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Examination regulations

Final exam

▶ Oral examination

▶ Average 45 minutes for presentation and discussion

▶ Individual appointment request via email (at least 2 weeks in advance)

Pre-exam homework assignment

▶ Will be made available via moodle at end of the lecture series.

▶ Practical RL programming task, i.e., solve a typical RL problem.
▶ Further regulations:

▶ Submit your final programming solution via moodle at least two days before the exam.
▶ Prepare a concise, high-quality presentation to be given at the exam start (roughly 10-15

minutes). Analyze and evaluate your own results critically.
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Recommended textbooks

▶ Reinforcement learning: an introduction,
▶ R. Sutton and G. Barto
▶ MIT Press, 2nd edition, 2018
▶ Available here

▶ Reinforcement learning (lecture script)
▶ D. Silver
▶ Entire slide set available here
▶ YouTube lecture series (click here)

▶ Reinforcement learning and optimal control
▶ D. Bertsekas
▶ Athena Scientific, 2019
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The basic reinforcement learning structure

Environment

Agent

A
ct
io
n

Interpreter

Reward

Sta
te

Observation

Fig. 1.1: The basic RL operation principle
(derivative of www.wikipedia.org, CC0 1.0)

Key characteristics:

▶ No supervisor

▶ Data-driven

▶ Discrete time steps

▶ Sequential data stream (not i.i.d.
data)

▶ Agent actions affect subsequent
data (sequential decision
making)

Note: the nomenclature of this slide set is based on the default variable usage in control theory. In RL books, one
often finds s as state, a as action and o as observation.
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Agent and environment

Environment

Agent
A
ct
io
n

Interpreter

Reward

Sta
te

Observation

At each step k the agent:

▶ Picks an action uk.

▶ Receives an observation yk.

▶ Receives a reward rk.

At each step k the environment:

▶ Receives an action uk.

▶ Emits an observation yk+1.

▶ Emits a reward rk+1.

The time increments k ← k + 1.

Remark on time

A one step time delay is assumed between executing the action and receiving the observation as
well as reward. We assume that the resulting time interval ∆t = tk − tk+1 is constant.
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Some basic definitions from the literature

What is reinforcement?

“Reinforcement refers to consequences that increase the likelihood of an organism’s
future behavior, typically in the presence of a particular antecedent stimulus.[...] Re-
inforcers serve to increase behaviors whereas punishers serve to decrease behaviors;
thus, positive reinforcers are stimuli that the subject will work to attain, and nega-
tive reinforcers are stimuli that the subject will work to be rid of or to end.”, source:
wikipedia.org (obtained 2025-03-19)

What is learning?

“Acquiring knowledge and skills and having them readily available from memory so you
can make sense of future problems and opportunities.”, source: Make It Stick: The
Science of Successful Learning, Brown et al., Harvard Press, 2014
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Context around reinforcement learning

Machine
Learning

Unsupervised 
Learning

Process and interpret
data based only

on the input

Supervised
 

Learning

Develop models
 to map input  

 and output data

Reinforcement
 

Learning

Learn optimal control
actions to maximize 

long-term reward 

Clustering

Dimension Reduction

Regression

Classification

Single-Agent

Multi-Agent

Fig. 1.2: Disciplines of machine learning
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Context around machine learning

Machine Learning (ML)

Any device that perceives its environment and 
takes actions that maximize its chance of 
successfully achieving its goals. AI is often used to 
describe machines  that mimic "cognitive" functions 
that humans associate with the human mind.

A subset of AI involved with the creation of 
algorithms which can modify itself without 
human intervention to produce desired output 
by feeding itself through structured data.

Artifical Intelligence (AI)

A class of ML which uses large, layered models 
(e.g., vast artifical neural networks) to 
progressively extract more information from the data.

Deep Learning (DL)

Fig. 1.3: The broader scope around machine learning
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Many faces of reinforcement learning

Lecture 1: Introduction to Reinforcement Learning

About RL

Many Faces of Reinforcement Learning

Computer Science

Economics

Mathematics

Engineering Neuroscience

Psychology

Machine 
Learning

Classical/Operant
Conditioning

Optimal 
Control

Reward
System

Operations 
Research

Bounded
Rationality

Reinforcement 
Learning

Fig. 1.4: RL and its neighboring domains
(source: D. Silver, “Reinforcement learning”, 2015. CC BY-NC 4.0)
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Methodical origins

Fig. 1.5: Ivan Pavlov
(1849-1936)

Classical conditioning

Fig. 1.6: Andrei Markov
(1856-1922)

Stochastic process
formalism

Fig. 1.7: Richard Bellman
(1920-1984)1

Optimal sequential
decision making

1Illustrative picture since an actual photo of Bellman is not freely available.
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History of reinforcement learning

Huge field with many interconnections to different fields. One could give a lecture only on the
historic development. Hence, interested readers are referred to:

▶ Chapter 1.7 of Barto/Sutton, Reinforcement learning: an introduction, 2nd edition, MIT
Press, 2018

▶ 30 minutes talk of A. Barto (YouTube link)
▶ Survey papers on historic as well as more recent developments:

▶ Kaelbling et al., Reinforcement learning: A survey, in Journal of Artificial Intelligence Research,
vol. 4, pp. 237 - 285, 1996

▶ Arulkumaran et al., Deep reinforcement learning: a brief survey, in IEEE Signal Processing
Magazine, vol. 34, no. 6, pp. 26-38, 2017

▶ Botvinick et al., Reinforcement learning, fast and slow, in Trends in Cognitive Sciences, vol. 23,
iss. 5, pp. 408-422, 2019
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Contemporary application examples

Limited selection from a broad field:

▶ Controlling electric drive systems

▶ Swinging-up and balance a cart-pole / an inverted pendulum

▶ Flipping pancakes with a roboter arm

▶ Drifting with a RC-car

▶ Driving an autonomous car

▶ Playing Atari Breakout

▶ Play strategy board game Go at super-human performance

▶ Nuclear fusion reactor plasma control

▶ Training chat bots (like chatGPT)

▶ ...
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Reward

▶ A reward is a scalar random variable Rk with realizations rk.

▶ Often it is considered a real-number rk ∈ R or an integer rk ∈ Z.
▶ The reward function (interpreter) may be naturally given or is a design degree of freedom

(i.e., can be manipulated).

▶ It fully indicates how well an RL agent is doing at step k.

