard scaling separately,
» dropout, i.e., randomly disable nodes’ contribution.

» This helps especially in deep networks,
» and effectively builds an ensemble of ANNs with shared edges.

Oliver Wallscheid Reinforcement learning 303

Advanced topologies

Jr—2 gr—1 gr r+1 Output 9o 91 Y2 Jr—29r-1 9r Y141
Output Sequence \:\ \:\ \:\ ‘:’ ‘:’ \:\ \:\ : ‘:’
Sequence
Hidden
Layer
Output
Laver O-00ooooooooon
Hidden Hidden
Layer Layer
Input Input
Sequence Sequence D . - D

Prepadding %o 1 TT-2TT-1 TT TT41

Fig. 9.13: Recurrent (left) and 1-D convolutional (right) ANNs are more appropriate in time domains,
e.g., where the given data set has a dynamic system background

Oliver Wallscheid Reinforcement learning 304

Hyperparameter optimization (1)

Third level of inference

Choice of framework,

toolboxes, hyper-parameter
intervals and optimizer
manually

engineered Second level of inference

Hyperparameter

optimization ’

automated by
Bayesian search, First level of inference

meta-heuristics
ML model parameters

optimization

automated by
gradient descent,
meta-heuristics

Fig. 9.14: The three levels of optimization

Oliver Wallscheid Reinforcement learning

Hyperparameter optimization (2)

» Hyperparameter optimization is, again, a non-linear optimization problem.
» Evaluation of any point in this space can be very costly, though.
» Information gathered during a search must be fully utilized.
» Toolboxes (incomprehensive)
» Optuna
» Scikit-optimize
> Pyswarm

Oliver Wallscheid Reinforcement learning

306

https://github.com/optuna/optuna
https://scikit-optimize.github.io/stable/
https://pyswarms.readthedocs.io/en/latest/

SL toolboxes

» Deep learning
> Tensorflow 2 (Keras)
» PyTorch
» Chainer
> CNTK
» Gradient boosting machines
> XGBoost
> LightGBM
» CatBoost
» Linear, tree-based, memory-based models, SVMs, among others
» Scikit-learn

Oliver Wallscheid Reinforcement learning

307

https://www.tensorflow.org/tutorials/quickstart/beginner
https://pytorch.org/
https://chainer.org/
https://docs.microsoft.com/en-us/cognitive-toolkit/
https://xgboost.readthedocs.io/en/latest/
https://lightgbm.readthedocs.io/en/latest/
https://catboost.ai/
https://scikit-learn.org/stable/

Summary: what you've learned today

Industry has high demand for ML applications.

Higher bias trades off variance for a better overall score.

>

| 4

» How to cross-validate and improve SL models.
» How features are engineered and normalized.
>

Fundamentals of linear regression and neural networks.

Oliver Wallscheid Reinforcement learning

308

Table of contents

@ Approximative on-policy prediction
m Impact of function approximation to the RL task
m Gradient-based prediction
m Batch learning

Oliver Wallscheid Reinforcement learning

309

Preface
Until further notice we assume that:

» The state space is consisting of at least one continuous quantity or an unfeasible large
amount of discrete states (quasi-continuous).
> The state is considered a vector: © = [z1 22 }T .

» The action space remains discrete and feasible small.
» The action can be represented as a scalar: u = u (cf. 2nd lecture).

» The applied approximation functions J(w) are differentiable with the parameter vector w.

T
» Therefore, the gradient V.J(w) = {8"(“’) 0J(w) } exists.

Owq Owa

Focus of this and the next lecture:

» Transferring previous RL methods from discrete to continuous state-space problems in the
on-policy case.
» Applying off-policy approaches with function approximation is not straightforward and will
be largely skipped.
P For further insights we refer to chapter 11 in R. Sutton and G. Barto, Reinforcement learning: an
introduction, 2018.

Oliver Wallscheid Reinforcement learning 310

Non-stationarity

» Standard assumption of supervised ML: static and i.i.d. data processes
» Deviating impacts in the RL framework:

» Changing environments (e.g., by tear and wear)
» Dynamic learning in control tasks, i.e., changing policy (next lecture)

evaluation

Vs vy
™ 14
7~ greedy(V)

improvement v, T

Vi, Tk

ge(\Y “ﬂ

_ oY
s

Ty —>.1)*

Fig. 10.1: GPI changes the underlying stochastic processes generating data inputs to be learned by
function approximators (source: R. Sutton and G. Barto, Reinforcement learning: an introduction, 2018,
CC BY-NC-ND 2.0)

Oliver Wallscheid

Reinforcement learning 311

https://creativecommons.org/licenses/by-nc-nd/2.0/

Prediction framework with function approximation (1)

» Estimate true value function v, (x) using a parametrizable approximate value function
(2, w) ~ v (x). (10.1)

» The state « might be enhanced by feature engineering (i.e., additional signal inputs are
derived in the feature vector z = f(x) € R").

» Above, w € RS is the parameter vector.
> Typically, ¢ << |X| applies (otherwise approximation is pointless).

Generalization

Due to the usage of function approximation one incremental learning step changes at least one
element w; € w which

> affects the estimated value of many states compared to

» the tabular case where one update step affects only one state.

Oliver Wallscheid Reinforcement learning 312

Prediction framework with function approximation (2)

» In the tabular case a specific prediction objective was not needed:
» The learned value function could exactly match the true value.
P The value estimate at each state was decoupled from other states.

» Due to generalization impact we need to define an accuracy metric on the entire state space
(the RL prediction goal):

Definition 10.1: Mean Squared Value Error

The RL prediction objective is defined as the mean squared value error

VE(w) = [ul@) n(e) — (3, w)P (102)
X

with p(x) € {R|u(x) > 0} being a state distribution weight with [, p = 1.

> Practical note: As the true value v, (x) is most likely unknown in most tasks, (10.2) cannot
be computed exactly but only estimated.

Oliver Wallscheid Reinforcement learning 313

Simplification for on-policy prediction

4
4
>

v

For prediction we focus entirely on the on-policy case.
Hence, /() is the on-policy distribution under 7.

For practical usage we can therefore approximate the weighted integration over the entire
state space X" in (10.2) by the sampled MSE of the visited state trajectory:

VE(w) ~ J(w) = > [ur(zk) — 0(E, w)]*. (10.3)
k

If we would perform off-policy prediction we have to transform the sampled value
(estimates) from the behavior to the target policy.

Likewise when doing this for tabular methods, this increases the prediction variance.

In combination with generalization errors due to function approximation, the overall risk of
diverging is significantly higher compared to the on-policy case.

Oliver Wallscheid Reinforcement learning 314

Prediction challenges with function approximation
Summarizing the two previous slides:

» The goal is to find
w”* = arg min J(w). (10.4)

w
First challenge:

» Function approximator 0(&, w) requires certain form to fit v, ().

Second challenge:

» If 0(&, w) is linear: convex optimization problem.
» The nice case: the local optimum equals the global optimum and is uniquely discoverable. But
requires linear feature dependence.
» If o(@, w) is non-linear: non-linear optimization problem.
» The ugly case: possible multitude of local optima with no guarantee to locate the global one.
» Depending on optimization strategy the RL algorithm may diverge.

Oliver Wallscheid Reinforcement learning 315

Table of contents

@ Approximative on-policy prediction

m Gradient-based prediction

Oliver Wallscheid

Reinforcement learning

316

Updating the parameter vector to find (local) optimum

Transferring the idea of incremental learning steps from the tabular case
0(x) < v(z) + a[ve(x) — 0(x)]
to function approximation using a gradient descent update:

w — w — aVyJ(w).

» The search direction is the prediction objective gradient V,,J(w).

» The learning rate o determines the step size of one update.

Oliver Wallscheid Reinforcement learning

(10.5)

(10.6)

317

How to retrieve the gradient?

» Full calculus of V4, J(w):

» Batch evaluation on sampled sequence
xg,T1, T2, ... might be computationally costly.
» In RL control: since w changes over time, past
data in batch is not fully representative.

» SGD: sample gradient at a given state o and
parameter vector wy:

Vwd (w) & — [vg(xk) — 0(Zg, wy)]

0
Ve 0(Zg, w).

Fig. 10.2: Exemplary optimization paths for
(stochastic) gradient descent » Regular gradient descent leads to same result as
(derivative work of www.wikipedia.org, CCO 1.0) SGD in expectation (averaging of samples).

Oliver Wallscheid Reinforcement learning 318

https://commons.wikimedia.org/wiki/File:Gradient_descent.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Asking an expert on convergence properties
The optimization task (10.4) could be

» non-linear,

» multidimensional and

» non-stationary.

Applying gradient descent to such a problem requires:

» Enormous luck to initialize w close to the global optimum.
» Cautious tuning of « to prevent diverging or chattering of wy.

Applying gradient descent on
nonlinear, nonstationary problems?

Oliver Wallscheid Reinforcement learning 319

SGD-based learning step

Despite the possible problems we apply SGD-based learning due to its striking simplicity (and
wide distribution in the literature):

Gradient-based parameter update

To optimize (10.4) by an appropriate function approximator o(&,w) the incremental learning
update per step is

Wiy = WE + « [vw(wk) = ’0(53].3, wk)] Vw'[)(ik, wk) (10.7)

Nevertheless, the true update target v, (xy) is often unknown due to

» noise or

» the learning process itself (e.g., bootstrapping estimates).

Oliver Wallscheid Reinforcement learning 320

Generalization example for parameter update
» Function approximation (&, w) = [wl Wy wg] [:cl T9 l]T

> Initial parameter: w§ = [1 1 1], vx(xo = [1 I]T) =1, a=0.1
» New parameter set:

'w-{ = ’lU-(I)- + « [’Uﬂ-($0) — ’(A)(io, wg)] (Vw’[)(io, ’wo))T

=[1 1 1]401(1-3)[1 1 1]=1[0.8 0.8 0.8]

Oliver Wallscheid Reinforcement learning

321

Algorithmic implementation: gradient Monte Carlo

» Direct transfer from tabular case to function approximation

» Update target becomes the sampled return v (xy) =~ gi

input: a policy 7 to be evaluated, a feature representation & = f(x)
input: a differentiable function © : R® x RS — R
parameter: step size o € {R|0 < a < 1}
init: value-function weights w € RS arbitrarily
for j =1,2,..., episodes do

generate an episode following 7: g, ug,r1,...,2T ;

calculate every-visit return gy;

for k=0,1,...,T — 1 time steps do

w4 w+ algy — 0(Zg, w)] VO (T, w);

Algo. 10.1: Every-visit gradient MC (output: parameter vector w for ¥)

Oliver Wallscheid Reinforcement learning 322

Semi-gradient methods

» If bootstrapping is applied, the true target v, (xy) is approximated by a target depending on
the estimate 0(&y, w).
» If o(&y, w) does not fit v (xk), the update target becomes a biased estimate of v, (xy).
» For example, in the TD(0) case applying SGD we receive:
v(@) ~ 1+ 703, w),
J(w) =Y [res1 + V0 Bsr, wi) — 0(&k, wi)]?,
k (10.8)
Vwd (W) % [rhy1 + 70(Brs1, wi) — (T, wy)]

Vo [Y0(Zht1, wi) — 0(Zk, wi)] -

Semi-gradient methods

When bootstrapping is applied, the gradient does not take into account any gradient component
of the bootstrapped target estimate.

» Motivation: speed up gradient calculation while assuming that the simplification error is
small (e.g., due to discounting).

Oliver Wallscheid Reinforcement learning 323

Algorithmic implementation: semi-gradient TD(0)
The semi-gradient of J(w) for TD(0) from prev. slide is then

ij(’w) ~ — [Tk+1 + ’)/ﬁ(iikJrl, wk) — ﬁ(ik, wk)] vw@<:ik, wk) (10.9)

input: a policy 7 to be evaluated, a feature representation & = f(x)
input: a differentiable function ¢ : R* x R¢ — R with 4(&7,) =0
parameter: step size o € {R|0 < o < 1}
init: value-function weights w € RS arbitrarily
for j =1,2,... episodes do
initialize xq;
for k=0,1,2... time steps do
ug, < apply action from 7(xy);
observe xj 1 and r41;
W4 W+ arpr1 + Y0(Zpt1, w) — 0(Tg, w)] Voo (Tg, w);
exit loop if &1 is terminal;

Algo. 10.2: Semi-gradient TD(0) (output: parameter vector w for)

Oliver Wallscheid Reinforcement learning 324

input: a policy 7 to be evaluated, a feature representation & = f(x)
input: a differentiable function o : R® x RS — R with &(&7,-) =0
parameter: step size a € {R|0 < a < 1}, prediction steps n € Z*
init: value-function weights w € R¢ arbitrarily
for j =1,2... episodes do

initialize and store xg;

T < o0;
repeat £k =10,1,2,...
if £ < T then

take action from 7(xy), observe and store xyy1 and rgy1;
if 11 is terminal: T <k +1;
T <k —n+1 (7 time index for estimate update);

if 7> 0 then
T) g
g = LI i
ifr+n<T: g g+ y"0(Zrpn,w);
w—w+alg— (&, w)] Vo (&, w);
until 7 =T —1;

Algo. 10.3: n-step semi-gradient TD (output: parameter vector w for o)

Oliver Wallscheid Reinforcement learning

325

Table of contents

@ Approximative on-policy prediction

m Batch learning

Oliver Wallscheid

Reinforcement learning

326

Background and motivation

> As already discussed in the tabular case: incremental learning is not data efficient (cf.
example Fig. 5.8).

» During one incremental learning step we are not utilizing the given information to the maximum
possible extent.
» Also applies to SGD-based updates with function approximation.

» Alternative: batch learning methods

> Find w* given a fixed, consistent data set D = {(x¢, v (o)), (X1, v:(21)),...}.

» What batch learning options do we have?

> Experience replay (cf. planning and learning lecture, e.g., Fig. 7.6)
> If 6(&, w) is linear: closed-form least-squares solution

Oliver Wallscheid Reinforcement learning 327

SGD with experience replay
Based on the data set

D = {{(xo,vr(x0)) , (x1,v7 (1)), ...}
repeat:

@ Sample uniformly i = 1,...,b state-value pairs from experience (so-called mini batch)

(@i, vr(x;)) ~ D.
@ Apply (semi) SGD update step:

b
« o~ o~
Wiy = Wi + 3 ZZ; [V (x5) — 0(24, wi)] Va0 (24, w;).

» Universally applicable: ©(&,w) can be any differentiable function.
» The usual technical tuning requirements regarding « apply.
» True target v;(x) is usually approximated by MC or TD targets.

Oliver Wallscheid Reinforcement learning

328

(Ordinary) least squares
Assuming the following applies:

» (&, w) is a linear estimator and
» D a fixed, representative data set following the on-policy distribution.

Then, minimizing the quadratic cost function (10.3) becomes

» an ordinary least squares (OLS) / linear regression problem.

We focus on the combination of OLS and TD(0) (so-called LSTD), but the following can be
equally extended to n-step learning or MC.

» Rewriting J(w) from (10.3) using linear approximation TD(0) target:

O (k) = Thy1 + YO (Tt1) = Thi1 + VB W (10.10)
2
J(’lU) = Z [vﬂ(:ck) — ’&(i}k, ’lU)]2 — Z [Tk-i-l — (i‘-}; — ’yi:llf——i-l) ’lU} .
k k

Oliver Wallscheid Reinforcement learning 329

Ordinary LSTD

The quadratic cost function
Tw) = 3 [riess = (a1 =9l) w]
k

obtains the least squares

» target / dependent variable 75,1 and

» regressor / independent variable (53}; - ’yﬁ:—,gﬂ).