▶ The agent’s task is to maximize its reward over time.

Theorem 1.1: Reward hypothesis

All goals can be described by the maximization of the expected cumulative reward:

maxE

[ ∞∑

i=0

Rk+i+1

]
. (1.1)
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Reward examples

▶ Flipping a pancake:
▶ Pos. reward: catching the 180◦ rotated pancake
▶ Neg. reward: droping the pancake on the floor

▶ Stock trading:
▶ Trading portfolio monetary value

▶ Playing Atari games:
▶ Highscore value at the end of a game episode

▶ Driving an autonomous car:
▶ Pos. reward: getting save from A to B without crashing
▶ Neg. reward: hitting another car, pedestrian, bicycle,...

▶ Classical control task (e.g., electric drive, inverted pendulum,...):
▶ Pos. reward: following a given reference trajectory precisely
▶ Neg. reward: violating system constraints and/or large control error
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Reward characteristics

Rewards can have many different flavors and are highly depending on the given problem:

▶ Actions may have short and/or long term consequences.
▶ The reward for a certain action may be delayed.
▶ Examples: Stock trading, strategic board games,...

▶ Rewards can be positive and negative values.
▶ Certain situations (e.g., car hits wall) might lead to a negative reward.

▶ Exogenous impacts might introduce stochastic reward components.
▶ Example: A wind gust pushes an autonomous helicopter into a tree.

Remark on reward

The RL agent’s learning process is heavily linked with the reward distribution over time. Designing
expedient rewards functions is therefore crucially important for successfully applying RL. And
often there is no predefined way on how to design the “best reward function”.
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The reward function hassle
▶ “Be careful what you wish for - you might get it” (pro-verb)
▶ “...it grants what you ask for, not what you should have asked for or what you intend.”

(Norbert Wiener, American mathematician)

Fig. 1.8: Midas and daughter (good as gold)
(source: www.flickr.com, by Robin Hutton CC BY-NC-ND 2.0)
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Task-dependent return definitions
Episodic tasks

▶ A problem which naturally breaks into subsequences (finite horizon).
▶ Examples: most games, maze,...
▶ The return becomes a finite sum:

gk = rk+1 + rk+2 + · · ·+ rN . (1.2)

▶ Episodes end at their terminal step k = N .

Continuing tasks

▶ A problem which lacks a natural end (infinite horizon).
▶ Example: process control task
▶ The return should be discounted to prevent infinite numbers:

gk = rk+1 + γrk+2 + γ2rk+3 + · · · =
∞∑

i=0

γirk+i+1 . (1.3)

▶ Here, γ ∈ {R|0 ≤ γ ≤ 1} is the discount rate.
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Discounted rewards
Numeric viewpoint

▶ If γ = 1 and rk > 0 for k →∞, gk in (1.3) gets infinite.
▶ If γ < 1 and rk is bounded for k →∞, gk in (1.3) is bounded.

Strategic viewpoint

▶ If γ ≈ 1: agent is farsighted.
▶ If γ ≈ 0: agent is shortsighted (only interested in immediate reward).

Mathematical options

▶ The current return is the discounted future return:

gk = rk+1 + γrk+2 + γ2rk+3 + · · · = rk+1 + γ (rk+2 + γrk+3 + · · · )
= rk+1 + γgk+1 .

(1.4)

▶ If rk = r is a constant and γ < 1 one receives:

gk =

∞∑

i=0

γir = r

∞∑

i=0

γi = r
1

1− γ
. (1.5)
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State (1)

Environment state

▶ Random variable Xe
k with realizations xe

k

▶ Internal status representation of the environment, e.g.,
▶ Physical states, e.g., car velocity or motor current
▶ Game states, e.g., current chess board situation
▶ Financial states, e.g., stock market status

▶ Fully, limited or not at all visible by the agent
▶ Sometimes even ’foggy’ or uncertain
▶ In general: Yk = f(Xk) as the measurable outputs of the environment

▶ Continuous or discrete quantity

Bold symbols are non-scalar multidimensional quantities, e.g., vectors and matrices.
Capital symbols denote random variables and small symbols their realizations.
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State (2)

Agent state

▶ Random variable Xa
k with realizations xa

k

▶ Internal status representation of the agent

▶ In general: xa
k ̸= xe

k, e.g., due to measurement noise or an additional agent’s memory

▶ Agent’s condensed information relevant for next action

▶ Dependent on internal knowledge / policy representation of the agent

▶ Continuous or discrete quantity
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History and information state

Definition 1.1: History

The history is the past sequence of all observations, actions and rewards

Hk = {y0, r0,u0, . . . ,uk−1,yk, rk} (1.6)

up to the time step k.

If the current state xk contains all useful information from the history it is called an
information or Markov state (history is fully condensed in xk):

Definition 1.2: Information state

A state Xk is called an information state if and only if

P [Xk+1|Xk] = P [Xk+1|X0,X1, . . . ,Xk] . (1.7)
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Model examples with Markov states

Linear time-invariant (LTI) state-space model

xk+1 = Axk +Buk ,

yk = Cxk +Duk .
(1.8)

Nonlinear time-invariant state-space model:

xk+1 = f (xk,uk) ,

yk = h (xk,uk) .
(1.9)
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Degree of observability
Full observability

▶ Agent directly measures full environment state (e.g., yk = Ixk).

▶ If xk is Markov: Markov decision process (MDP).

Partial observability

▶ Agent does not have full access to environment state (e.g., yk =
[
I 0

]
xk).

▶ If xk is Markov: partial observable MDP (POMDP).

▶ Agent may reconstructs state information x̂k ≈ xk (belief, estimate).

POMDP examples

▶ Technical systems with limited sensors (cutting costs)

▶ Poker game (unknown opponents’ cards)

▶ Human health status (too complex system)
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Action

▶ An action is the agent’s degree of freedom in order to maximize its reward.
▶ Major distinction:

▶ Finite action set (FAS): uk ∈ {uk,1,uk,2, . . .} ∈ Rm

▶ Continuous action set (CAS): Infinite number of actions: uk ∈ Rm

▶ Deterministic uk or random Uk variable
▶ Often state-dependent and potentially constrained:uk ∈ U(xk) ⊆ Rm

▶ Examples:
▶ Take a card during Black Jack game (FAS)
▶ Drive an autonomous car (CAS)
▶ Buy stock options for your trading portfolio (FAS/CAS)

Remark on state and action spaces

Evaluating the state and action spaces (e.g., finite vs. continuous) of a new RL problem should
be always the first steps in order to choose appropriate solution algorithms.
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Policy

▶ A policy π is the agent’s internal strategy on picking actions.