With b samples we can form a target vector y and regressor matrix =:

1 (2] —~a])

ro| o _ (2] —~a))
Yy = 5 - = .

b (@)_, — &)

Oliver Wallscheid Reinforcement learning

(10.11)

330

Ordinary LSTD and regularization

Applying the linear regression solution (9.4) from previous lecture:

LSTD solution

Having arranged ¢ = 1,...,b samples (x;, v;(x;)) ~ D using TD(0) and linear function approx-
imation as in (10.11), the LSTD solution is

w* = (ETE) 2"y, (10.12)

» The parameter w* is also called the TD fixed point.
» The state-value prediction is simply 0(&y) = i:}gw*.
Depending on the policy 7 the rows in & might be linearly correlated.

» Bad matrix condition of Z'Z can lead to unfeasible values in w*.
» Counter measure: Add Tikhonov regularization (Ridge regression with penalty term ¢, cf.

(9.6))

WRidge = (ETE 4 D) 'ETy. (10.13)

Oliver Wallscheid Reinforcement learning 331

Recursive least squares

» OLS computational complexity is in the range of O(x%3) ... O(k?).
P being the number of features.
» Computational costly if new data points (x;, v.(x;)) are added to D.
» Consider supplement / extension: recursive least square (RLS).
» Each RLS update complexity is O(x?).
» In the following, we briefly represent the recipe-style RLS equations.

» Detailed derivation can be found e.g. R. Isermann and M. Miinchhof, Identification of Dynamic
Systems, Springer-Verlag Berlin Heidelberg, 2011 (also as electronic copy on Panda).

Oliver Wallscheid Reinforcement learning 332

RLS-TD

After every step we receive

P a new regressor vector E-,';_H = (2] — 'y:i:-,';ﬂ) and
» a new update target yp41 = Tit1.

The RLS update rule is then

_ P&
Ci = T ,
M1+ &y Prbrtt
Wiy = Wy, + ¢ <yk+1 - 5{+1wk> , (10.14)
P
Pk 1= (I—Cka)7,
+ k+1 >\k+1

with

>)\ € {R|0 < A <1} is an optional forgetting factor,
» P, is the covariance matrix and
» ¢ is an adaptive correction to reduce the error (yk+1 — E}L"U.}k.l,.l).

Oliver Wallscheid Reinforcement learning 333

Algorithmic implementation: RLS-TD

input: a policy 7 to be evaluated
input: a feature representation & with &7 = 0 (i.e., 0(Zr,-) = 0)
parameter: forgetting factor A € {R|0 < A <1}
init: weights w € RS arbitrarily, covariance P > 0 (e.g. P = BI)
for j =1,2,... episodes do
initialize xq;
for k=0,1,2... time steps do
uy, <— apply action from 7w (xy), observe &1 and ri41;
Y < TE41s
7 & —yEf s
¢« (P&)/ (A + € Pg);
w+w+e(y—E&w);
P« (I-c€") P/
exit loop if &1 is terminal;

Algo. 10.4: RLS-TD (output: parameter vector w for 9,)

Oliver Wallscheid Reinforcement learning

334

Some remarks on RLS usage in RL prediction

» Covariance matrix P can be inspected for certainty analysis.
» Small-valued elements in P suggest an accurate estimate.

» For A =1 the RLS converges to a static solution.
> Never forgets something (i.e., problematic for non-stationary problem).
> Given the same data set D the RLS converges to OLS solution.

» However, if RLS-TD should be used online A € [0.95,0.99] is typical.

» Application-dependent A\, might be adapted online after each step.

> As seen in (10.14), A < 1 increases the covariance which potentially could lead to numerical
instabilities depending on the given data set.

» In this case, regularization is required.

» General RLS approach (10.14) is also applicable to MC or n-step TD.
» Derivation follows presented scheme based on the altered update rules.

!Recommended reading: S. Gunnarson, Combining Tracking and Regularization in Recursive Least Squares Iden-
tification, Proceedings of 35th IEEE Conference on Decision and Control, 1996

Oliver Wallscheid Reinforcement learning 335

Summary: what you've learned today

» To cover unfeasible large or continuous state spaces function approximation is required.
» Feature engineering supports the learning process.
» On-policy prediction seems rather straightforward with function approximation:

» Just transfer the incremental learning from tabular case to gradient descent on parameter vector
w

» Stochastic gradient descent allows step-by-step based updates.
» Gradient-based prediction is not risk free (especially non-linear case):

» no convergence guarantees,
» local optima vs. global optimum.

» If bootstrapping is applied, the update target depends on w.
» True gradient becomes computationally more complex.
» Semi-gradient methods reduce computational burden at accuracy costs.

» Batch learning squeezes out all available prediction information from a given data set.
» If linear function approximation is applied, closed-form solutions exist.

Oliver Wallscheid Reinforcement learning 336

Table of contents

@ Approximative value-based control
m On-policy control with (semi-)gradients
m Least squares policy iteration (LSPI)
m Deep g-networks (DQN)

Oliver Wallscheid Reinforcement learning

337

Preface
Problem space: it is further assumed that

> the states @ are (quasi-)continuous and

» the actions u are discrete.

Today's focus:

» valued-based control tasks, i.e., transferring the established tabular methods to work with
function approximation.

» Hence, we need to extend the previous prediction methods to action values

j(x,u,w) = gz (2, u). (11.1)

» And apply the well-known generalized policy iteration scheme (GPI) to find optimal actions:
4(x,u, w) ~ ¢ (x,u). (11.2)

Oliver Wallscheid Reinforcement learning 338

Types of action-value function approximation

q(z,u,w) ¢z, u=1,.., w) 4(x, ui=1,..., w)

T

T A
T a

Fig. 11.1: Possible function approximation settings for discrete actions

8
&

» Left: one function with both states and actions as input

» Middle: one function with i = 1,2, ... outputs covering the action space (e.g., ANN with
appropriate output layer)

» Right: multiple (sub-)functions one for each possible action u; (e.g., multitude of linear
approximators in small action spaces)

Oliver Wallscheid Reinforcement learning 339

Feature engineering

» Also for action-value estimation a proper feature engineering (FE) is of vital importance.

» Compared to the state-value prediction, the action becomes part of the FE processing:

j(x,u,w) =q¢(f (x,u),w). (11.3)

» Above, f(x,u) € R" is the FE function.

» For sake of notation simplicity we write §(«, u, w) and understand that FE has already been
considered (i.e., is a part of §).

Oliver Wallscheid Reinforcement learning 340

Gradient-based action-value learning

» Transferring the objective (10.3) from on-policy prediction to control yields:

J(w) = [gr(xk, ur) — 4(zk, up, w)]*. (11.4)
K

» Analogous, the (semi-)gradient-based parameter update from (10.7) is also applied to
action values:

W1 = Wi + & [¢r (g, u) — (g, g, k)] Vel (Tk, uk, wi). (11.5)

» Depending on the control approach, the true target ¢, (xx, ux) is approximated by:
> Monte Carlo: full episodic return g, (@, ux) =~ g,
> SARSA: one-step bootstrapped estimate ¢, (g, ur) = rr+1 + Y§(Tp41, Uk+1, W),
» n-step SARSA: gr(@p, uk) = Thy1 + Vht2 + -+ V" g + YU Thgns Ut Whpn—1)-

Oliver Wallscheid Reinforcement learning 341

Houston: we have a problem

» Recall tabular policy improvement theorem (Theo. 3.1): guarantee to find a globally better
or equally good policy in each update step.

» With parameter updates (11.5) generalization applies.

» Hence, when reacting to one specific state-action transition other parts of the state-action
space within ¢ are affected too.

Loss of policy improvement theorem

v » Is not applicable with function approximation!

®

> We may improve and impair the policy at the same
time!

Ay
— greedy
e

Fig. 11.2: GPI

Oliver Wallscheid Reinforcement learning 342

Algorithmic implementation: gradient MC control

» Direct transfer from tabular case to function approximation
» Update target becomes the sampled return g, (xx, ux) =~ gx

» If operating e-greedy on ¢: baseline policy (given by wg) must (successfully) terminate the

episode!

input: a differentiable function ¢ : R® x R¢ — R
input: a policy 7 (only if estimating ¢-)
parameter: step size a € {R|0 < a <1}, e € {R|0 <e << 1}
init: parameter vector w € R arbitrarily
for j =1,2,..., episodes do
generate episode following 7 or e-greedy on §: xq, ug, T1,..., 2T ;
calculate every-visit return g;
for k=0,1,...,T — 1 time steps do
w < w+ algr — Tk, uk, w)| Vpd(xg, ug, w);

Algo. 11.1: Every-visit gradient MC-based action-value estimation (output: parameter vector w for
Gr or q%)

Oliver Wallscheid Reinforcement learning

343

Algorithmic implementation: semi-gradient SARSA

input: a differentiable function ¢ : R® x RS — R
input: a policy 7 (only if estimating ¢,)
parameter: step size a € {R|0 < a <1}, e € {R|0 < e << 1}
init: parameter vector w € RS arbitrarily
for j =1,2,... episodes do
initialize xg;
for k=0,1,2... time steps do
uy, < apply action from 7 (xy) or e-greedy on ¢(xy, -, w);
observe 1 and rg41;
if ;1 is terminal then
w4 W+ arpr1 — §(@, ug, w)] V(g ug, w);
go to next episode;
choose v’ from mw(xyy1) or e-greedy on G(xgi1, -, w);
W 4 W+ a[rry1 + YG(@pr1, v, w) — G, Uk, W)] Ve §(g, g, w);
Algo. 11.2: Semi-gradient SARSA action-value estimation (output: parameter vector w for g, or

Ak

q)

Oliver Wallscheid Reinforcement learning 344

SARSA application example: mountain car (1)

>

>

4

>

S

>

Fig. 11.3: Classic RL control example: mountain
car (derivative work based on

https://github.com/openai/gym, MIT license) >

| 4

Oliver Wallscheid

Reinforcement learning

Two cont. states: position, velocity
One discrete action: acceleration given by
{left, none, right}

rr, = —1, i.e., goal is to terminate episode as
quick as possible

Episode terminates when car reaches the flag
(or max steps)

Simplified longitudinal car physics with state
constraints

Position initialized randomly within valley, zero
initial velocity

Car is underpowered and requires swing-up

345

https://github.com/openai/gym

SARSA application example: mountain car (2)

MOUNTAIN CAR Goal

- .
— i

Fig. 11.4: Cost-to-go function — max,, §(, u, w) for mountain car task using linear approximation with
SARSA and tile coding (source: R. Sutton and G. Barto, Reinforcement learning: an introduction, 2018,
CC BY-NC-ND 2.0)

Oliver Wallscheid Reinforcement learning 346

https://creativecommons.org/licenses/by-nc-nd/2.0/

Tile coding

» Problem space is grouped into (overlapping) partitions / tiles.

» Performs a discretization of the problem space.

» Function approximation serves as interpolation between tiles.

» Find an example here: https://github.com/MeepMoop/tilecoding .

__—Tilingl —

Tiling2— [l _TL_ [l 11 -
Tiling3 T manEmn il
; Tiling 4 L REN AR
Continuous ¢ ; g Four active
2D state ! ! = [tiles/features
P51 i S | overlap the point
e i /1// i =+ andareusedto
Point in Lt ti5rrtTr ! & represent it
state space ! ‘ !
to be I 1 o M JLED
represented

Fig. 11.5: Tile coding example in 2D (source: R. Sutton and G. Barto, Reinforcement learning: an
introduction, 2018, CC BY-NC-ND 2.0)

Oliver Wallscheid Reinforcement learning 347

https://github.com/MeepMoop/tilecoding
https://creativecommons.org/licenses/by-nc-nd/2.0/

input: a differentiable function ¢ : R® x RS — R
input: a policy 7 (only if estimating ¢)
parameter: a € {R0<a <1}, e € {R0<e<< 1}, neZ"
init: parameter vector w € RS arbitrarily
for j =1,2... episodes do
initialize and store xo;
select and store ug ~ w(xo) or e-greedy w.r.t. §(xo, -, w);

T <+ oo;
repeat £k =0,1,2,...
if £ < T then

take action uy observe and store xi4+1 and rp41;
if xr41 is terminal then T <+ k + 1;
else select & store ug+1 ~ m(xk41) or e-greedy w.r.t. G(Tr+1, -, w);
7+ k—n+1 (7 time index for estimate update);
if 7> 0 then
o TRy
fr+n<T: g g+7"4(Trin, Urin,W);
w4 w+ alg— §(xr, ur, w)] Vewi(xr, ur, , w);
until 7 =T — 1;

Algo. 11.3: n-step semi-gradient SARSA (output: parameter vector w for ¢,

Oliver Wallscheid Reinforcement learning

or ¢*)

348

Table of contents

@ Approximative value-based control

m Least squares policy iteration (LSPI)

Oliver Wallscheid Reinforcement learning

349

Transferring LSTD-style batch learning to action values

>

In the previous lecture we developed a closed-form batch learning tool: LSTD.

» Linear function approximation.

» Fixed, representative data set D.

Same idea can be transferred to action values when bootstrapping with one-step Sarsa,
called LS-SARSA (or sometimes LSTDQ):

4 (T, u) = Th1 + YG(Tht1, U1, W),

. o T (11.6)
q(xp, ug, wi) = §(&g, wg) = Twy.
The cost function for action-value prediction is then:
2
J(w)=>" [Tk+1 - (53% - 753{“) 'w} : (11.7)
k

Hence, the closed-form least squares solution for the action values is the same as for the
state value case but the feature vector depends also on the actions:

Zy = f(xp, uk)-

Oliver Wallscheid Reinforcement learning 350

On and off-policy LS-SARSA

With b samples we can form a target vector y and regressor matrix =:

r1 (% — 7.721)
y=|"|, == (@1~ %) (11.8)
) (5%71 - 75”{)

Regarding the data input to = we can distinguish two cases: The actions uj and ug11 in the

feature pair (& — v,) per row in E either descends from the

» same policy m (on-policy learning) or

» the action ugyq in £ = f(@kr1,urr1) is chosen based on an arbitrary policy 7/
(off-policy learning).

If we apply off-policy LS-SARSA then

> we retrieve the flexibility to collect training samples arbitrarily

» at the cost of an estimation bias based on the sampling distribution.

Oliver Wallscheid Reinforcement learning 351

LS-SARSA

LS-SARSA solution

Having arranged i = 1,...,b samples (x;, u;, 7i+1, Titr1,u;r1) ~ D using one-step bootstrap-
ping (11.6) and linear function approximation as in (11.8), the LS-SARSA solution is

w* = (ETE) 12Ty. (11.9)

Again, basic usage distinction:

» If {uj,u;y1} ~ m: on-policy prediction (as in LSTD)

» If u; ~ 7 and u; 1 ~ 7': off-policy prediction (useful for control)
Possible modifications:

» To prevent numeric instability regularization is possible, cf. (10.13)

» Recursive implementation for online usage straightforward, cf. (10.14)

Oliver Wallscheid Reinforcement learning 352

Least squares policy iteration (LSPI)
General idea:

» Apply general policy improvement (GPI) based on data set D,
» Policy evaluation by off-policy LS-SARSA,
» Policy improvement by greedy choices on predicted action values.

Some remarks:

» LSPI is an offline and off-policy control approach.

» Exploration is required by feeding suitable sampling distributions in D:
» Such as e-greedy choices based on §.
» But also complete random samples are conceivable.

Oliver Wallscheid Reinforcement learning

353

Algorithmic implementation: LSPI

input: a feature representation & with &7 =0 (i.e., (&,) = 0)
input: a data set (x;, u;, 741, Tit1) ~ D withi=1,... b samples
parameter: an accuracy threshold A € {R|0 < A}
init: linear approximation function weights w € R¢ arbitrarily
7 < arg max,, §(-, u, w) (greedy choices based on §(w));
repeat
w — w;
w <« LS-SARSA(D, u;1 ~);
7+ arg max,, (-, u, w);
until ||w’ — w|| < A;

Algo. 11.4: Least squares policy iteration (output: w for ¢*)

» In a (small) discrete action space the arg max, operation is straightforward.

» After one full LSPI evaluation the data set D might be altered to include new data obtained
based on the updated w vector.

» Source: M. Lagoudakis and R. Parr, Least-Squares Policy Iteration, Journal of Machine
Learning Research 4, pp. 1107-1149, 2003

Oliver Wallscheid Reinforcement learning 354

LSPI application example: inverted pendulum (1)

>

>

v

QO g

Fig. 11.6: Classic RL control example: inverted
pendulum (source: www.wikipedia.org, CCO 1.0) p

Two continuous states: angular position 6 and
velocity 6

One discrete action: acceleration force (i.e.,
torque at shaft)

Action noise as disturbance

Non-linear system dynamics

State initialization randomly close to upper
equilibrium

ri = 0 if pendulum is above horizontal line

rr = —1 if below horizontal line and episode
terminates
~v=0.95

Oliver Wallscheid Reinforcement learning 355

https://commons.wikimedia.org/wiki/File:Cart-pendulum.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en

LSPI application example: inverted pendulum (2)

» Initial training samples for D following a policy selecting actions at uniform probability
» Additional samples have been manually added during the training
» Radial basis function as feature engineering

2500

2000
é 1500
@

1000

500

0 100 200 300 400 500 600 700 800 900 1000
Number of raining episodes

Fig. 11.7: Balancing steps before episode termination with a clipping of maximum 3000 steps (source:
M. Lagoudakis and R. Parr, Least-Squares Policy Iteration, Journal of Machine Learning Research 4, pp.
1107-1149, 2003)

Oliver Wallscheid Reinforcement learning 356

Algorithmic implementation: online LSPI

input: a feature representation & with Zr =0 (i.e., §(&r,-,-) =0)
parameter: forgetting factor A € {R|0 < A < 1}, € € {R|0 < € << 1}, update factor
kyw € {N|1 < ky}
init: weights w € RS arbitrarily, policy 7 being e-greedy w.r.t. g(w), covariance P > 0
for j =1,2,... episodes do
initialize xo and set ug ~ 7(xo);
for k=0,1,2... time steps do
apply action uy, observe @11 and ri41, set upp1 ~ T(Tp11);
Y < Th41,
£ — (@, up) — Y]y (Try1, upgr);
c« (Pg&)/ ()\ + €TP§);
w—w+e(y—Ew);
P « (I — céT) P/
if £ mod k., =0 then
T ¢+ e-greedy w.rt. § = &' (x,u)w;
exit loop if @y41 is terminal;

Algo. 11.5: Online LSPI with RLS-SARSA (output: w for ¢*)

Oliver Wallscheid Reinforcement learning

357

Remarks on online LSPI

» L, depicts the number of steps between policy improvement cycles.

» Forgetting factor A and k,, require mutual tuning:
» After each policy improvement the policy evaluation requires sample updates to accurately

predict the altered policy.

» Numerically instability may occur for A < 1 and requires regularization.

» Hence, the algorithm is online-capable but its policy is normally not updated in a
step-by-step fashion.

» Alternative online LSPI with OLS-SARSA can be found in L. Busoniu et al., Online
least-squares policy iteration for reinforcement learning control, American Control
Conference, 2010.

Oliver Wallscheid Reinforcement learning

358

Table of contents

@ Approximative value-based control

m Deep g-networks (DQN)

Oliver Wallscheid

Reinforcement learning

359

General background on DQN

» Recall incremental learning step from tabular Q)-learning:

j(z,u) < ¢(z,u) + « {r +ymax §(a',u) — Q(x,u)] .
u

» Deep (Q-networks (DQN) transfer this to an approximate solution:
w=w+a«a|r+ymaxj(z,u,w)— §(z,u, 'w)} Vuwi(z,u,w). (11.10)
u
However, instead of using above semi-gradient step-by-step updates, DQN is characterized by

» an experience replay buffer for batch learning (cf. prev. lectures),
» a separate set of weights w™ for the bootstrapped ()-target.
Motivation behind:

» Efficiently use available data (experience replay).

» Stabilize learning by trying to make targets and feature inputs more like i.i.d. data from a
stationary process (prevent windup of values).

Oliver Wallscheid Reinforcement learning 360

Summary of DQN working principle (1)

» Take actions u based on ¢(x, u, w) (e.g., e-greedy).
» Store observed tuples (x,u,r, ') in memory buffer D.
» Sample mini-batches Dy from D.

» Calculate bootstrapped Q-target with a delayed parameter vector w~ (so-called target
network):
Gr(2,u) = +ymax (e, u,w").
u

» Optimize MSE loss between above targets and the regular approximation ¢(x, u, w) using

D,
2

L(w) = [(7’ +’ym3X(j(:1:’,u,w*)> - cj(w,u,w)} b, (11.11)

» Update w~ based on w from time to time.

Oliver Wallscheid Reinforcement learning 361

Summary of DQN working principle (2)

AV

LD Jr
W w e %
<%meter P
Target 0 / u
X O) u

qr = G(w™)

Fig. 11.8: DQN structure from a bird's-eye perspective (derivative work of Fig. 1.1 and wikipedia.org,
CC0 1.0)

Oliver Wallscheid Reinforcement learning 362

https://commons.wikimedia.org/wiki/File:Multi-Layer_Neural_Network-Vector.svg?uselang=de
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Algorithmic implementation: DQN

input: a differentiable function ¢ : R* x RS — R (including feature eng.)
parameter: ¢ € {R|0 < ¢ << 1}, update factor k,, € {N|1 < k,,}
init: weights w = w~ € R arbitrarily, memory D with certain capacity
for j =1,2,... episodes do
initialize xg;
for k=0,1,2... time steps do
ug, < apply action e-greedy w.r.t §(xg, -, w);
observe 1 and rg41;
store tuple (z, Uk, Tk+1, Trt1) in D;
sample mini-batch D, from D (after initial memory warmup);
for i =1,...,b samples do calculate Q-targets
if ;1 is terminal then y; = r;,1;
else y; = riy1 +ymax, §(xip1, u, w™);
fit w on loss L(w) = [yi — G(i, us, w)]%,;
if £ mod k,, = 0 then w~ + w (update target weights);

Algo. 11.6: DQN (output: parameter vector w for ¢*)

Oliver Wallscheid Reinforcement learning

363

Remarks on DQN implementation

» General framework is based on V. Mnih et al., Human-level control through deep
reinforcement learning, Nature, pp. 529-533, 2015.

» Often 'deep’ artificial neural networks are used as function approximation for DQN.
» Nevertheless, other model topologies are fully conceivable.

» The fit of w on loss L is an intermediate supervised learning step.

» Comes with degrees of freedom regarding solver choice.
» Has own optimization parameters which are not depicted here in details (many tuning options).

» Mini-batch sampling from D is often randomly distributed.

» Nevertheless, guided sampling with useful distributions for a specific control task can be
beneficial (cf. Dyna discussion in 7th lecture).

» Likewise, the simple e-greedy approach can be extended.

> Often a scheduled/annealed trajectory ¢, is used.
»> Again referring to the Dyna framework, many more exploration strategies are possible.

Oliver Wallscheid Reinforcement learning 364

DQN application example: Atari games (1)

» End-to-end learning of ¢(x,u) from monitor pixels x

Feature engineering obtains stacking of raw pixes from last 4 frames
Actions u are 18 possible joystick/button combinations

Reward is the change of highscore per step

>
>
>
» Interesting lecture from V. Minh with more details: YouTube

32 4x4 filters Fully-connected linear
output layer

256 hidden units

4x84x84

[T

Stack of 4 previous - Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

Fig. 11.9: Network architecture overview used for DQN in Atari games (source: D. Silver,
“Reinforcement learning”, 2015. CC BY-NC 4.0)

Oliver Wallscheid Reinforcement learning

https://www.youtube.com/watch?v=fevMOp5TDQs&t=1499s
https://creativecommons.org/licenses/by-nc/4.0

DQN application example: Atari games (2)

%000¢ %000L %009 %00S %00y %008 %00 %00k %0
L 1 1 1 1 1

1))
[

sBusnay sewnze:
23 alenud

Jouieo] seour 1508

uewoed ‘SN
Bumog
3ung aianog
Jsanbeag

puewwI0g seddoy
IOM 40 PRz
auoz ameg
xusisy
O¥IH
28,0

AaxooH 20|
umoq pue dn
Aaueq Buiysi4
oinpuz

1o1d Bl
Kemoaiy
Jise n4-Bunyy
wewpiueiny.
Japry wesg
ssapeAu| soedg
buod

puog sauwer
swuay
ocosebues
Jouuny peoy
wnessy.

Jona|-uewny mojoq

2A0qe 10 [as-uBwny Je

¥oERY Uowaq
audog
iquid Aze1d
shuepy
ueloqoy
Jeuung Jeis
noxealg
Buixog

Ilequig) 09PIA

Fig. 11.10: DQN performance results in Atari games against human performance (source: D. Silver,

“Reinforcement learning”, 2015. CC BY-NC 4.0)

366

Reinforcement learning

Oliver Wallscheid

https://creativecommons.org/licenses/by-nc/4.0

Summary: what you've learned today

» From a simplified perspective, the procedures from the approximate prediction can simply
be transferred to value-based control.

» On the contrary, the policy improvement theorem no longer applies in the approximate RL
case (generalization impact).
» Control algorithms may diverge completely.
» Or a performance trade-off between different parts of the problem space could emerge.

» Off-policy batch learning approaches allow for efficient data usage.
» LSPI uses LS-SARSA on linear function approximation.

> DQN extends Q-learning on non-linear approximation with additional tweaks (experience replay,
target networks,...).

» However, a prediction bias results (off-policy sampling distribution).

Oliver Wallscheid Reinforcement learning 367

Table of contents

@ Stochastic policy gradient methods
m Stochastic policy approximation and the policy gradient theorem
m Monte Carlo policy gradient
m Actor-critic methods

Oliver Wallscheid Reinforcement learning

368

Preface (1)

Shift from (indirect) value-based approaches
q(,u, w) = q(x, u) (12.1)
to (direct) policy-based solutions:

w(u|lx) =PU = u|X = x| =~ w(u|z,0). (12.2)

» Above, 8 € R? is the policy parameter vector.
» Note, that u is now vectorial and might contain multiple continuous quantities.

Goal of today's lecture

» Introduce an algorithm class based on a parameterizable policy 7 (8).
» Extend the action space to continuous actions.

» Combine the policy-based and value-based approach.

Oliver Wallscheid Reinforcement learning 369

Preface (2)

Oliver Wallscheid

Value Function

Fig. 12.1: Main categories of reinforcement learning algorithms
(source: D. Silver, “Reinforcement learning”, 2015. CC BY-NC 4.0)

Reinforcement learning

370

https://creativecommons.org/licenses/by-nc/4.0

Motivating example: strategic gaming
Task: Two-player game of extended rock-paper-scissors

» A deterministic policy (i.e., value-based with given feature representation) can be easily
exploited by the opponent.
» Conversely, a uniform random policy would be unpredictable.

/\
b

O =)

Fig. 12.2: Rock paper scissors lizard Spock game mechanics
(source: www.wikipedia.org, by Diriector Doc CC BY-SA 4.0)

Oliver Wallscheid Reinforcement learning

@

371

https://commons.wikimedia.org/wiki/File:Rock_paper_scissors_lizard_spock.svg
https://en.wikipedia.org/wiki/User:Diriector_Doc
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Example policy function: discrete action space
Assumption:

» Action space is discrete and compact.
A typical policy function is:
» Soft-max in action preferences
eh(m,u,@)

7(u|x,0) = 72.6"(9”7’?9)

(12.3)

with h(x,u,0) : X x U x R? — R being the numerical preference per state-action pair.
» Denominator of (12.3) sums up action probabilities to one per state.
» Is designed as a stochastic policy but can approach deterministic behavior in the limit.

» The preference is parametrized via a function approximator, e.g., linear in features

h(z,u,8) =0T &(z,u). (12.4)

Oliver Wallscheid Reinforcement learning 372

Example policy function: continuous action space (1)
Assumption:

» Action space is continuous and there is only one scalar action u € R.
A typical policy function is:

» Gaussian probability density

u— p(z, 0))?
m(u|x,0) = (M(’B))> (12.5)

1
o(z,0)v2r T (2 (x, 0)?

with mean p(z,0) : X x RY — R and standard deviation o(x,8) : X x R? — R given by
parametric function approximation.

» Variants regarding function p and o:
@ Both share a mutual parameter set 0 (e.g., artificial neural network with multiple outputs).

@ Both are parametrized independently 8 = [Ou BU]T (e.g., by two linear regression functions).
@ Only u(x,0) is parametrized while o is scheduled externally.

Oliver Wallscheid Reinforcement learning 373

Example policy function: continuous action space (2)

» Output of the functions uy = (g, ;) and o = (xk, 8)) can change in every time step.

» Depending on o exploration is an inherent part of the (stochastic) policy.

H=0, 0?=02,=——
U=0, 02=1.0, =—

08 1=0, 0%=50, =]
L / \ H=-2, 0?=0.5, =/]

AN]
°{/ //J “\‘\\\\]

L L L L L L L L L L
-5 -4 -3 -2 -1 0 1 2 3 4 5

Fig. 12.3: Exemplary univariate Gaussian probability density functions (source: R. Sutton and G. Barto,
Reinforcement learning: an introduction, 2018, CC BY-NC-ND 2.0)

Oliver Wallscheid Reinforcement learning 374

https://creativecommons.org/licenses/by-nc-nd/2.0/

Example policy function: continuous action space (3)

Assumption:
» Action space is continuous and there are multiple actions u € R™.
A typical policy function is:

» Multivariate Gaussian probability density

LI L T m) (1256)

7(u|x, 0) = R exp <—2

with mean p(zx,0) : X x RY — R™ and covariance matrix (z,0) : X x R? — R™x™
given by parametric function approximation.

» Same parametrization variants apply to g and X as in the scalar action case.

» In addition, 3 can be considered a diagonal matrix and clipped to reduce complexity as well
as ensure nonsingularity.

Oliver Wallscheid Reinforcement learning 375

Example policy function: continuous action space (4)

» Below we find an example for
}T

p=[-04 03

and 22[0.04 0 }

0 0.02

0

1 -
U2 1 Uy

Fig. 12.4: Exemplary bivariate Gaussian probability density function

Oliver Wallscheid Reinforcement learning

376

Policy objective function

» Goal: find optimal 8* given the policy 7 (u|x, 8).
» Problem: which measure of optimality should we use?

Possible optimality metrics:

» Start state value (in episodic tasks):

J(0) = vz, (x0) = E[v| X = x0, 0] (12.7)

» Average reward (in continuing tasks):

J(0) =T, :/Xuﬂ(m)/uw(u|:c,0)/XRp(m',r|m,u)r (12.8)

i

> Above, u,(x) is again the steady-state distribution i, (x) = limg_ 00 P [Xy = @|Ug.p—1 ~ 7).