▶ Deterministic policies: maps state and action directly:

uk = π(xk) . (1.10)

▶ Stochastic policies: maps a probability of the action given a state:

π(Uk|Xk) = P [Uk|Xk] . (1.11)

▶ RL is all about changing π over time in order to maximize the expected return.
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Deterministic policy example
Find optimal gains {Kp,Ki,Kd} given the reward rk = −e2k:
▶ Agent’s behavior is explicitly determined by {Kp,Ki,Kd}.
▶ Reference value is part of the environment state: xk =

[
yk y∗k

]T
.

▶ Control output is the agent’s action: uk = π(xk|Kp,Ki,Kd).

Plant /
Process

Agent

 

 

Fig. 1.9: Classical PID control loop with scalar quantities (derivative of www.wikipedia.org, by Arturo
Urquizo CC BY-SA 3.0)
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Stochastic policy example
Two-player game of extended rock-paper-scissors:

▶ A deterministic policy can be easily exploited by the opponent.
▶ A uniform random policy would be instead unpredictable (assuming an ideal random

number generator).

Fig. 1.10: Rock paper scissors lizard Spock game mechanics
(source: www.wikipedia.org, by Diriector Doc CC BY-SA 4.0)
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Value functions

▶ The state-value function is the expected return being in state xk following π: vπ(xk).

▶ Assuming an MDP problem structure the state-value function is

vπ(xk) = Eπ [Gk|Xk = xk] = Eπ

[ ∞∑

i=0

γiRk+i+1

∣∣∣∣∣xk

]
. (1.12)

▶ The action-value function is the expected return being in state xk taken an action uk and,
thereafter, following a policy π: qπ(xk,uk).

▶ Assuming an MDP problem structure the action-value function is

qπ(xk,uk) = Eπ [Gk|Xk = xk,Uk = uk] = Eπ

[ ∞∑

i=0

γiRk+i+1

∣∣∣∣∣xk,uk

]
. (1.13)

▶ A key task in RL is to estimate vπ(xk) and qπ(xk,uk) based on sampled data.
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Exploration and exploitation
▶ In RL the environment is initially unknown. How to act optimal?
▶ Exploration: find out more about the environment.
▶ Exploitation: maximize current reward using limited information.
▶ Trade-off problem: what’s the best split between both strategies?

The usual stuffSomething new

Fig. 1.11: The exploration-exploitation dilemma
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Model

▶ A model predicts what will happen inside an environment.

▶ That could be a state model P :

P = P [Xk+1 = xk+1|Xk = xk,Uk = uk] . (1.14)

▶ Or a reward model R:

R = P [Rk+1 = rk+1|Xk = xk,Uk = uk] . (1.15)

▶ In general, those models could be stochastic (as denoted above) but in some problems relax
to a deterministic form.

▶ Using data in order to fit a model is a learning problem of its own and often called system
identification.
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Maze example

Lecture 1: Introduction to Reinforcement Learning

Inside An RL Agent

Maze Example

Start

Goal

Rewards: -1 per time-step

Actions: N, E, S, W

States: Agent’s location

Fig. 1.12: Maze setup
(source: D. Silver, “Reinforcement learning”, 2015.

CC BY-NC 4.0)

Problem statement:

▶ Reward: rk = −1
▶ At goal: episode termination

▶ Actions: uk ∈ {N,E, S,W}
▶ State: agent’s location

▶ Deterministic problem (no stochastic
influences)
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Maze example: RL-solution by policy

Lecture 1: Introduction to Reinforcement Learning

Inside An RL Agent

Maze Example: Policy

Start

Goal

Arrows represent policy π(s) for each state s
Fig. 1.13: Arrows represent policy π(xk) (source: D.

Silver, “Reinforcement learning”, 2015. CC BY-NC 4.0)

Key characteristics:

▶ For any state there is a direct action
command.

▶ The policy is explicitly available.
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Maze example: RL-solution by value function

Lecture 1: Introduction to Reinforcement Learning

Inside An RL Agent

Maze Example: Value Function

-14 -13 -12 -11 -10 -9

-16 -15 -12 -8

-16 -17 -6 -7

-18 -19 -5

-24 -20 -4 -3

-23 -22 -21 -22 -2 -1

Start

Goal

Numbers represent value vπ(s) of each state s
Fig. 1.14: Numbers represent value vπ(xk) (source: D.
Silver, “Reinforcement learning”, 2015. CC BY-NC 4.0)

Key characteristics:

▶ The agent evaluates neighboring
maze positions by their value.

▶ The policy is only implicitly available.
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Maze example: RL-solution by model evaluation

Lecture 1: Introduction to Reinforcement Learning

Inside An RL Agent

Maze Example: Model

-1 -1 -1 -1 -1 -1

-1 -2 -1 -1

-4 -1 -3

-1

-1 -1

-1 -1

Start

Goal

Agent may have an internal
model of the environment

Dynamics: how actions
change the state

Rewards: how much reward
from each state

The model may be imperfect

Grid layout represents transition model Pa
ss′

Numbers represent immediate reward Ra
s from each state s

(same for all a)

Fig. 1.15: Grid layout represents state model P and
numbers depict the estimate by the reward model R.
(source: D. Silver, “Reinforcement learning”, 2015. CC

BY-NC 4.0)

Key characteristics:

▶ Agent uses internal model of the
environment.

▶ The model is only an estimate
(inaccurate, incomplete).

▶ The agent interacts with the model
before taking the next action (e.g., by
numerical optimizers).
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RL agent taxonomy

Lecture 1: Introduction to Reinforcement Learning

Inside An RL Agent

RL Agent Taxonomy

Model

Value Function PolicyActor
Critic

Value-Based Policy-Based

Model-Free 

Model-Based 

Fig. 1.16: Main categories of reinforcement learning algorithms
(source: D. Silver, “Reinforcement learning”, 2015. CC BY-NC 4.0)
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RL vs. planning
Two fundamental solutions to sequential decision making:

▶ Reinforcement learning:
▶ The environment is initially unknown.
▶ The agents interacts with the environment.
▶ The policy is improved based on environment feedback (reward).

▶ Planning:
▶ An a priori environment model exists.
▶ The agents interacts with its own model.
▶ The policy is improved based on the model feedback (’virtual reward’).

Remark on learning and planning

Above the two extreme cases are confronted:

▶ RL = learning based on data obtained from interacting with the system.

▶ Planning = iterating on a model without improving it based on data.

Can one of these extreme cases lead alone to an efficient and optimal solution?
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Problem reconsideration
The reward hypothesis in Theo. 1.1 is basically an (discounted) infinite-horizon optimal control
problem (with rk interpreted as costs):

v∗k(xk) = min
uk

∞∑

i=0

γirk+i+1(xk+i,uk+i) . (1.16)

For certain cases closed-form solutions can be found, e.g., a LTI system with quadratic costs
and no further constraints can be optimally controlled by a linear-quadratic regulator (LQR).
However, for arbitrary cases that is not possible and one relaxes the problem to a finite-horizon
optimal control problem:

v∗k(xk) = min
uk

Np∑

i=0

γirk+i+1(xk+i,uk+i) . (1.17)

Here, an internal model xk+1 = f(xk,uk) is utilized to predict the system behavior for Np

future steps. This model predictive control (MPC) approach can be numerically solved.
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MPC and constraints
While in RL the desired system behavior must be solely represented by rk, MPC can directly
take into account system constraints:

v∗k = min
uk

Np∑

i=0

γirk+i+1(xk+i,uk+i) ,

s.t. xk+i+1 = f(xk+i,uk+i), xk+i ∈ X , uk+i ∈ U .

(1.18)

...

Fig. 1.17: Basic MPC scheme (source: www.wikipedia.org, by Martin Behrendt CC BY-SA 3.0)
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MPC vs. RL
Hence, MPC and RL are two sides of the same coin. Both share the same general goal
(sequential optimal decision making), but follow their own philosophy:

Property MPC RL

Objective minimize costs maximize return
A priori model required ✗ not required ✓

Pre-knowledge integration easy ✓ rather complex ✗

Constraint handling inherent ✓ only indirect ✗

Adaptivity requires add-ons ✗ inherent ✓

Online complexity it depends ✓/✗ it depends ✓/✗

Stability theory mature ✓ immature ✗

Tab. 1.1: Key differences on MPC vs. RL
(inspired from D. Görges, Relations between Model Predictive Control and Reinforcement Learning,

IFAC PapersOnine 50-1, pp. 4920-4928, 2017)
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Summary: what you’ve learned in this lecture

▶ Understanding the role of RL in machine learning and optimal sequential decision making.

▶ Become acquainted with the basic RL interaction loop (agent, environment, interpreter).

▶ Finding your way around the basic RL vocabulary.

▶ Internalize the significance of proper reward formulations (design parameter).

▶ Differentiate solution ideas on how to retrieve an optimal agent behavior (policy).

▶ Delimit RL towards model predictive control as a sequential decision making alternative.
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Preface
▶ Markov decision processes (MDP) are a mathematically idealized form of RL problems.
▶ They allow precise theoretical statements (e.g., on optimal solutions).
▶ They deliver insights into RL solutions since many real-world problems can be abstracted as

MDPs.
▶ In the following we’ll focus on:

▶ fully observable MDPs (i.e., xk = yk) and
▶ finite MDPs (i.e., finite number of states & actions).

All states observable?
Yes No

A
ct
io
n
s? No Markov chain

Hidden Markov
model

Yes
Markov decision
process (MDP)

Partially
observable MDP

Tab. 2.1: Different Markov models
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Scalar and vectorial representations in finite MDPs

▶ The position of a chess piece can be represented in two ways:

▶ Vectorial: x =
[
xh xv

]T
, i.e., a two-element vector with horizontal and vertical information,

▶ Scalar: simple enumeration of all available positions (e.g., x = 3).

▶ Both ways represent the same amount of information.

▶ We will stick to the scalar representation of states and actions in finite MDPs.

a b c d e f g h

8

7

6

5

4

3

2

1 1 2 3 ...

9 10 ...

... ... ...

...
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Markov chain

Definition 2.1: Finite Markov chain

A finite Markov chain is a tuple ⟨X ,P⟩ with
▶ X being a finite set of discrete-time states Xk ∈ X ,
▶ P = Pxx′ = P [Xk+1 = x′|Xk = x] is the state transition probability.

▶ Specific stochastic process model

▶ Sequence of random variables Xk, Xk+1, . . .

▶ ’Memoryless’, i.e., system properties are time invariant

▶ In continuous-time framework: Markov process1

1However, this results in a literature nomenclature inconsistency with Markov decision/reward ’processes’.
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State transition matrix

Definition 2.2: State transition matrix

Given a Markov state Xk = x and its successor Xk+1 = x′ , the state transition probability
∀ {x, x′} ∈ X is defined by the matrix

Pxx′ = P
[
Xk+1 = x′|Xk = x

]
. (2.1)

Here, Pxx′ ∈ Rn×n has the form

Pxx′ =




p11 p12 · · · p1n

p21
...

...
...

pn1 · · · · · · pnn




with pij ∈ {R|0 ≤ pij ≤ 1} being the specific probability to go from state x = Xi to state
x′ = Xj . Obviously,

∑
j pij = 1∀i must hold.
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Example of a Markov chain (1)

Small Medium Large

Gone

Fig. 2.1: Forest tree Markov chain

x ∈ {1, 2, 3, 4}
= {small,medium, large, gone}

P =




0 1− α 0 α
0 0 1− α α
0 0 1− α α
0 0 0 1




▶ At x = 1 a small tree is planted (’starting point’).

▶ A tree grows with (1− α) probability.

▶ If it reaches x = 3 (large) its growth is limited.

▶ With α probability a natural hazard destroys the tree.

▶ The state x = 4 is terminal (’infinite loop’).
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Example of a Markov chain (2)

Small Medium Large

Gone

Possible samples for the given Markov chain example starting from x = 1 (small tree):

▶ Small → gone

▶ Small → medium → gone

▶ Small → medium → large → gone

▶ Small → medium → large → large → . . .
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Markov reward process

Definition 2.3: Finite Markov reward process

A finite Markov reward process (MRP) is a tuple ⟨X ,P ,R, γ⟩ with
▶ X being a finite set of discrete-time states Xk ∈ X ,
▶ P = Pxx′ = P [Xk+1 = x′|Xk = x] is the state transition probability,

▶ R is a reward function, R = Rx = E [Rk+1|Xk = xk] and

▶ γ is a discount factor, γ ∈ {R|0 ≤ γ ≤ 1}.