Oliver Wallscheid Reinforcement learning 377

Policy optimization

» In essence, policy-based RL is an optimization problem.
» Depending on the policy function and task, finding 8* might be a
» non-linear,
» multidimensional and
» non-stationary problem.
» Hence, we might consider global optimization techniques! like
» Simple heuristics: random search, grid search,...
» Meta-heuristics: evolutionary algorithms, particle swarm,....

» Surrogate-model-based optimization: Bayes opt.,...
» Gradient-based techniques with multi-start initialization.

!Recommended reading: J. Stork et al., A new Taxonomy of Continuous Global Optimization Algorithms,
https://arxiv.org/abs/1808.08818, 2020

Oliver Wallscheid Reinforcement learning 378

https://arxiv.org/abs/1808.08818

Policy gradient

Fig. 12.5: Exemplary optimization paths for
(stochastic) gradient ascent

(derivative work of www.wikipedia.org, CCO 1.0)

» We will focus on gradient-based methods
(policy gradient).

» Hence, we will assume that the gradient
T
oJ oJ
Ve J(0) = [Tel T 90

required for gradient ascent optimization always
exists:

0« 0+ aVeJ(h).

» True gradient VgJ(0) is usually approximated,
e.g., by stochastic gradient descent (SGD) or
derived variants.

Oliver Wallscheid Reinforcement learning 379

https://commons.wikimedia.org/wiki/File:Gradient_descent.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Policy gradient theorem

Theorem 12.1: Policy Gradient
Given a metric J(0) for the undiscounted episodic (12.7) or continuing tasks (12.8) and a

parameterizable policy 7(u|x, @) the policy gradient is

(12.9)

VoJ(0) = Es [qw(w, u)vw("“”"))] .

m(ulz,0)

» Having samples (x;, u;), an estimate of ¢, and the policy function 7 () available we receive

an analytical solution for the policy gradient!
» Using identity VInag = Y@

a

VoJ(0) = Ey [gr(2, 1)V In7(u|z, 0)] (12.10)

we can re-write to

with Vg In7(u|x, 6) also called the score function.
» Derivation available in chapter 13.2 / 13.6 in the lecture book of Barto and Sutton.

Oliver Wallscheid Reinforcement learning 380

Intuitive interpretation of policy parameter update

» Inserting the policy gradient theorem into gradient ascent approach:
Vor(ulz,)
0« 0+ aE r,u)—————=

» Move in the direction that favor actions that yield an increased value.

» Scale the update step size inversely to the action probability to compensate that some
actions are selected more frequently.

Also note:

» The policy gradient is not depending on the state distribution!

» Hence, we do not need any knowledge of the environment and receive a model-free RL
approach!

Oliver Wallscheid Reinforcement learning 381

Simple score function examples
Soft-max policy with linear function approximation:

T~
b Z(z,u)

S, 0w (@)

& Volnr(ulz,0) = Ve <9T53(x,u) i (Z eeww))

=z(x,u) — E; [@(x,")]

Univariate Gaussian policy with linear function approximation and given o

m(u|z, 0) = ! exp <— (v - 0Tj;(;c,u))2>

m(u|x,0) =

oV 2m 202
B 1 (u—0T&(x,u))?
& Velnm(u|x,0) = Vg (ln (J 2ﬂ_> - 5,2
(u—0T&(x,v)) Z(z,u)

Oliver Wallscheid Reinforcement learning

382

Pro and cons: policy vs. value-based approaches

Pro value-based solutions (e.g., Q-learning):

» Estimated value is an intuitive performance metric.

» Considered sample-efficient (cf. replay buffer or bootstrapping).
Pro policy-based solutions (e.g., using policy gradient):

» Seamless integration of stochastic and dynamic policies.

» Straightforward applicable to large/continuous action spaces. In contrast, value-based
approaches would require explicit optimization

u* = argmax q(x, u, w).
u

Mutual hassle:

» Gradient-based optimization with (non-linear) function approximation is likely to deliver only
suboptimal and local policy optima.

Oliver Wallscheid Reinforcement learning 383

Table of contents

@ Stochastic policy gradient methods

m Monte Carlo policy gradient

Oliver Wallscheid

Reinforcement learning

384

Basic concept
Initial situation:

» Score function Vg Inw(u|x, 8) can be calculated analytically using suitable policy and chain
rule (e.g., by algorithmic differentiation).
» Open question: how to retrieve ¢, (x,u) in

VoJ(0) =E; [¢r(x,u)VgIn7(u|z,0)] ?

Monte Carlo policy gradient:
» Use sampled episodic return gj to approximate ¢, (x,u):
gr (T, u) ~ g
011 =05 + a7kng9 In w(uk]:ck, Gk).
» The discounting of the policy gradient is introduced as an extension to Theo. 12.1 (which
assumed an undiscounted episodic task).
» Also known as REINFORCE approach.

Oliver Wallscheid Reinforcement learning 385

Algorithmic implementation: Monte Carlo policy gradient (REINFORCE)

» Usual technical convergence requirements regarding a apply.
» Use sampled return as unbiased estimate of q.

» Recall previous MC-based methods: high variance, slow learning.

input: a differentiable policy function 7(u|x, 8)
parameter: step size o € {R|0 < a < 1}
init: parameter vector @ € R? arbitrarily
for j =1,2,..., episodes do
generate an episode following 7 (-|-, 8): @, wo,71,..., 2T ;
for k=0,1,...,T — 1 time steps do
94 Yy VT
0 + 0 + av*gVeInm(uy|xy, 6);

Algo. 12.1: Monte Carlo policy gradient (output: parameter vector 8* for 7*(u|x, 8*))

Oliver Wallscheid Reinforcement learning 386

REINFORCE example: short-corridor problem (1)

» Gridworld style problem with two actions: left (1), right (r)

» Second-left state’s action execution is reversed

> Feature representation: Z(z,u=r) = [1 O]T, Z(z,u=1)=1[0 1]T
» A policy-based approach searches for the optimal probability split

-11.6
20+

optimal
stochastic
policy

£-greedy right

=2

G

£-greedy left

-100 o 1 1 1 1 1 L 1 1 1)
0 0.1 02 03 04 05 06 07 08 09 1
probability of right action

Fig. 12.6: Short-corridor problem with ¢ = 0.1 (source: R. Sutton and G. Barto, Reinforcement learning:
an introduction, 2018, CC BY-NC-ND 2.0)

Oliver Wallscheid Reinforcement learning

387

https://creativecommons.org/licenses/by-nc-nd/2.0/

REINFORCE example: short-corridor problem (2)

10- v« (50)
”””””””””””” AR
o0k o1 ‘WWMW%MW \‘Hﬁ‘w m\ A 4.‘ M f@‘
am{wmeW H“AH."‘MN f| ’ 27
M’M(‘M‘
GO -40+ n M *‘““ﬂ“ “
Total reward il
on episode
averaged over 100 runs 60k
80+
-90 C 1 1 1 1 1]
1 200 400 600 800 1000

Episode

Fig. 12.7: Comparison of Monte Carlo policy gradient approach on short-corridor problem from Fig. 12.6
for different learning rates (source: R. Sutton and G. Barto, Reinforcement learning: an introduction,
2018, CC BY-NC-ND 2.0)

Oliver Wallscheid Reinforcement learning 388

https://creativecommons.org/licenses/by-nc-nd/2.0/

Baseline

» Motivation: add a comparison term to the policy gradient to reduce variance while not
affecting its expectation.

» Introduce the baseline b(x):
VoJ(0) =E; [(¢r(x,u)—b(x)) Vg In7(u|z,0)]. (12.11)

» Since b(x) is only depending on the state but not on the actions/policy we did not change
the policy gradient in expectation:

VoJ(0) =E; [¢:(x,u)VgInn(u|z,0)] — E; [b(x)Velnn(u|x, 9)1

=0

» Consequently, the Monte Carlo policy parameter update yields:

0k+1 = Ok + Oz’)/k (gk - b(:l)k)) Vo In W(uk]:ck, Gk)

Oliver Wallscheid Reinforcement learning 389

Advantage function

» Intuitive choice of the baseline is the state value b(x) = v ().
» The resulting policy gradient becomes

VoJ(0) = Eq [(gr (2, u) — vr(x)) Vo Inm(ulz, 0)]. (12.12)

» Here, the difference between action and state value is the advantage function

ar(x,u) = ¢r(x,u) — v (). (12.13)

» Interpretation: value difference taking (arbitrary) action w and thereafter following policy 7
compared to the state value following same policy (i.e., choosing u ~ 7) given the state.

» Hence, we might rewrite to:
VoJ(0) =E; [ar(x,u)VgInn(ulz,0)]. (12.14)

Oliver Wallscheid Reinforcement learning 390

Algo. implementation: MC policy gradient with baseline
» Implementation requires approximation b(x) ~ v(x, w).

» Hence, we are learning two parameter sets 0 and w.

» Keep using sampled return as action-value estimate: ¢, (x,u) = gi.

input: a differentiable policy function m(u|x, @) and state-value function o(x, w)
parameter: step sizes {ay,, ap} € {R|0 < a < 1}
init: parameter vectors w € RS and 8 € R? arbitrarily
for j =1,2,..., episodes do
generate an episode following 7 (-|-,0): xo, wo,71,..., T ;
for k=0,1,...,T — 1 time steps do
g i
0+ g—0(xk, w);
W 4 W+ @y, 0V 0(xg, w);
0 — 0 + agy* 5V In7(ug|xi, 0);

Algo. 12.2: Monte Carlo policy gradient with baseline (output: parameter vector 8* for 7*(u|x, 6*))
and w* for 0*(x, w*))

Oliver Wallscheid Reinforcement learning

391

REINFORCE comparison w/o baseline

10, REINFORCE with baseline o =2

- AT Hmw\«(ﬂrn’m,‘uﬁ MWWWWRI s(
A Lal ’q W-NWWM‘%W WWWW
-20|- M el
t‘w ﬁ
W ‘v‘ REINFORCE
__9—13
Gy -0} | m o=z
Total reward ‘
on episode
averaged over 100 runs
-60+
-80 ﬁ
_90 C Il 1 1 Il Il J
1 200 400 600 800 1000

Episode

Fig. 12.8: Comparison of Monte Carlo policy gradient on short-corridor problem from Fig. 12.6 where
both algorithms’ learning rates have been tuned (source: R. Sutton and G. Barto, Reinforcement
learning: an introduction, 2018, CC BY-NC-ND 2.0)

Oliver Wallscheid Reinforcement learning 392

https://creativecommons.org/licenses/by-nc-nd/2.0/

Table of contents

@ Stochastic policy gradient methods

m Actor-critic methods

Oliver Wallscheid

Reinforcement learning

393

General actor-critic idea

Conclusion of Monte Carlo policy gradient with baseline:

» Will learn an unbiased policy gradient.

» As the other MC-based methods: learns slowly due to high variance.
» Updates only available after full episodes.

Alternative: use an additional function approximator, the so-called critic, to estimate ¢ (i.e.,
approximate policy gradient):

» Realization: any prediction tool discussed so far (TD(0), LSTD,...).
» Potential: we can use online step-by-step updates to estimate ¢.
» Disadvantage: we would train two value estimates by w, and wy.

Oliver Wallscheid Reinforcement learning 394

Integrating the advantage function

» The TD error is
Op =7+ 7”#(17/) - Ufr(m)'

» In expectation the TD error is equivalent to the advantage function
E, [57r|ma u] =E, [T + 'Yvﬂ(w,”w’ u] - Uﬂ(m)
= qr(x,u) — v ()
= ap(x,u).
» Hence, the TD error can be used to calculate the policy gradient:

VoJ(0) =E; [0-Vglnn(u|x,0)].

» This results in requiring only one function parameter set:
Sp =1+ yor (2, w) — O (z, w).

Oliver Wallscheid Reinforcement learning

(12.15)

(12.16)

(12.17)

(12.18)

395

Actor-critic structure

» Critic (policy evaluation) and actor (policy improvement) can be considered another form of
generalized policy iteration (GPI).

» Online and on-policy algorithm for discrete and continuous action spaces with built-in
exploration by stochastic policy functions.

Fig. 12.9: Simplified flow diagram of actor-critic-based RL

Oliver Wallscheid Reinforcement learning 396

Algo. implementation: actor-critic with TD(0) targets

» Analog to MC-based policy gradient optional discounting on the gradient updates is
introduced.

input: a differentiable policy function 7(u|x,) and state-value function v(x, w)
parameter: step sizes {ay,, ap} € {R|0 < a < 1}
init: parameter vectors w € RS and @ € R? arbitrarily
for j =1,2,..., episodes do
initialize xq;
for k=0,1,...,T — 1 time steps do
apply ug ~ 7(-|xk, @) and observe xy1 and 7y1;
0 Tpr1 + Y0(Tpg1, w) — O(p, W);
W 4 W+ @y, 0V 0(xg, w);
0 «— 0 + apy* Ve In(uy|xy, 0);

Algo. 12.3: Actor-critic for episodic tasks using TD(0) targets (output: parameter vector 6* for
7 (u|x, 6*)) and w* for 0*(x, w*))

Oliver Wallscheid Reinforcement learning 397

Actor-critic generalization

» Using the TD(0) error as the target to train the critic is convenient.
» However, the usual alternatives can be applied to train o(z, w).
» n-step bootstrapping:

v(®g) &~ Tha1 +YTrae Y e Y Ok 1 (Thn, W),

» \-return (forward view):

T—k—1
’U(Z)\(n 1) Qkk+ +)\T k— 1gk-

n=1

» TD(\) using eligibility traces (backward view):

2k = YAzk—1 + Vb (zg, wi),

Ok = Thy1 + Y0(Tpy1, wg) — O(Tg, Wi).

Oliver Wallscheid Reinforcement learning 398

Algo. implementation: actor-critic with TD(\) targets

input: a differentiable policy function w(u|x,)
input: a differentiable state-value function o(x, w)
parameter: {a,,,ap} € {R|0 < a < 1}, {A\y, Ao} € {RI0O <A< 1}
init: parameter vectors w € R¢ and 8 € R? arbitrarily
for j =1,2,..., episodes do
initialize xg, 2z, = 0, 2z = 0;
for k=0,1,...,T — 1 time steps do
apply uy ~ 7(-|xy, @) and observe xj1 and riq;
0 i1 +Y0(Tpy1, w) — O(xk, W);
Zw — YAwzw + Vi(zg, w);
29 < YAazg + Ve In7(ug|zy, 0);
W — W+ 02y,
0 — 0 + agdzy;

Algo. 12.4: Actor-critic for episodic tasks using TD(A) targets (output:
7 (u|x, 0*) and w* for O*(x, w*))

Oliver Wallscheid Reinforcement learning

parameter vector 8* for

399

Summary: what you've learned today

>

Policy-based methods are a new class within the RL toolbox.

> Instead of learning a policy indirectly from a value the policy is directly parametrized.

» The policy function allows discrete and continuous actions with inherent stochastic exploration.

Solving the underlying optimization task is complex. However, the policy gradient theorem

provides a suitable theoretical baseline for gradient-based optimization.

Anyhow, to calculate policy gradients we require a value estimate.

» Monte Carlo prediction is straightforward, but comes with high variance and slow learning.

» Adding a state-dependent baseline comparison does not change the policy gradient in expectation
but enables decreasing the variance.

Extending this idea naturally leads to integrating a critic network, i.e., an additional

function approximation to estimate the value.