▶ Markov chain extended with rewards

▶ Still an autonomous stochastic process without specific inputs

▶ Reward Rk+1 only depends on state Xk

Oliver Wallscheid Reinforcement learning 58



Example of a Markov reward process
Small Medium Large

Gone
Fig. 2.2: Forest Markov reward process

▶ Growing larger trees is rewarded, since it will be
▶ appreciated by hikers and
▶ useful for wood production.

▶ Loosing a tree due to a hazard is unrewarded.
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Recap on return

Return

The return Gk is the total discounted reward starting from step k onwards. For episodic tasks
it becomes the finite series

Gk = Rk+1 + γRk+2 + γ2Rk+3 + · · · =
N∑

i=0

γiRk+i+1 (2.2)

terminating at step N while it is an infinite series for continuing tasks

Gk = Rk+1 + γRk+2 + γ2Rk+3 + · · · =
∞∑

i=0

γiRk+i+1 . (2.3)

▶ The discount γ represents the value of future rewards.
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Value function in MRP
Definition 2.4: Value function in MRP

The state-value function v(xk) of an MRP is the expected return starting from state xk

v(xk) = E [Gk|Xk = xk] . (2.4)

▶ Represents the long-term value of being in state Xk.

3.5. Policies and Value Functions 61

rewards important, or only the intervals between them? Prove, using (3.8), that adding a
constant c to all the rewards adds a constant, vc, to the values of all states, and thus
does not a↵ect the relative values of any states under any policies. What is vc in terms
of c and �? ⇤
Exercise 3.16 Now consider adding a constant c to all the rewards in an episodic task,
such as maze running. Would this have any e↵ect, or would it leave the task unchanged
as in the continuing task above? Why or why not? Give an example. ⇤
Example 3.6: Golf To formulate playing a hole of golf as a reinforcement learning
task, we count a penalty (negative reward) of �1 for each stroke until we hit the ball
into the hole. The state is the location of the ball. The value of a state is the negative of
the number of strokes to the hole from that location. Our actions are how we aim and
swing at the ball, of course, and which club we select. Let us take the former as given
and consider just the choice of club, which we assume is either a putter or a driver. The
upper part of Figure 3.3 shows a possible state-value function, vputt(s), for the policy that

Q*(s,driver)

V
putt

s a n d

green

!1

s
a

n
d

!2
!2

!3

!4

!1

!5
!6

!4

!3

!3
!2

!4

s a n d

green

!1

s
a

n
d

!2

!3

!2

0

0

!"

!"

vputt

q⇤(s, driver)

Figure 3.3: A golf example: the state-value func-
tion for putting (upper) and the optimal action-
value function for using the driver (lower).

always uses the putter. The terminal
state in-the-hole has a value of 0. From
anywhere on the green we assume we can
make a putt; these states have value �1.
O↵ the green we cannot reach the hole
by putting, and the value is greater. If
we can reach the green from a state by
putting, then that state must have value
one less than the green’s value, that is,
�2. For simplicity, let us assume we can
putt very precisely and deterministically,
but with a limited range. This gives us
the sharp contour line labeled �2 in the
figure; all locations between that line and
the green require exactly two strokes to
complete the hole. Similarly, any location
within putting range of the �2 contour
line must have a value of �3, and so
on to get all the contour lines shown in
the figure. Putting doesn’t get us out of
sand traps, so they have a value of �1.
Overall, it takes us six strokes to get from
the tee to the hole by putting.

r

s0

s, a

a0
⇡

p

q⇡ backup diagram

Exercise 3.17 What is the Bellman equation for action values, that
is, for q⇡? It must give the action value q⇡(s, a) in terms of the action
values, q⇡(s0, a0), of possible successors to the state–action pair (s, a).
Hint: the backup diagram to the right corresponds to this equation.
Show the sequence of equations analogous to (3.14), but for action
values. ⇤

Fig. 2.3: Isolines indicate state value of different golf ball locations (source: R. Sutton and G. Barto,
Reinforcement learning: an introduction, 2018, CC BY-NC-ND 2.0)
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State-value samples of forest MRP
Small Medium Large

Gone

Exemplary samples for v̂ with γ = 0.5 starting in x = 1:

x = 1→ 4, v̂ = 1,

x = 1→ 2→ 4, v̂ = 1 + 0.5 · 2 = 2.0,

x = 1→ 2→ 3→ 4, v̂ = 1 + 0.5 · 2 + 0.25 · 3 = 3.75,

x = 1→ 2→ 3→ 3→ 4, v̂ = 1 + 0.5 · 2 + 0.25 · 3 + 0.125 · 3 = 4.13.
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Bellman equation for MRPs (1)
Problem: How to calculate all state values in closed form?
Solution: Bellman equation.

v(xk) = E [Gk|Xk = xk]

= E
[
Rk+1 + γRk+2 + γ2Rk+3 + . . . |Xk = xk

]

= E [Rk+1 + γ (Rk+2 + γRk+3 + . . .) |Xk = xk]

= E [Rk+1 + γGk+1|Xk = xk]

= E [Rk+1 + γv(Xk+1)|Xk = xk]

(2.5)

Fig. 2.4: Backup diagram for v(xk)
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Bellman equation for MRPs (2)

Assuming a known reward function R(x) for every state X = x ∈ X

rX =
[
R(x1) · · · R(xn)

]T
=
[
R1 · · · Rn

]T
(2.6)

for a finite number of n states with unknown state values

vX =
[
v(x1) · · · v(xn)

]T
=
[
v1 · · · vn

]T
(2.7)

one can derive a linear equation system based on Fig. 2.4:

vX = rX + γPxx′vX ,

v1
...
vn


 =



R1
...
Rn


+ γ



p11 · · · p1n
...

...
pn1 · · · pnn






v1
...
vn


 .

(2.8)
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Solving the MRP Bellman equation

Above, (2.8) is a normal equation in vX :

vX = rX + γPxx′vX ,

⇔ (I − γPxx′)︸ ︷︷ ︸
A

vX︸︷︷︸
x

= rX︸︷︷︸
b

. (2.9)

Possible solutions are (among others):

▶ Direct inversion (Gaussian elimination, O(n3)),

▶ Matrix decomposition (QR, Cholesky, etc. , O(n3)),

▶ Iterative solutions (e.g., Krylov-subspaces, often better than O(n3)).

In RL identifying and solving (2.9) is a key task, which is often realized only approximately for
high-order state spaces.
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Example of a MRP with state values

Small Medium Large

Gone
Fig. 2.5: Forest Markov reward process including state values

▶ Discount factor γ = 0.8
▶ Disaster probability α = 0.2
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Markov decision process

Definition 2.5: Finite Markov decision process

A finite Markov decision process (MDP) is a tuple ⟨X ,U ,P ,R, γ⟩ with
▶ X being a finite set of discrete-time states Xk ∈ X ,
▶ U as a finite set of discrete-time actions Uk ∈ U ,
▶ P = Pu

xx′ is the state transition probability P = P [Xk+1 = x′|Xk = xk, Uk = uk],

▶ R is a reward function, R = Ru
x = E [Rk+1|Xk = xk, Uk = uk] and

▶ γ is a discount factor, γ ∈ {R|0 ≤ γ ≤ 1}.

▶ Markov reward process is extended with actions / decisions.

▶ Now, rewards also depend on action Uk.
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Example of a Markov decision process (1)

Small Medium Large

Gone

Fig. 2.6: Forest Markov decision process

▶ Two actions possible in each state:
▶ Wait u = w: let the tree grow.
▶ Cut u = c: gather the wood.

▶ With increasing tree size the wood reward increases as well.
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Example of a Markov decision process (2)

For the previous example the state transition probability matrix and reward function are given
as:

Pu=c
xx′ =




0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1


 , Pu=w

xx′ =




0 1− α 0 α
0 0 1− α α
0 0 1− α α
0 0 0 1


 ,

ru=c
X =

[
1 2 3 0

]T
, ru=w

X =
[
0 0 1 0

]T
.

▶ The term ruX is the abbreviated form for receiving the output of R for the entire state space
X given the action u.
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Policy (1)
Definition 2.6: Policy in MDP (1)

In an MDP environment, a policy is a distribution over actions given states:

π(uk|xk) = P [Uk = uk|Xk = xk] . (2.10)

▶ In MDPs, policies depend only on the current state.
▶ A policy fully defines the agent’s behavior (which might be stochastic or deterministic).

Fig. 2.7: What is you best Monopoly policy? (source: Ylanite Koppens on Pexels)
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Policy (2)

Given a finite MDP ⟨X ,U ,P ,R, γ⟩ and a policy π:

▶ The state sequence Xk, Xk+1, . . . is a Markov chain ⟨X ,Pπ⟩ since the state transition
probability is only depending on the state:

Pπ
xx′ =

∑

uk∈U
π(uk|xk)Pu

xx′ . (2.11)

▶ Consequently, the sequence Xk, Rk+1, Xk+1, Rk+2, . . . of states and rewards is a Markov
reward process ⟨X ,Pπ,Rπ, γ⟩:

Rπ
xx′ =

∑

uk∈U
π(uk|xk)Ru

x . (2.12)
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Recap on MDP value functions

Definition 2.7: State-value function

The state-value function of an MDP is the expected return starting in xk following policy π:

vπ(xk) = Eπ [Gk|Xk = xk] = Eπ

[ ∞∑

i=0

γiRk+i+1

∣∣∣∣∣Xk

]
.

Definition 2.8: Action-value function

The action-value function of an MDP is the expected return starting in xk taking action uk
following policy π:

qπ(xk, uk) = Eπ [Gk|Xk = xk, Uk = uk] = Eπ

[ ∞∑

i=0

γiRk+i+1

∣∣∣∣∣Xk, Uk

]
.
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Bellman expectation equation (1)
Analog to (2.5), the state value of an MDP can be decomposed into a Bellman notation:

vπ(xk) = Eπ [Rk+1 + γvπ(Xk+1)|Xk = xk] . (2.13)

In finite MDPs, the state value can be directly linked to the action value (cf. Fig. 2.8):

vπ(xk) =
∑

uk∈U
π(uk|xk)qπ(xk, uk) . (2.14)

Fig. 2.8: Backup diagram for vπ(xk)
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Bellman expectation equation (2)
Likewise, the action value of an MDP can be decomposed into a Bellman notation:

qπ(xk, uk) = Eπ [Rk+1 + γqπ(Xk+1, Uk+1)|Xk = xk, Uk = uk] . (2.15)

In finite MDPs, the action value can be directly linked to the state value (cf. Fig. 2.9):

qπ(xk, uk) = Ru
x + γ

∑

xk+1∈X
puxx′vπ(xk+1) . (2.16)

Fig. 2.9: Backup diagram for qπ(xk, uk)
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Bellman expectation equation (3)

Inserting (2.16) into (2.14) directly results in:

vπ(xk) =
∑

uk∈U
π(uk|xk)


Ru

x + γ
∑

xk+1∈X
puxx′vπ(xk+1)


 . (2.17)

Conversely, the action value becomes:

qπ(xk, uk) = Ru
x + γ

∑

xk+1∈X
puxx′


 ∑

uk+1∈U
π(uk+1|xk+1)qπ(xk+1, uk+1)


 . (2.18)
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Bellman expectation equation in matrix form

Given a policy π and following the same assumptions as for (2.8), the Bellman expectation
equation can be expressed in matrix form:

vπ
X = rπX + γPπ

xx′vπ
X ,


vπ1
...
vπn


 =



Rπ

1
...
Rπ

n


+ γ



pπ11 · · · pπ1n
...

...
pπn1 · · · pπnn






vπ1
...
vπn


 .

(2.19)

Here, rπX and Pπ
xx′ are the rewards and state transition probability following policy π. Hence,

the state value can be calculated by solving (2.19) for vπ
X , e.g., by direct matrix inversion:

vπ
X = (I − γPπ

xx′)
−1 rπX . (2.20)
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Bellman expectation equation & forest tree example (1)
Let’s assume following very simple policy (’fifty-fifty ’)

π(u = cut|x) = 0.5, π(u = wait|x) = 0.5 ∀x ∈ X .