The critic can be fed by the usual targets (TD(0), TD(A),...).

Oliver Wallscheid Reinforcement learning 400

Table of contents

@ Deterministic policy gradient methods
m Deep deterministic policy gradient (DDPG)
m Twin delayed deep deterministic policy gradient (TD3)

Oliver Wallscheid Reinforcement learning

401

Background and motivation

Recap on policy gradient so far:

» The previously discussed policy functions and the policy gradient theorem were assuming
stochastic polices.

» The resulting on-policy algorithms may not provide top-class learning performance:

» Non-guided exploration with step-by-step updates and
> Greedy actions only in the limit (i.e., infeasible long learning).

The alternative:

» Apply a deterministic policy with separate exploration.
» Enable off-policy learning (with experience replay as a possible extension).

» Hence, we will focus on a deterministic policy function

m(x,0) = p(x, 0). (13.1)

Oliver Wallscheid Reinforcement learning 402

Deterministic policy gradient (DPG) theorem

Theorem 13.1: Deterministic Policy Gradient

Given a metric J(@) for the undiscounted episodic (12.7) or continuing tasks (12.8) and a
parameterizable policy u(x, @) the deterministic policy gradient is

Ve J(0) =E, [Vou(x,0)Vuq(®, u)|ypa)] - (13.2)

» Again, ¢ needs to be approximated using samples, e.g., implementing a critic via TD
learning.

» It turns out that (13.2) is also (approximately) valid in the off-policy case, i.e., if the sample
distribution is obtained from a behavior policy.

» Proof can be found in D. Silver et al., Deterministic Policy Gradient Algorithms,
International Conference on Machine Learning, 2014

Oliver Wallscheid Reinforcement learning 403

http://proceedings.mlr.press/v32/silver14.pdf
http://proceedings.mlr.press/v32/silver14.pdf

Exploration with a deterministic policy

» If the DPG approach is applied on-policy there is no inherent exploration.
» How to learn something?

> The environment itself is sufficiently noisy (random impacts, measurement noise).
» Or we have to add noise to the actions, i.e., making the approach off-policy.
» Hence, utilizing a behavior policy is also possible.

» That additional action noise could be:

» Simple Gaussian noise or
> a shaped noise process like a discrete-time Ornstein-Uhlenbeck (OU) process

Vg1 = AVg + O¢g

where vy, is the OU noise output, 0 < A < 1 is a smoothing factor and ¢ is the variance scaling a
standard Gaussian sequence (no mean) €.

Oliver Wallscheid Reinforcement learning 404

Algo. implementation: deterministic actor-critic

input: a differentiable deterministic policy function u(x, 8)
input: a differentiable action-value function ¢(x, u, w)
parameter: step sizes {a,, 2} € {R|0 < a < 1}
init: parameter vectors w € RS and 6 € R? arbitrarily
for j =1,2,..., episodes do
initialize xg;
for k=0,1,...,T — 1 time steps do
uy, < apply from p(xk, @) w/wo noise or from behavior policy;
observe ;41 and 7x41;
choose v’ from p(xi41,6);
d Th+1 + 'Wj(mk+1a u/v w) - Q(mk» Uk, w);
W — W + @O Vad(xk, uk, w);
0«6+ a97kv9ﬂ(wkv e)vu(j(a)ka Uk, w)‘uzu(w);

Algo. 13.1: Deterministic actor-critic for episodic tasks using SARSA(0) targets applicable on- and
off-policy (output: parameter vector 8* for p*(x,0*)) and w* for §* (x, u, w*))

Oliver Wallscheid Reinforcement learning

405

Exemplary comparison to stochastic policy gradient

» DPG-based approach uses compatible function approximation, i.e., suitable linear ¢
estimation. A fixed Gaussian behavior policy is applied for exploration.

» SAC uses a Gaussian policy with linear function approximation.

o~ 00 o~ 60 o
s 5 5
8810 i 88 40 g8
o GORNRN ax% 22
20 f 1, Y0 e T ol
B ; HoHl 2 - B -
o -3.0 [f} g o 0.0 °
g I g g -150
g aof coppAc-Q : 20 coppAc-Q H copDAc-Q
A I-[sac < 0 I-[sac S -200f| 1 sAC
g I offPAC-TD g " I oftPAC-TD 3 H offPAC-TD
68020 40 60 80 100 680700 200 300 400 50.0 2580 700 200 300 400 50.0
Time-steps (x10000) Time-steps (x10000) Time-steps (x10000)
(a) Mountain Car (b) Pendulum (¢) 2D Puddle World

Fig. 13.1: Comparison of stochastic on-policy actor-critic (SAC), stochastic off-policy actor-critic
(OffPAC), and deterministic off-policy actor-critic (COPDAC) on continuous-action reinforcement
learning (source: D. Silver et al., Deterministic Policy Gradient Algorithms, International Conference on
Machine Learning, 2014)

Oliver Wallscheid Reinforcement learning 406

Motivation / general idea

>

v

v

The upcoming deep deterministic policy gradient (DDPG) algorithm was very much inspired
by the successes of DQNs (cf. Algo. 11.6 and landmark paper by Mnih et al.) on discrete
action spaces.

However, DQNs are not directly applicable to (quasi-)continuous action spaces.

Recall the incremental Q)-learning equation using function approximation
w4+ w+a|r+ymax§(z, u,w) — §(z,u, 'w)} Vwi(z,u, w).
u

For every policy inference and updating step we need to find max, §(z’, u, w).

If w e U C Z (i.e., using integer-encoded actions) is a sufficiently small discrete set, that is
straightforward by an exhaustive search.

In contrast, if w € Y C R™ is a (quasi-)continuous variable solving max,, (', u, w)
requires an own optimization routine which is computationally expensive if we use nonlinear
function approximation.

Oliver Wallscheid Reinforcement learning 407

https://www.nature.com/articles/nature14236?wm=book_wap_0005

The deterministic policy trick

» When using a greedy, deterministic policy (x,0) = u(x,) we can utilize it to approximate
max §(z’, u, w) =~ §(z’, u(z', 0), w). (13.3)
u

» Hence, we can obtain explicit (J-learning targets for continuous actions when using a
deterministic policy.

» For improving the policy we reuse the deterministic policy gradient theorem in an off-policy
fashion

given a behavior policy b(u|x).

Oliver Wallscheid Reinforcement learning 408

DDPG ~ DQN + DPG

» Hence, we can consider the DDPG approach as a combination of DQN + DPG rendering it
an actor-critic off-policy approach for continuous state and action spaces.

» Similarly to DQN we will introduce several "tweaks’ to stabilize and improve the DDPG
learning process.

Tweak #1: experience replay buffer

» We store (x,u,r,x’) in D after each transition step.

» The replay buffer D is of limited capacity, i.e., it discards the oldest data sample when
updating once it is full (ring memory).
» This allows us to improve the (Q-learning critic minimizing the mean-squared Bellman error
(MSBE):
2
‘C(w) = [(T‘ + ’YQ(mlv p,(.’.lf/, 0)5 ’lU)) - Q(ma u, w)]p . (135)

Oliver Wallscheid Reinforcement learning 409

Additional DDPG tweaks (1)

Tweak #2: target networks

» Similar to DQN we introduce a (delayed) target network to estimate the Q-learning target

r+yq(a’, p(x', 0), w)

since it depends on the same parameters w which we want to update.

» Hence, the target network’s purpose it to mimic the generation of i.i.d. data as the ground
truth to minimize (13.5).

» Since the policy parameters 6 are also part of the target calculation it turns out that an
additional policy target network is also beneficial to stabilize the Q-learning.

» In contrast to the classical DQN implementation, the original DDPG algorithm does not
perform periodically hard target network updates but continuous ones using a low-pass filter
characteristic

w +— (1-—7)w +7w, 6 <~ (1-7)0" +70 (13.6)
with 7 representing the equivalent filter constant (hyperparameter).

Oliver Wallscheid Reinforcement learning 410

Additional DDPG tweaks (2)
Tweak #3: mini-batch sampling

» Given a sufficiently filled memory D and the target networks parametrized by w™ and 6~
we draw uniformly distributed mini-batch samples D;, from D.
» The actual Q-learning is then based on the loss

L(w) = [(r+7q(, p(x',07),w")) — g(@,u,w)]7, . (13.7)

Tweak #4: batch normalization

» Minimizing (13.7) is a supervised learning step within the DDPG.

» The original DDPG paper by Lillicrap et al. back in 2015/16 suggested to use batch
normalization, i.e., re-centering and re-scaling the inputs of each layer in an ANN.

» This idea of batch normalization was presented at that time shortly before by loffe and
Szegedy (cf. original paper).

» Today's perspective: stick to the current state-of-the-art supervised ML algorithms for
top-class @-learning stability and speed (which are normally well-covered in popular
supervised ML toolboxes).

Oliver Wallscheid Reinforcement learning 411

https://arxiv.org/abs/1509.02971
http://proceedings.mlr.press/v37/ioffe15.html

Additional DDPG tweaks (3)
Tweak #5: exploration

» Since our policy is deterministic we require an exploratory behavior policy.

» Similar to DPG the standard approach is to add noise to the greedy actions, e.g., again
from an Ornstein-Uhlenbeck (OU) process

up ~ b(u|xy) = p(xk,) + Vi, Vi = Agp_1 + 0€;_1.

» One might also add a schedule for A\ and ¢ along the training procedure, e.g., starting with
significant noise levels (increased exploration) while reducing it over time (focusing
exploitation)?.

» However, many other behavior policies are possible, e.g., using model or expert-based
guidance.

!Please note that this 'lambda’ is not related to TD(A), SARSA()), etc. Here, it is representing the stiffness of
the OU noise process.

Oliver Wallscheid Reinforcement learning 412

Visual summary of DDPG working principle

W%

Memory

Fig. 13.2: DDPG structure from a bird's-eye perspective (derivative work of Fig. 1.1 and wikipedia.org,
CC0 1.0)

Oliver Wallscheid Reinforcement learning 413

https://commons.wikimedia.org/wiki/File:Multi-Layer_Neural_Network-Vector.svg?uselang=de
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Algo. implementation: DDPG

input: diff. deterministic policy function p(x,8) and action-value function §(x, u, w)
parameter: step sizes and filter constant {a,,, ag, 7} € {R|0 < o, 7 < 1}
init: weights w = w~ € R¢ and 8 = 8~ € R? arbitrarily, memory D
for j =1,2,..., episodes do
initialize xg;
for k=0,1,...,T — 1 time steps do
uy < apply from p(xk, 8) w/wo noise or from behavior policy;
observe xy 1 and ri41;
store tuple (g, g, rp+1, Lrt1) in D;
sample mini-batch D, from D (after initial memory warmup);
for i =1,...,b samples do calculate Q-targets
if ;1 is terminal then y; = r;,1;
else y; = rip1 +7vq(xigr1, p(xig1,07), w");
fit w on loss L(w) = [y — §(x,uw, w)]], with step size a,;
0 0+ ay[Vop(z,0)Vui(z,u, w)lu:pg(z)]’Db;
Update target net. w~ « (1 —7)w™ + 7w, 8~ «+~ (1 —7)0~ 4+ 76;

Algo. 13.2: Deep deterministic policy gradient (output: 6* for p*(x,0*) and w* for ¢*(x, u, w*))

Oliver Wallscheid Reinforcement learning

414

Table of contents

@ Deterministic policy gradient methods

m Twin delayed deep deterministic policy gradient (TD3)

Oliver Wallscheid Reinforcement learning

415

Overestimation bias

» For Q-learning in the tabular case we have already discussed the maximization bias (cf.
Fig. 5.13) issue.

» Recap: Due to the greedy policy targets, ¢ was overestimated when calculated using
sampled values of stochastic MDPs.

» Additional problem when applying function approximation: the estimator itself introduces
additional variance during the learning process which represents another source of the
maximization bias problem.

This issue is already known in the DQN context (cf. Algo. 11.6). Similar to the tabular case,
double DQN introduces a second @Q-network counteracting the overestimation issue (cf. paper
by van Hasselt et al.).

However, we did not address this possible problem in an actor-critic context using function
approximation (e.g., DDPG).

Oliver Wallscheid Reinforcement learning 416

https://arxiv.org/pdf/1509.06461.pdf
https://arxiv.org/pdf/1509.06461.pdf

Overestimation bias in actor-critic approaches (1)

» It turns out that the overestimation bias is also an issue for actor-critic methods®.

» Consider an actor-critic policy with the current policy parameters 6.

> Let O define the parameters from the actor update induced by the maximization of the
approximate critic Gy (¢, u).

» Let 8* be the parameters from the hypothetical actor update w.r.t. the true underlying
value function ¢™ (x, u).

» Then, we perform the policy update

6=0-+ Z%IEW [Voro(X)Vauiw(X,U) |U = me(X)],

e (13.8)
0" =0+ 7EW [Vora(X)Vuq™ (X,U) |U = me(X)],
2
where Z; and Z, normalize the gradient such that Z7!||E[]|| = 1.
'Source: S. Fujimoto et al., Addressing Function Approximation Error in Actor-Critic Methods,

https:/ /arxiv.org,/abs/1802.09477, 2018

Oliver Wallscheid Reinforcement learning 417

https://arxiv.org/abs/1802.09477

Overestimation bias in actor-critic approaches (2)

> Lets denote 7 and 7* as the policies with updated parameters 6 and 6* respectively.

» As the gradient direction is a local maximizer, there exists €; sufficiently small such that if
«a < €1 then the approximate value of 7t will be bounded below by the approximate value of
"

E [Guw (X, 7(X))] 2 E [Gu (X, 7" (X))] - (13.9)

» Conversely, there exists €5 sufficiently small such that if a < €5 then the true value of 7 will
be bounded above by the true value of *:

Elq™(X,7*(X))] = E[¢"(X, 7(X))]. (13.10)

» In other words: if the approximate and true critics differ from each other, the according
policy gradient updates cannot lead to better policy updates of the respective other
framework.

Oliver Wallscheid Reinforcement learning 418

Overestimation bias in actor-critic approaches (3)

> If the expected, estimated action value will be at least as large as the true action value
w.r.t. 0*
E [Gu (X, 7*(X))] =2 E[¢"(X, 7"(X))] , (13.11)

then (13.9) and (13.10) imply
E [(X, #(X))] > E[g™(X, (X)) (13.12)

with a sufficiently small o < min{ej, e2}.
» Hence, the maximization bias is also present in actor-critic updates.

» It can add up over several estimation updates and, therefore, may lead to suboptimal policy
updates.

» A proof for unnormalized gradients can be also found in S. Fujimoto et al., Addressing
Function Approximation Error in Actor-Critic Methods, 2018.

Oliver Wallscheid Reinforcement learning 419

Overestimation example for DDPG

N
o
o

500
» 300 400
=
g 300
o 200
[=)
g 200
>
<100 mCDQ - TrueCDQ 1go
mm DDPG -e- True DDPG
0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Time steps (1e6) Time steps (1e6)

(a) Hopper-v1 (b) Walker2d-vl1

Fig. 13.3: Comparison of true and estimated values averaged over 10000 states in two robotic examples
from OpenAl Gym. Estimated values originate from the approximate DDPG critic while the true values
are based on the average discounted return over 1000 episodes following the current policy, starting
from states sampled from the replay buffer (source: S. Fujimoto et al., Addressing Function
Approximation Error in Actor-Critic Methods, 2018.