Applied to the given environment behavior

Pu=c
xx′ =




0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1


 , Pu=w

xx′ =




0 1− α 0 α
0 0 1− α α
0 0 1− α α
0 0 0 1


 ,

ru=c
X =

[
1 2 3 0

]T
, ru=w

X =
[
0 0 1 0

]T
,

one receives:

Pπ
xx′ =




0 1−α
2 0 1+α

2
0 0 1−α

2
1+α
2

0 0 1−α
2

1+α
2

0 0 0 1


 , rπX =




0.5
1
2
0


 .
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Bellman expectation equation & forest tree example (2)

Small Medium Large

Gone
Fig. 2.10: Forest MDP with fifty-fifty policy including state values

▶ Discount factor γ = 0.8
▶ Disaster probability α = 0.2
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Bellman expectation equation & forest tree example (3)
Using the Bellman expectation eq. (2.16) the action values can be directly calculated:

Small Medium Large

Gone
Fig. 2.11: Forest MDP with fifty-fifty policy plus action values
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Optimal value functions in an MDP

Definition 2.9: Optimal state-value function

The optimal state-value function of an MDP is the maximum state-value function over all polices:

v∗(x) = max
π

vπ(x) . (2.21)

Definition 2.10: Optimal action-value function

The optimal action-value function of an MDP is the maximum action-value function over all
polices:

q∗(x, u) = max
π

qπ(x, u) . (2.22)

▶ The optimal value function denotes the best possible agent’s performance for a given MDP
/ environment.

▶ A (finite) MDP can be easily solved in an optimal way if q∗(x, u) is known.
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Optimal policy in an MDP

Define a partial ordering over polices

π ≥ π′ if vπ(x) ≥ vπ′(x) ∀x ∈ X . (2.23)

Theorem 2.1: Optimal policies in MDPs

For any finite MDP

▶ there exists an optimal policy π∗ ≥ π that is better or equal to all other policies,

▶ all optimal policies achieve the same optimal state-value function v∗(x) = vπ∗(x),

▶ all optimal policies achieve the same optimal action-value function q∗(x, u) = qπ∗(x, u).
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Bellman optimality equation (1)

Theorem 2.2: Bellman’s principle of optimality

“An optimal policy has the property that whatever the initial state and initial decision are, the
remaining decisions must constitute an optimal policy with regard to the state resulting from
the first decision.”(R.E. Bellman, Dynamic Programming, 1957)

▶ Any policy (i.e., also the optimal one) must satisfy the self-consistency condition given by
the Bellman expectation equation.

▶ An optimal policy must deliver the maximum expected return being in a given state:

v∗(xk) = max
u

qπ∗(xk, u)

= max
u

Eπ∗ [Gk|Xk = xk, U = u]

= max
u

Eπ∗ [Rk+1 + γGk+1|Xk = xk, U = u]

= max
u

E [Rk+1 + γv∗(Xk+1)|Xk = xk, U = u] .

(2.24)
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Bellman optimality equation (2)

Again, the Bellman optimality equation can be visualized by a backup diagram:

Fig. 2.12: Backup diagram for v∗(xk)

For a finite MDP, the following expression results:

v∗(xk) = max
uk

Ru
x + γ

∑

xk+1∈X
puxx′vπ∗(xk+1). (2.25)
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Bellman optimality equation (3)
Likewise, the Bellman optimality equation is applicable to the action value:

q∗(xk, uk) = E
[
Rk+1 + γmax

uk+1

q∗(Xk+1, Uk+1)|Xk = xk, Uk = uk

]
. (2.26)

And, in the finite MDP case:

q∗(xk, uk) = Ru
x + γ

∑

xk+1∈X
puxx′ max

uk+1

q∗(xk+1, uk+1). (2.27)

Fig. 2.13: Backup diagram for q∗(xk, uk)
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Solving the Bellman optimality equation

▶ In finite MDPs with n states, (2.25) delivers an algebraic equation system with n unknowns
and n state-value equations.

▶ Likewise, (2.27) delivers an algebraic equation system with up to n ·m unknowns and n ·m
action-value equations (m =number of actions).

▶ If environment is exactly known, solving for v∗ or q∗ directly delivers optimal policy.
▶ If v(x) is known, a one-step-ahead search is required to get q(x, u).
▶ If q(x, u) is known, directly choose q∗.

▶ Even though above decisions are very short sighted (one-step-ahead search for v or direct
choice of q), by Bellman’s principle of optimality one receives the long-term maximum of
the expected reward.
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Optimal policy for forest tree MDP
Remember the forest tree MDP example:

Small Medium Large

Gone

▶ Two actions possible in each state:
▶ Wait u = w: let the tree grow.
▶ Cut u = c: gather the wood.

▶ Lets first calculate v∗(x) and then q∗(x, u).
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Optimal policy for forest tree MDP: state value (1)
Start with v(x = 4) (’gone’) and then continue going backwards:

v∗(x = 4) = 0 ,

v∗(x = 3) = max

{
1 + γ [(1− α)v∗(x = 3) + αv∗(x = 4)] ,

3 + γv∗(x = 4) ,

= max

{
1 + γ [(1− α)v∗(x = 3)] ,

3 ,

v∗(x = 2) = max

{
0 + γ [(1− α)v∗(x = 3) + αv∗(x = 4)] ,

2 + γv∗(x = 4) ,

= max

{
γ [(1− α)v∗(x = 3)] ,

2 ,

v∗(x = 1) = max

{
γ [(1− α)v∗(x = 2)] ,

1 .
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Optimal policy for forest tree MDP: state value (2)
▶ Possible solutions:

▶ numerical optimization approach (e.g., simplex method, gradient descent,...)
▶ manual case-by-case equation solving (dynamic programming, cf. next lecture)

Small Medium Large

Gone
Fig. 2.14: State values under optimal policy (γ = 0.8, α = 0.2)
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Optimal policy for forest tree MDP: state value (3)

Small Medium Large

Gone
Fig. 2.15: State values under optimal policy (γ = 0.9, α = 0.2)
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Optimal policy for forest tree MDP: action value (1)
Use uk+1 = u′ to set up equation system:

q∗(x = 1, u = c) = 1 ,

q∗(x = 1, u = w) = γ(1− α)max
u′

q∗(x = 2, u′) ,

q∗(x = 2, u = c) = 2 ,

q∗(x = 2, u = w) = γ(1− α)max
u′

q∗(x = 3, u′) ,

q∗(x = 3, u = c) = 3 ,

q∗(x = 3, u = w) = 1 + γ(1− α)max
u′

q∗(x = 3, u′) .

▶ There are six action-state pairs in total.

▶ Three of them can be directly determined.