Oliver Wallscheid Reinforcement learning 420

https://gym.openai.com/envs/#mujoco

Increased variance due to accumulating TD errors

>

Using function approximation, the Bellman equation is never exactly satisfied leaving room
for some amount of residual TD-error §(x, u):

Gw(@,u) =1+ 1E; [Gu(X U)X =2/, U =] — i(z, u). (13.13)

Although this error might be considered small per update step, it may accumulate over
future steps if biased:

Qw(z,u) =

27 (Rk — 0k(X, U)) ‘ =z,U = u] : (13.14)

k=0

Observation: the variance of ¢ will be proportional to the variance of future reward and
residual TD-errors.

If v is large, the estimation variance might increase significantly.

Mini-batch sampling will contribute to this variance issue.

Oliver Wallscheid Reinforcement learning 421

TD3 extensions and modifications (1)

In order to reduce both the maximization bias and the learning variance, TD3 introduces mainly
three measures on top of the DDPG algorithm. Hence, TD3 is a direct successor of DDPG.

Measure #1: clipped double Q-learning for actor-critic

» Following double @Q-learning, a pair of critics {Guw, , Guw, } is introduced.
» In contrast, the clipped target (with target networks {w] ,w, })
. FENPN /A
y—r—i-viril%ng;(ac,u) (13.15)
provides an upper-bound on the estimated action value.

» May introduce some underestimation, which is considered less critical than overestimation,
since the value of underestimated actions will not be explicitly propagated through the
policy update.

» The min operator will also (indirectly) favor actions leading to values with estimation errors
of lower variance.

Oliver Wallscheid Reinforcement learning 422

TD3 extensions and modifications (2)
Measure #2: target policy smoothing regularization
» Background: deterministic policies p tend to overfit to narrow peaks in the action-value
estimate.
» Counteraction: fit the action value of a small area around the target action (i.e., smoothing
G in the action space):
Y =174V (', pg- (') + €). (13.16)

> Here, € ~ clip (N(0,X), —¢, ¢) is a mean-free, Gaussian noise with covariance X, which is
clipped at £=c while 8~ are the policy target network parameters.

» To satisfy possible action constraints (denoted by upper and lower box constraints {u,u}),
we add an additional clipping:

u' = clip (o~ (') + €,u,w) . (13.17)

» This modified action is then used for the target calculation (13.15).

Oliver Wallscheid Reinforcement learning 423

TD3 extensions and modifications (3)
Measure #3: delayed policy updates

| 2

Similar to DDPG, TD3 uses policy target networks 8~ and (two) critic target networks
{w;, w5 } in order to provide (rather) fixed @Q-learning targets trying to stabilize the
learning of q.

The target networks are also continuously updated using

w; — (1-7)w; +7w;, 0 « (1-7)0" +76.

However, each policy update will inherently change the (true) Q-learning target directly
adding variance to the learning process (cf. Fig. 13.4 on next slide).

Therefore, it is argued that a policy update should not follow after each)-learning update
such that the critic can adapt properly to the previous policy update.

The original TD3 implementation suggests a policy update every second)-learning update,
however, we can consider this update rate a hyperparameter.

Oliver Wallscheid Reinforcement learning 424

TD3 extensions and modifications (4)

w W
o a
o o

Average Value
n
(o
o

mr=-1 m7=0.01
w7 =0.1 = True Value 102

n
o
=]

o
o

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Time steps (1e5) Time steps (1e5)

(a) Fixed Policy (b) Learned Policy

Fig. 13.4: Average estimated action value of a randomly selected state on Hopper-vl environment from
OpenAl Gym (source: S. Fujimoto et al., Addressing Function Approximation Error in Actor-Critic
Methods, 2018.

Oliver Wallscheid Reinforcement learning 425

https://gym.openai.com/envs/#mujoco

input: diff. deterministic policy function p(x,) and action-value function §(z, u, w)
parameter: step sizes and filter constant {au,, ag, 7} € {R|0 < a, 7 < 1}, policy update rate
kw € {N|1 < ky}, target noise 3 € R"™*™ and ¢ € R™
init: weights {w1 = w;, w2 = w; } € RS, @ = 8~ € R? arbitrarily, memory D
for j =1,2,..., episodes do
initialize xo;
for k=0,1,...,7 — 1 time steps do
uy, <+ apply from p(zk,) w/wo noise or from behavior policy;
observe xy4+1 and ri41;
store tuple (k, Uk, Tk+1, Tkt1) in D;
sample mini-batch Dy, from D (after initial memory warmup);

for i =1,...,b samples do calculate Q-targets
if ;11 is terminal then y; = r;y1;
else

w' = clip (- (i 11) + clip (W (0,), —¢, €) , u,@);
Yi = Tip1 +ymin=12 §(ziy1, v, w;);
fit w; on loss L(w;) = [y — (j(m,u,wl)]%b with step size aw, VI;
if £ mod k., = 0 then
0 < 0+ ap[Vop(x,0)Vud(x, u, w1)|u=py(z)) Dy
w; +— (1—7)w;, +7w;, 0~ «+ (1—7)0" +76;

Algo. 13.3: Twin delayed deep deterministic policy gradient (TD3)

Oliver Wallscheid Reinforcement learning

426

Summary: what you've learned today

» The deep deterministic policy gradient (DDPG) approach 'transfers’ many deep (Q-network
(DQN) ideas to continuous action spaces.

» It mainly combines DQN + deterministic policy gradients + policy and value target
networks (plus additional minor tweaks).

» However, the DDPG actor-critic suffers from value overestimation and high variance during
learning. Hence, sampled policy gradients might not be optimal (pointing towards overrated
action values).

» Twin delayed DDPG (TD3) adds clipped double Q-learning, delayed policy updates and
target policy smoothing to counteract these issues.

Oliver Wallscheid Reinforcement learning 427

Table of contents

@ Further contemporary RL algorithms
m Trust region policy optimization (TRPO)
m Proximal policy optimization (PPO)

Oliver Wallscheid Reinforcement learning

428

Reinterpreting the stochastic policy gradient (1)

4
>

In the following we will focus on stochastic policies m(ulx) .

First, we rewrite the performance metric (12.7) to obtain

o0
Z V" Ry
k=0

Using the advantage a.(x,u) = g-(x,u) — vz (x) we can calculate the performance of an
updated policy @ — 7!:

Jr=E, . (14.1)

J;T:Jﬂ+/Xp7~r(:c)/ufr(u|az)aw(az,u). (14.2)

While for finite MDPs, the policy improvement theorem guaranteed Jz > J, for each policy
update, there might be some states where [, 7(u|x)a, < 0 for continuous MDPs using
function approximation.

Lproof from: S. Kakade and J. Langford, Approximately optimal approximate reinforcement learning, ICML, vol.
2, pp 267-274, 2002

Oliver Wallscheid Reinforcement learning 429

Reinterpreting the stochastic policy gradient (2)

» For easier calculation, we introduce a local approximation to (14.2)
Lo(7)=Jr +/ p”(a:)/ 7(u|x)ax(x, u) (14.3)
X u

where p™(x) is used instead of p” (), i.e., neglecting the state distribution change due to a
policy update.
» For any parametrized and differentiable policy mg(u|x), it can be shown that
ﬁ(ﬂ-ﬂo) = J(ﬂ-Oo)v
VoLrg, (10)l0=0, = VoS (70)lo=0,

for any initial parameter set 6.
» For a sufficiently small step size, improving Em,o will also improve J.

(14.4)

However, we do not know how much the actual stochastic policy will change while moving
through the parameter space. Hence, we do not have a good decision basis to choose the policy
gradient step size.

Oliver Wallscheid Reinforcement learning 430

Adding a trust region constraint (1)

» From the previous discussion it can be concluded that we want a metric describing how
much a policy is changed in the action space when updating the policy in the parameter
space.

» Against this background, we make use of the Kullback-Leibler divergence (also called
relative entropy)

p(z) log <§Eg> dz (14.5)
defined for continuous distributions P and @) with their probability densities p and gq.

» Example: for two multivariate Gaussian distributions of equal dimensions d, with means
1o, 1 and with (non-singular) covariance matrix g, 31 we receive

(P @)= | h

—00

1
Dxr, (No | M) = 5 (tr (Z70) + (1 — po)" =7 (k1 — o)
det 21
—d+In (detZlO)) .

Oliver Wallscheid Reinforcement learning 431

Adding a trust region constraint (2)

>

v

The trust region policy optimization (TRPO) updates the policy parameters while
constraining the KL divergence between the new and the old policy distribution:

max Ly, (0),
_° (14.6)
s.t. DKL(0k7 0) <k

with

Dxr.(60k,0) = Dxv(me,,m0) = Exy [Dici(7e, (| X) || 7o (- X))] -

Hence, we want to limit the average KL divergence w.r.t. the states visited by the old policy.
The constraint x is a TRPO hyperparameter (typically k << 1).

Although (14.6) does not provide any formal convergence guarantee, we at least have a link
between changes in the parameter and policy distribution space. Therefore, we can use this
tool to prevent erratic policy changes.

Oliver Wallscheid Reinforcement learning 432

Smooth policy updates via TRPO

Smooth policy updates Erratic policy updates

0.8 0.8
0.6
0.4

0.2

action probability 7 (ul-)
action probability 7(ul-)

10 -10

action u 0 0 update step k action u 0 0 update step k

Fig. 14.1: Simplified representation of the policy evolution for a scalar action given some fixed state.
Left: TRPO-style updates finding the optimal action with increasing probability. Right: Unmonitored
policy distributions not converging towards an optimal policy ('policy chattering’).

Oliver Wallscheid Reinforcement learning 433

Sample-based objective and constraint estimation (1)

» To actually solve (14.6) we will make use of samplings from Monte Carlo rollouts.
» Expanding the objective yields

max Lo, (0) = max I, + /Xp”k(ac)/uﬂg(u@)awk(m,u). (14.7)

» The first term J;, can be dropped, since it is irrelevant for the optimization result
(constant).

> Using samples we can approximate [, p™ (x) & E. [X].

1
1—y
U|X . :
> Moreover, [, mo(u|z)ar, (x,u) ~ Ex, [%awk(X, U)} is also approximated
applying importance sampling based on data from the old policy.

» Hence, the sampled objective is

Ok

max E
]

[WG(U|X)

wo,@(U|X)a”’v(X’U)} ' (149

Oliver Wallscheid Reinforcement learning 434

Sample-based objective and constraint estimation (2)

» Applying the previous sample-based estimation we obtain

mo(UIX)
w0 | g (01X XU (14.9)

st Exp, [Dxn(me, (-1X) || mo (| X))] < k.

011 = argmax E
o

» Hence, we have a three-step procedure for each TRPO update:

@ Use Monte Carlo simulations based on the old policy to obtain data.
@ Use the data to construct (14.9).
@ Solve the constrained optimization problem to update the policy parameter vector.

Solving (14.9) is generally a nonlinear optimization problem. The original TRPO implementation
uses a local objective and constraint approximation together with conjugate gradient and line
search algorithms. However, many other constrained-nonlinear solvers are also applicable.

Oliver Wallscheid Reinforcement learning 435

Generalized advantage estimation

» Having data (@, u,r, ') in D from a Monte Carlo rollout available, an imporant problem is
to estimate a, (z,u) in (14.9).

» A particular suggestion in the TRPO context is to use a generalized advantage estimator
(GAE) ! defined as

o0
a7 =3 (YA b (14.10)
=0

» Here, 0 = rp + yu(xgy1) — v(xg) is a single advantage sample.

» Hence, the GAE is the exponentially-weighted average of the discounted advantage samples
with an additional weighting .

» Similar formulation compared to TD(\) but the estimator’s target is the advantage.

» The choice of (y\) trade-offs the bias and variance of the estimator.

Yef. J. Schulmann et al., High Dimensional Continuous Control Using Generalized Advantage Estimation,
https://arxiv.org/abs/1506.02438, 2015

Oliver Wallscheid Reinforcement learning 436

https://arxiv.org/abs/1506.02438

TRPO summary
The TRPO's key facts are:

» The TRPO constrains policy distribution changes when updating the policy parameters (for
stochastic policies and on-policy learning).

» The objective is to enable a monotonically improving learning process.

» Using trust regions, erratic policy updates should be prevented.

The TRPO’s main hurdles are:

» Constructing the objective function and constraint requires Monte Carlo rollouts (time
consuming, data inefficient).

» When the sampled optimization problem is set up, a nonlinear and constrained optimization
step is required (no simple policy gradient, computational costly).

We will not provide any specific TRPO implementation suggestion at this point, since this is
rather cumbersome. Instead we will move forward to a similar algorithm which is pursuing the
same goal (prevent erratic policy changes) with a much simpler implementation.

Oliver Wallscheid Reinforcement learning 437

Table of contents

@ Further contemporary RL algorithms

m Proximal policy optimization (PPO)

Oliver Wallscheid

Reinforcement learning

438

Background and motivation

» The upcoming proximal policy optimization (PPO) algorithm tries to mimic the constrained
TRPO problem

mo(U|X)

7o, (U|X)

st. Ery, [Dki(me, (+|X) [| mo(-|X))] < .

0.1 = arg;nax Eﬂek ar, (X, U)|,

based on related unconstrained problems.

» Hence, the objective will be reformulated to incorporate mechanisms preventing excessively
large variations of the policy distribution during a parameter update (leading to an updated
policy with sufficient proximity to the old one).

» Moreover, PPO incorporates two variants which we will discuss:

@ Clipping the surrogate objective,
@ Adaptive tuning of a KL-associated penalty coefficient.

Oliver Wallscheid Reinforcement learning 439

Clipped surrogate objective

» The first approach is based on the following clipped objective:

Erg, [min {mam (X,U),clip (7% 1—e1+ e) am (X, U)H . (14.11)

v

Above, € < 1 is a PPO hyperparameter serving as a regularizer.

v

The first element of min{-} is the previous TPRO objective.

» The second element of min{-} modifies the surrogate objective by clipping the importance
sampling ratio 7y /g, .

» The latter should remove the incentive for moving the importance sampling ratio outside of

the interval [1 — €, 1 + €.

» The modified objective is therefore a lower bound of the unclipped TRPO objective.

Oliver Wallscheid Reinforcement learning 440

Clipped surrogate objective: positive advantage
» Consider a single sample (x, u) with a positive advantage ar, (z,u):

mo(u|x)

T, (u|z)

7o (u|x)

ar, (x,u),clip <7T¢9 (ulz)
k

,1—e,l+e> aﬂk(m,u)}.

max min {
0

» Because the advantage is positive, the objective will increase if the action becomes more
likely, i.e., if mg(u|x) increases.

» If mg(u|x) > (14 €)mg, (u|x) the clipping becomes active.

» Hence, the objective reduces to

mo(u|z)

A1 4+erar (xT,u).
o, (ul) }”)

max min {
6
» Due to the min{-} operator, the entire objective is therefore limited to (1 + €)ar, (x, u).

» Interpretation: the new policy does not benefit from going very away from the old policy
distribution.

Oliver Wallscheid Reinforcement learning

441

Clipped surrogate objective: negative advantage

» Consider a single sample (x,) with a negative advantage ar, (,u):

mo(u|x)

o, (u|T)

7o (u|x)

o, (u|z)

7rk(ac,u),clip(,l—e,l—i—e) aﬂk(w,u)}.

max min {
o

» Because the advantage is negative, the objective will increase if the action becomes less
likely, i.e., if mg(u|x) decreases.

> If mg(u|x) < (1 — €)mg, (u|z) the clipping becomes active.
» Hence, the objective reduces to

{ 7o (u|T)
mgx max

1—6} ar, (2,).

”Bk(u|m)’

» Due to the max{-} operator, the entire objective is limited to (1 — €)ar, (x, u).

Oliver Wallscheid Reinforcement learning

442

Adaptive KL penalty

» The second PPO variant makes use of the following KL-penalized objective

o (U|X)

oy mam(x,U)f“.apmmeh(-\X> I mo(-|X))| - (14.12)

» Transfers the KL-based constraint into a penalty for large policy distribution changes.
» The parameter 5 weights the penalty against the policy improvement.

» The original PPO implementation suggests an adaptive tuning of 8 w.r.t. the sampled
average KL divergence Dxi, (6, 6) estimated from previous experience

DkL(0k,0) < Dy, : B+ B/2,

(14.13)
D, (64,0) > Diy, : 4 5-2.

with some target value of the KL divergence ﬁ}k{L (additional hyperparameter).

Oliver Wallscheid Reinforcement learning 443

Algo. implementation: PPO

input: diff. stochastic policy fct. 7(u|x,0) and value fct. o(x, w)

parameter: step sizes {a, a9} € {R|0 < o}

init: weights w € R¢ and 6 € R? arbitrarily, memory D

for j =1,2,..., (sub-)episodes do
initialize xq (if new episode);
collect a set of tuples (zg, Uk, Tk+1, Tr+1) by a rollout using 7(u|x, 8,);
store them in D;
estimate the advantage a, (z,u) based on o(z,w;) and D (e.g., GAE);
0,1 < policy gradient update based on the PPO variant (14.11) or (14.12);
wj41 < minimizing the mean-squared TD errors using D (critic);
delete entries in D (due to on-policy learning);

Algo. 14.1: Proximal policy optimization (output: parameter vectors 8* for =*(u|x, 8*) and w* for

0" (2, w"))

Oliver Wallscheid Reinforcement learning 444

Some PPO remarks

» Clipping the surrogate objective (14.11) was reported to achieve higher performances than
the KL penalty (14.12).1

» Like TRPO, PPO is an on-policy algorithm. Hence, the memory D is not a rolling replay
buffer (cf. off-policy algorithms like DQN, DDPG or TD3) but a rollout buffer using one
fixed policy.

» These rollouts are likely to result in an increased sample demand either using a simulator or
a real experiment.

Although PPO is derived from a TRPO background pursuing monotonically increasing policy
performance, its realization is based on multiple heuristics and approximations. Hence, there is
no guarantee on achieving this goal and the specific performance of the PPO algorithm must be
evaluated empirically given a certain application.

Lef. original PPO paper results by J. Schulman et al., Proximal Policy Optimization Algorithms,
https://arxiv.org/abs/1707.06347, 2017

Oliver Wallscheid Reinforcement learning 445

https://arxiv.org/abs/1707.06347

Exemplary performance comparison

== TD3 == DDPG == our DDPG = PPO == TRPO = ACKTR = SAC
10000 3500 5000
< 8000 = 3000} 4000 4000
3 2
8 6000 500 3000 3000
¢ 2000 2000
g 4000 1500 2000
1000
£ 2000 1000] 1000
7/¢5_®—- o .
0 0| 0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Time steps (166) Time steps (1e6) Time steps (166) Time steps (106)
(a) HalfCheetah-v1 (b) Hopper-v1 (c) Walker2d-v1 (d) Ant-v1
. 1000) 10000
c 900 8000| _J
é -6 800 6000| B
2 g 700
e 4000
o 600
<10 500 2000
., 400| o
“'260 0z 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Time steps (1e6) Time steps (16) Time steps (1e6)
(e) Reacher-v1 (f) InvertedPendulum-v1 (g) InvertedDoublePendulum-v1

Fig. 14.2: Learning curves for OpenAl Gym continuous control tasks. The shaded region represents half
a standard deviation of the average evaluation over ten trials (source: S. Fujimoto et al., Addressing
Function Approximation Error in Actor-Critic Methods, 2018).

Oliver Wallscheid Reinforcement learning 446

https://gym.openai.com/envs/#mujoco

Algorithmic outlook: other contemporary model-free algorithms (1)
The selection of algorithms appears endless:
» DQN variants such as
> (Prioritized) dueling DQN
> Noisy DQN
» Distributional DQN
» Rainbow (combining multiple DQN extensions)
» Soft actor-critic (SAC)
» Actor critic using Kronecker-factored trust region (ACKTR)
» Asynchronous advantage actor-critic (A3C)
4

Remarks:
» You have already learned the basic building blocks in order to make yourself familiar with
any value-/policy-based model-free RL approach.

» Use this knowledge!
» Focus on primary scientific literature for self-studying and not on unreliable sources!

Oliver Wallscheid Reinforcement learning 447

https://arxiv.org/abs/1511.06581
https://arxiv.org/abs/1706.10295
https://arxiv.org/abs/1707.06887
https://ojs.aaai.org/index.php/AAAI/article/view/11796
https://arxiv.org/abs/1801.01290
https://proceedings.neurips.cc/paper/2017/file/361440528766bbaaaa1901845cf4152b-Paper.pdf
http://proceedings.mlr.press/v48/mniha16.pdf

Algorithmic outlook: other contemporary model-free algorithms (2)

Algorithm collections with tutorial-style documentation:

» Intel Reinforcement Learning Coach
» OpenAl Spinning Up

Algorithm collections with decent application-oriented documentation:
» RLIib (Ray)

» Stable Baselines3
» Acme

» Google Dopamine
> TF-Agents

| 2

Oliver Wallscheid Reinforcement learning

https://nervanasystems.github.io/coach/
https://spinningup.openai.com/en/latest/index.html
https://github.com/ray-project/ray
https://github.com/DLR-RM/stable-baselines3
https://github.com/deepmind/acme
https://github.com/google/dopamine
https://github.com/tensorflow/agents

Summary: what you've learned today

» Trust region policy optimization (TRPO) pursues monotonically increasing policy
performance by limiting policy distribution changes.

» This results in a nonlinear constrained optimization problem adding computational
complexity (no simple policy gradients).

» Proximal policy optimization (PPO) converts the TRPO idea into an unconstrained
optimization problem by a modified objective. Likewise, the PPO's objective is to prevent
erratic policy distribution changes.

Oliver Wallscheid Reinforcement learning 449

Table of contents

@ Outlook and practical research insights
m Safe reinforcement learning
m Real-world implementation with fast policy inference
m Meta reinforcement learning

Oliver Wallscheid Reinforcement learning

450

Recap: optimal control and constraints

Real-world systems are always subject to certain state constraints X and input limitations U.
Violating those can lead to safety issues.

Np
. i
Vg = max E V' kit 1 (Thi, Whetei)
up 4 (15.1)
1=0
st. Tppipn = f(@ppi, W), Tk €X, up €U
PAST FUTURE

< A

Reference Trajectory
—e— Predicted Output

/ Measured Output
Predicted Control Input
—— Past Control Input

Prediction Horizon

| | | | | | | | |

T T T T T T 1 T T '
Sample Time

k k+1 k42 e k+ N,

Fig. 15.1: MPC scheme (source: www.wikipedia.org, by Martin Behrendt CC BY-SA 3.0)

Oliver Wallscheid Reinforcement learning 451

https://de.wikipedia.org/wiki/Model_Predictive_Control
https://creativecommons.org/licenses/by-sa/3.0/deed.en

Application examples with safety-relevant constraints

Autonomous car
driving (source:
* www.wikipedia.org,
CC BY-SA 4.0)

Collaborative robot
control (source:
www.wikipedia.org,
CC BY-SA 4.0)

Medication control

Energy system (source:
control www.wikipedia.org,
CC BY-SA 4.0)

Oliver Wallscheid Reinforcement learning 452

https://commons.wikimedia.org/wiki/File:Human-Robot-Collaboration-Sawing-2016-Luka-Peternel.jpg
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://commons.wikimedia.org/wiki/File:Waymo_Chrysler_Pacifica_in_Los_Altos,_2017.jpg
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://commons.wikimedia.org/wiki/File:Insulin_pump.png
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Safety levels

Soft constraint Probabilistic constraint Hard constraint

No violation
with high
probability

No violation

violation

xr+e,€X xp € X

Fig. 15.2: Different levels of safety (derived from L. Brunke et al., Safe Learning in Robotics: From
Learning-Based Control to Safe Reinforcement Learning, Annual Review of Control, Robotics, and
Autonomous Systems, 2022)

Oliver Wallscheid Reinforcement learning 453

Bird's eye view on RL concepts integrating safety

xe x@ fe
6‘6 % 6\,6 401(/0/7
T Enwronment Uk

T Environment

@j Safety indicator . Ward
%v W

Interpremv Interpr eter Shield
K_, GE = /A
bservat/on o ‘

Action

D‘
n
(]
J
Q
o
g
N
q
-
\
»
SAES
o
3

Agent Agent

(b) Safety shield: use a priori or learned
model knowledge of the environment to
make predictions identifying actions
leading to unsafe situations

(a) Safety critic: add a critic which
indicates to which extent the current data
sample fits to a safe situation

Oliver Wallscheid Reinforcement learning

Achievable safety levels and model knowledge

constraints are
always respected

constraints are respected
with a certain probability

constraints are respected
with certain deviations

none

Fig. 15.4: Safety and model knowledge map (derived from L.

A safety level

structurally stable RL with
application specific safety shields

(requires specific

function approximators)

. unresolved B
RL with a learning safety shield
model- RL with a static safety shield
based -~~~ " - - -5 - =
control
safety-encouraged RL
pure RL
data reliance /
known | dominant | dominant | dominant | dominant | unknown ~model knowledge
dynamics linear control- structured generic dynamics
dynamics affine nonlinear nonlinear
dynamics dynamics dynamics

Brunke et al., Safe Learning in Robotics:

From Learning-Based Control to Safe Reinforcement Learning, Annual Review of Control, Robotics, and
Autonomous Systems, 2022)

Oliver Wallscheid

Reinforcement learning

455

Energy system control application

- === Communication Link
Energy Storage

Company Loads —— Electical Link
T (Renewable) Energy Sources
MMM industrial Loads g —
Power Power
Offce and other Eectronic Elecironic ad Subios
Loass T 7
Storage
b4 Ty A 4--4-4
Special Loads = | SePOTe -7 3 d L Pouer —— Photovotaics
Power |-=2- - : |
Controlable load [o-% Electronic
Management F2217 Combined Heat and =
—— =
Somge Power Plant (CHP) s
Public Grid et —
B ool
S-S 2 Pointof Common|PCE —
Coupiing (PCC) | Measurement
A= -~
' Natural Gas Grid

Power-to Gase

B - - e
(a) Example microgrid that can be emulated in (b) Application under investigation: Three-phase

the LEA Microgrid Laboratory. grid-forming inverter disturbed by stochastic load

Oliver Wallscheid Reinforcement learning

https://ei.uni-paderborn.de/lea/research/forschungsprojekte/intelligent-energy-systems/microgrid-laboratory

Reference tracking with disturbance rejection

*
Vdqo
—

Vdqo OMG
& g
& 2dq0
Cont. state- and actionspace
Rioad Deep deterministic policy gradient agent
_ Gird-forming inverter
Tk Environment

Stochastic load acts as disturbance
State per phase: xy, = [if, vc], vi = vpc - Uk
rr = f(ve,v*,if) € [1,—0.75]

s = —1, if limit (if or v¢) is exceeded

Safety indicator
Reward
Interpreter
Tk Sk
[o0) Uk
Ob, Yk O -
Servation > 7,

pot®

VVvVyVvyVvyYVvYyYVvyy

Agent

Fig. 15.6: Simulation setting with environment
modeled using OpenModelica Microgrid Gym

Oliver Wallscheid Reinforcement learning 457

https://github.com/upb-lea/openmodelica-microgrid-gym

Reward design for grid-forming inverter

» Three cases, depending on operation point

100 MRE (ve, v*), ®
0.75
0.50 r = ¢ MRE(vc, v*) + f(if), (15.2)
0.25
= 0.00 -1, @
~0.25
~0.50
—0.75 . .
~1.00 > @ ve < Vim A 2 < nom

> (%e S Vlim A\ inom S if S Z'lim

» (© otherwise
Fig. 15.7: Reward function 15.2 for different . .)
reference and measured voltages and currents P> Linear punishment term f(lf)
below nominal current

e/ Vliny

Oliver Wallscheid Reinforcement learning 458

Reference tracking with disturbance rejection using saftey shield

*
Vdqo

» Safety shield: Ensure that action does not cause
state limit violation in future system trajectories

» Such a state action pair is called feasible

<§ Rewgry @ » Calculation of feasible set requires a model
lnte:pletelm b Shield

» Training data can be utilized to identify model
Yy By Uk
Observat,'o,, 5 \f'::J Action

» Here, recursive least squares (RLS) is applied

Agent

Fig. 15.8: Safety shield based on feasible set

Oliver Wallscheid Reinforcement learning 459

https://ei.uni-paderborn.de/en/lea/teaching/veranstaltungen/teaching/translate-to-english-systemidentifikation

Saftey shield based on feasible set - proof of concept (1)

— DDPG ~ —— DDPGgg = DDPGsg.ris

v

Three different approaches

DDPG: Agent without safety shield

1oy » DDPGgq: Agent with safety shield using
perfect a priori knowledge

» DDPGgseris: Agent with safety shield without
a priori knowledge, identifying model using RLS

\4

10 F

Overcurrent /-voltage events

100 |

0p— | | | | | » Five agents trained per approach
0 10° 10! 10? 10° 10* 10° . .
k » Results in D. Weber et al., Safe Reinforcement

Learning-Based Control in Power Electronic
Systems, 2023

Fig. 15.9: Accumulated unsafe events
(overcurrent/-voltage) per trainingstep k

Oliver Wallscheid Reinforcement learning 460

Saftey shield based on feasible set - proof of concept (2)

BN
'“3%:*4.“,.%%% » DDPGsgc ris agent trained for 150000

- PN e

» Rioad changes every step based on

Vabe / V.

fabe [A

0.02
- uooﬂr random process
i ———— » Additional events — load steps and
| drifts — trigged randomly

0.00 0.02 0.04 0.06 0.08 0.10
t/s

Fig. 15.10: Blackstart after training using DDPGsc ris

Oliver Wallscheid Reinforcement learning 461

Table of contents

@ Outlook and practical research insights

m Real-world implementation with fast policy inference

Oliver Wallscheid Reinforcement learning

462

Real-time implementation aspects (1)

W%

Memory

11
e 1E
I

Fig. 15.11: DDPG implementation example (derivative work of Fig. 1.1 and wikipedia.org, CCO 1.0)

Oliver Wallscheid Reinforcement learning 463

https://commons.wikimedia.org/wiki/File:Multi-Layer_Neural_Network-Vector.svg?uselang=de
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Real-time implementation aspects (2)

E
Ry
]
2
RL mini-batchgs training step S
&
>
o
@©

Real-time control interval | Tel smooth and small changes over time due to

g gradient-based learning and step size tuning

] ((1 | ! ! ! ! ! 1 1 1

1 D) —>» T T T T T T T >
k k+1 k+n k=0 k= 1000n
(a) Real-time control requirement vs. learning (b) Typical evolution of RL parameter weights

time during learning

Oliver Wallscheid Reinforcement learning 464

Application example: deep Q direct torque control

Edge Computing DON =
(asynchronous) =

#[)(‘
L, f
[Sabcl DC

a

DQ-DTC ! Safeguard 2543 <§ -
T 5 id# t‘\s

fas
Yiq

TN

. : dq
Reward RLS igq |74

Function [dentification|

Featurization

1t

abc

Embedded Hardware
(hard real time)

permanently active active during training

Fig. 15.13: Deep Q direct torque control schematic

Oliver Wallscheid Reinforcement learning

» The DQ-DTC is basically a DQN

» Sampling time of the plant system is
T, =50ps

» DQN inference, safeguarding and
system identification must fit into 7T

» Source: M. Schenke et al., Finite-Set
Direct Torque Control via Edge
Computing-Assisted Safe
Reinforcement Learning for a
Permanent Magnet Synchronous
Motor, 2023

465

https://www.techrxiv.org/articles/preprint/Finite-Set_Direct_Torque_Control_via_Edge_Computing-Assisted_Safe_Reinforcement_Learning_for_a_Permanent_Magnet_Synchronous_Motor/22032578
https://www.techrxiv.org/articles/preprint/Finite-Set_Direct_Torque_Control_via_Edge_Computing-Assisted_Safe_Reinforcement_Learning_for_a_Permanent_Magnet_Synchronous_Motor/22032578
https://www.techrxiv.org/articles/preprint/Finite-Set_Direct_Torque_Control_via_Edge_Computing-Assisted_Safe_Reinforcement_Learning_for_a_Permanent_Magnet_Synchronous_Motor/22032578
https://www.techrxiv.org/articles/preprint/Finite-Set_Direct_Torque_Control_via_Edge_Computing-Assisted_Safe_Reinforcement_Learning_for_a_Permanent_Magnet_Synchronous_Motor/22032578
https://www.techrxiv.org/articles/preprint/Finite-Set_Direct_Torque_Control_via_Edge_Computing-Assisted_Safe_Reinforcement_Learning_for_a_Permanent_Magnet_Synchronous_Motor/22032578
https://www.techrxiv.org/articles/preprint/Finite-Set_Direct_Torque_Control_via_Edge_Computing-Assisted_Safe_Reinforcement_Learning_for_a_Permanent_Magnet_Synchronous_Motor/22032578

Fast neural network inference

layer 1 layer 2

‘neuron 1 ‘neuron 1 .
E neuron 2 neuron 2 » Each neuron has the same job
(@) Yn,l+1 = f(yl—rwn,l + bn,l)

B Enl > » CPU must evaluate each neuron

< neuron 1 neuron 1 ‘neuron 1 sequentially
S_)‘ : : : » FPGA can evaluate each neuron at the
€ Fp— - . same time

meuron n_ neuron n neuron n

%'—’layer T W—’layer 2 Tayer » Maximum number of parallel

tati is limited
Fig. 15.14: Conceptual comparison of CPU and FPGA comptitations I fimite

evaluation of a neural network

Oliver Wallscheid Reinforcement learning 466

Edge reinforcement learning

("~ Workstation

Test Bench PC

&

0

F/::a

B 4
o B

L >

\ (@synechronous, not real-time capable)

A

6 & T

Oy

-t

Rapid Control Prototyping Hardware
(hard real time)

(~ dSPACE MicroLabBox >

EXILINX
FPGA

Drive System
—— always active
-~ -~ 3 initial deploy

training phase

>

B6 Inverter

PMSM

Fig. 15.15: Our edge reinforcement learning pipeline

Oliver Wallscheid

Reinforcement learning

Backward pass / learning steps are
outsource to workstation
Communication between test bench
and workstation is based on TCP/IP

Backward pass is generic and has no
time constraints — low application
effort

467

Demonstratio

Oliver Wallscheid

Reinforcement learning

https://www.youtube.com/watch?v=hQ49Mc6LV78&t=13
https://www.youtube.com/watch?v=hQ49Mc6LV78&t=13

Table of contents

@ Outlook and practical research insights

m Meta reinforcement learning

Oliver Wallscheid Reinforcement learning

469

Meta reinforcement learning - the setting (1)

Uk Uk
\.3" S(b"
Environment

Environment

<j Reward ; : <j Reward

m Set of Environments \T’W
(94 /

Yk Q)_} (e
bSErvaLt,> - ObServat

Action

Action

1
Agent Agent
(b) Solution approach: treat the
environment as partially observable,
distinguishing details are not directly
available

(a) General problem class is similar, environments
only differ in some characteristics, the agent could
transfer learned behavior

Oliver Wallscheid Reinforcement learning 470

Meta reinforcement learning - the

» The agent must have some mechanism
that allows adaptation to the specific
environment

» This means, the distinguishing details
must be extracted in some way

» Usually, they can be retrieved from a
larger set of observations

setting (2)

a) Recurrent networks

Oy
“Eh

T y,

b) Context networks

Ok—k, >

b8

2z
G T
Of >
>
¢) Expert knowledge
T >

o

Tp+1 = Azp + Buy,

Tk

Fig. 15.17: Different concepts of meta learning

Oliver Wallscheid Reinforcement learning

471

Usage in electric drive control: classical agent

application

Training

RL Agent\—/ Motor 2

7 7
& o _>l o
N R N application

RL Agent\—/ Motor 3 RL Agent \/ Motor 3

Fig. 15.18: Each agent must be trained individually — huge effort

Oliver Wallscheid Reinforcement learning

Usage in electric drive control: meta agent

PN

I~ Training

MRL Agent_/

)

)i

}' Slet c.)f

0—n

O O Q
N~ application

Motors

) MRL Agent _/

))
=)

]:Known New
== Motors Motors

Fig. 15.19: One agent to control them all — effort is limited and independent of the number of
controlled environments

Oliver Wallscheid

Reinforcement learning

Our setup

Meta Reinforcement Learning Agent

_ o _rewadr, | | Reward I
i - Function
| Commissioning Buffer B, T J
» Make use of context network | Context Network ‘ (
- - = > %:ﬁ ; !
» Generate context z with a fix set : 09 B, |
. ce(B A
of observations — z = const. | T b [
. | | ,_ observation ok
» Source: D. Jakobeit et al., | o % ; ‘
Meta-Reinforcement | P—
Learning-Based Current Control of L |t doloranz)
Permanent Magnet Synchronous Actor =~ |
. . s “tion ay
Motor Drives for a Wide Range of « molon) oo
Control Agent

Power Classes, IEEE TPEL, 2023

permanently active - — — active during training

......... active during commissioning

Fig. 15.20: A meta learning concept that we implemented
successfully

Oliver Wallscheid Reinforcement learning 474

https://ieeexplore.ieee.org/abstract/document/10068250
https://ieeexplore.ieee.org/abstract/document/10068250
https://ieeexplore.ieee.org/abstract/document/10068250
https://ieeexplore.ieee.org/abstract/document/10068250
https://ieeexplore.ieee.org/abstract/document/10068250

Evaluation on (very) different motors

4.20 420.00
ia/A 0.00 Hadmniniatn T iqg/A 0.00 = T
——————— 4 1 ‘| —— T~ ! ‘l —————
B R L . R 42000 - =======l Lo
420 P T 420.00 e .
______________ 7 | Ep————— | i
io/A 0.00 ' i/A 0.00 t
-4.20 -420.00
12.00 314.37
uw/V0.00 ua/V'0.00
-12.00 -314.37
12.00 F 314.37
ug/V'0.00 ug/V'0.00
-12.00 -314.37
0 2 4 6 8 10 0 2 4 6 8 10
t/ms t/ms
(a) Current control on a PMSM with low (b) Current control on a PMSM with high
rated power rated power

Oliver Wallscheid Reinforcement learning

Summary

» Application of RL on technical systems comes with many challenges, e.g.,

» Safety limits,
> Real-time / computational constraints,
» Varying and/or partially unknown environments.

» Real-world implementations often require more than bare RL algorithms, e.g.,
» Integration of available a priori expert knowledge,
» Combination with model-based control engineering tools.

» Ideal integration of data-driven RL solutions together with expert-based control engineering
parts is subject to many open research question.

Oliver Wallscheid Reinforcement learning 476

Table of contents

© Supervised learning
@ Approximative on-policy prediction

@ Approximative value-based control

Summary of part Il

Reinforcement learning in continuous state @ Stochastic policy gradient methods
and action spaces

@ Deterministic policy gradient methods
@ Further contemporary RL algorithms

@ Outlook and practical research insights

Oliver Wallscheid Reinforcement learning 477

What was covered in the course

Value Function

Function

Lookup Table Approximation

Fig. S-11.1: Main categories of reinforcement learning algorithms
(derived work based on D. Silver, Reinforcement learning, 2016. CC BY-NC 4.0)

Oliver Wallscheid Reinforcement learning

478

https://creativecommons.org/licenses/by-nc/4.0

Additional topics not covered in this lecture (1)

» Structured exploration: can we find a systematic way for fast and robust exploration?
» R. Houthooft et al., "Vime: Variational information maximizing exploration”, Advances in Neural
Information Processing Systems, 2016
> S. Levine, CS285 Deep Reinforcement Learning (lecture notes UC Berkeley), 2019
» D. Silver, Reinforcement Learning (lecture notes UC London), 2015

» Imitation learning: how can we mimic the behavior of a certain baseline agent / controller /
human expert?

» A. Hussein et al., " Imitation learning: A survey of learning methods”, ACM Computing Surveys
(CSUR) 50.2, pp. 1-35, 2017
» A. Attia and S. Dayan, " Global overview of imitation learning”, arXiv:1801.06503, 2018

Oliver Wallscheid Reinforcement learning 479

https://papers.nips.cc/paper/6591-vime-variational-information-maximizing-exploration.pdf
https://papers.nips.cc/paper/6591-vime-variational-information-maximizing-exploration.pdf
http://rail.eecs.berkeley.edu/deeprlcourse/
https://www.davidsilver.uk/wp-content/uploads/2020/03/XX.pdf
https://dl.acm.org/doi/pdf/10.1145/3054912
https://dl.acm.org/doi/pdf/10.1145/3054912
https://arxiv.org/pdf/1705.10528

Additional topics not covered in this lecture (2)

» Multi-agent algorithms: finding solutions to distributed problems (e.g., for distributed
energy systems).

» L. Busoniu, R. Babuska and B. De Schutter. " A comprehensive survey of multiagent
reinforcement learning.” IEEE Transactions on Systems, Man, and Cybernetics, Part C 38.2, pp.
156-172, 2008

» P. Hernandez-Leal, B. Kartal and M. Taylor. "Is multiagent deep reinforcement learning the
answer or the question? A brief survey”, Researchgate preprint, 2018

» Federated learning: finding solutions to distributed problems via multiple independent
sessions, each using its own local information (addressing critical issues such as data
privacy, data security, data access rights).

» H. Zhuo et al. "Federated Deep Reinforcement Learning”, arXiv:1901.08277, 2019
> J. Qi et al. "Federated Reinforcement Learning: Techniques, Applications, and Open
Challenges”, arXiv:2108.11887, 2021

Oliver Wallscheid Reinforcement learning 480

https://www.researchgate.net/profile/Robert_Babuska/publication/3421909_A_Comprehensive_Survey_of_Multiagent_Reinforcement_Learning/links/02bfe511a5153c4b2c000000/A-Comprehensive-Survey-of-Multiagent-Reinforcement-Learning.pdf
https://www.researchgate.net/profile/Robert_Babuska/publication/3421909_A_Comprehensive_Survey_of_Multiagent_Reinforcement_Learning/links/02bfe511a5153c4b2c000000/A-Comprehensive-Survey-of-Multiagent-Reinforcement-Learning.pdf
https://www.researchgate.net/profile/Robert_Babuska/publication/3421909_A_Comprehensive_Survey_of_Multiagent_Reinforcement_Learning/links/02bfe511a5153c4b2c000000/A-Comprehensive-Survey-of-Multiagent-Reinforcement-Learning.pdf
https://www.researchgate.net/profile/Pablo_Hernandez-Leal/publication/328280687_Is_multiagent_deep_reinforcement_learning_the_answer_or_the_question_A_brief_survey/links/5d152c8f92851cf440517170/Is-multiagent-deep-reinforcement-learning-the-answer-or-the-question-A-brief-survey.pdf
https://www.researchgate.net/profile/Pablo_Hernandez-Leal/publication/328280687_Is_multiagent_deep_reinforcement_learning_the_answer_or_the_question_A_brief_survey/links/5d152c8f92851cf440517170/Is-multiagent-deep-reinforcement-learning-the-answer-or-the-question-A-brief-survey.pdf
https://arxiv.org/abs/1901.08277
https://arxiv.org/abs/2108.11887
https://arxiv.org/abs/2108.11887

Learning summary
What you should have learned

» How to model decision processes using a Markov framework.
» Finding exact solutions using iterative tabular methods for discrete problem spaces.

» Finding approximate solutions for large discrete or continuous problem spaces based on
function approximation.

» Application of just these techniques on a practical programming level.

Concluding remarks

» This is an introductory course to RL. We have only scratched the surface.

» Some aspects, especially within the exercises, had a control focus. In other application,
specific RL solutions can look quite different.

» If you are interested in more practical RL insights in the field of electrical power systems, do
not hesitate to contact us.

Oliver Wallscheid Reinforcement learning 481

	Introduction to reinforcement learning
	Course framework
	Reinforcement learning: what is it?
	Application examples and historic review
	Basic terminology
	Main categories of reinforcement learning algorithms
	Small comparison to model predictive control

	Markov decision processes
	Finite Markov chains
	Finite Markov reward processes
	Finite Markov decision processes
	Optimal policies and value functions

	Dynamic programming
	Policy evaluation
	Policy improvement
	Policy and value iteration
	Further aspects

	Monte Carlo methods
	Basic Monte Carlo prediction
	Basic Monte Carlo control
	Extensions to Monte Carlo on-policy control
	Monte Carlo off-policy prediction and control

	Temporal-difference learning
	Temporal-difference prediction
	Temporal-difference on-policy control: SARSA
	Temporal-difference off-policy control: Q-learning
	Maximization bias and double learning

	Multi-step bootstrapping
	n-Step TD Prediction
	n-Step Control
	n-Step Off-Policy Learning
	TD(Lambda)

	Planning and learning with tabular methods
	Repetition: model-based and model-free RL
	Dyna: integrated planning, acting and learning
	Prioritized sweeping
	Planning at decision time

	Summary of part I: finite state and action spaces
	Supervised learning
	Supervised learning problem statement
	Feature engineering
	Typical machine learning models
	Linear regression
	Artificial neural networks

	Approximative on-policy prediction
	Impact of function approximation to the RL task
	Gradient-based prediction
	Batch learning

	Approximative value-based control
	On-policy control with (semi-)gradients
	Least squares policy iteration (LSPI)
	Deep Q-networks (DQN)

	Stochastic policy gradient methods
	Stochastic policy approximation and the policy gradient theorem
	Monte Carlo policy gradient
	Actor-critic methods

	Deterministic policy gradient methods
	Deep deterministic policy gradient (DDPG)
	Twin delayed deep deterministic policy gradient (TD3)

	Further contemporary RL algorithms
	Trust region policy optimization (TRPO)
	Proximal policy optimization (PPO)

	Outlook and practical research insights
	Safe reinforcement learning
	Real-world implementation with fast policy inference
	Meta reinforcement learning

	Summary of part II: continuous state and action spaces

	1.Plus:
	1.Reset:
	1.Minus:
	1.EndRight:
	1.StepRight:
	1.PlayPauseRight:
	1.PlayRight:
	1.PauseRight:
	1.PlayPauseLeft:
	1.PlayLeft:
	1.PauseLeft:
	1.StepLeft:
	1.EndLeft:
	anm1:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