▶ Three unknowns and three equations remain.
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Optimal policy for forest tree MDP: action value (2)

Rearrange max expressions for unknown action values:

q∗(x = 1, u = w) = γ(1− α)max




γ(1− α)max

{
1 + γ(1− α)q∗(3, w),

3,

2,

q∗(x = 2, u = w) = γ(1− α)max

{
1 + γ(1− α)q∗(3, w),

3,

q∗(x = 3, u = w) = 1 + γ(1− α)max

{
q∗(3, w),

3.

Again, retrieve unknown optimal action values by numerical optimization solvers or manual
backwards calculation (dynamic programming).
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Optimal policy for forest tree MDP: action value (3)

Small Medium Large

Gone
Fig. 2.16: Action values under optimal policy (γ = 0.8, α = 0.2)
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Optimal policy for forest tree MDP: action value (4)

Small Medium Large

Gone
Fig. 2.17: Action values under optimal policy (γ = 0.9, α = 0.2)
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Direct numerical state and action-value calculation

▶ Possible only for small action and state-space MDPs
▶ ’Solving’ Backgammon with ≈ 1020 states?

▶ Another issue: total environment knowledge required

Framing the reinforcement learning problem

Facing the above issues, RL addresses mainly two topics:

▶ Approximate solutions of complex decision problems.

▶ Learning of such approximations based on data retrieved from environment interactions
potentially without any a priori model knowledge.
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Summary: what you’ve learned in this lecture

▶ Differentiate finite Markov process models with or w/o rewards and actions.

▶ Interpret such stochastic processes as simplified abstractions of real-world problems.

▶ Understand the importance of value functions to describe the agent’s performance.

▶ Formulate value-function equation systems by the Bellman principle.

▶ Recognize optimal policies.

▶ Setting up nonlinear equation systems for retrieving optimal policies by the Bellman
principle.

▶ Solving for different value functions in MRP/MDP by brute force optimization.
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What is dynamic programming (DP)?

Basic DP definition

▶ Dynamic: sequential or temporal problem structure

▶ Programming: mathematical optimization, i.e., numerical solutions

Further characteristics:

▶ DP is a collection of algorithms to solve MDPs and neighboring problems.
▶ We will focus only on finite MDPs.
▶ In case of continuous action/state space: apply quantization.

▶ Use of value functions to organize and structure the search for an optimal policy.

▶ Breaks problems into subproblems and solves them.
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Requirements for DP

DP can be applied to problems with the following characteristics.

▶ Optimal substructure:
▶ Principle of optimality applies.
▶ Optimal solution can be derived from subproblems.

▶ Overlapping subproblems:
▶ Subproblems recur many times.
▶ Hence, solutions can be cached and reused.

How is that connected to MDPs?

▶ MDPs satisfy above’s properties:
▶ Bellman equation provides recursive decomposition.
▶ Value function stores and reuses solutions.
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Example: DP vs. exhaustive search (1)

Fig. 3.1: Shortest path problem to travel from Paderborn to Bielefeld: Eshaustive search requires 14
travel segment evaluations since every possible travel route is evaluated independently.
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Example: DP vs. exhaustive search (2)

Fig. 3.2: Shortest path problem to travel from Paderborn to Bielefeld: DP requires only 10 travel
segment evaluations in order to calculate the optimal travel policy due to the reuse of subproblem

results.

Oliver Wallscheid Reinforcement learning 102



Utility of DP in the RL context

DP is used for iterative model-based prediction and control in an MDP.

▶ Prediction:
▶ Input: MDP ⟨X ,U ,P ,R, γ⟩ and policy π
▶ Output: (estimated) value function v̂π ≈ vπ

▶ Control:
▶ Input: MDP ⟨X ,U ,P ,R, γ⟩
▶ Output: (estimated) optimal value function v̂∗π ≈ v∗π or policy π̂∗ ≈ π∗

In both applications DP requires full knowledge of the MDP structure.

▶ Feasibility in real-world engineering applications (model vs. system) is therefore limited.

▶ But: following DP concepts are largely used in modern data-driven RL algorithms.
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Policy evaluation background (1)
▶ Problem: evaluate a given policy π to predict vπ.
▶ Recap: Bellman expectation equation for xk ∈ X is given as

vπ(xk) = Eπ [Gk|Xk = xk]

= Eπ [Rk+1 + γGk+1|Xk = xk]

= Eπ [Rk+1 + γvπ(Xk+1)|Xk = xk] .

▶ Or in matrix form:

vπ
X = rπX + γPπ

xx′vπ
X ,


vπ1
...
vπn


 =



Rπ

1
...
Rπ

n


+ γ



pπ11 · · · pπ1n
...

...
pπn1 · · · pπnn






vπ1
...
vπn


 .

▶ Solving the Bellman expectation equation for vπ requires handling a linear equation system
with n unknowns (i.e., number of states).
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Policy evaluation background (2)

▶ Problem: directly calculating vπ is numerically costly for high-dimensional state spaces (e.g.,
by matrix inversion).

▶ General idea: apply iterative approximations v̂i(xk) = vi(xk) of vπ(xk) with decreasing
errors:

∥vi(xk)− vπ∥∞ → 0 for i = 1, 2, 3, . . . (3.1)

▶ The Bellman equation in matrix form can be rewritten as:

(I − γPπ
xx′)︸ ︷︷ ︸

A

vπ
X︸︷︷︸
ζ

= rπX︸︷︷︸
b

. (3.2)

▶ To iteratively solve this linear equation Aζ = b, one can apply numerous methods such as
▶ General gradient descent,
▶ Richardson iteration,
▶ Kyrlov subspace methods.
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Richardson iteration (1)

In the MDP context, the Richardson iteration became the default solution approach to
iteratively solve:

Aζ = b.

The Richardson iteration is
ζi+1 = ζi + ω(b−Aζi) (3.3)

with ω being a scalar parameter that has to be chosen such that the sequence ζi converges. To
choose ω we inspect the series of approximation errors ei = ζi − ζ and apply it to (3.3):

ei+1 = ei − ωAei = (I − ωA) ei. (3.4)

To evaluate convergence we inspect the following norm:

∥ei+1∥∞ = ∥(I − ωA) ei∥∞ . (3.5)
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Richardson iteration (2)
Since any induced matrix norm is sub-multiplicative, we can approximate (3.5) by the
inequality:

∥ei+1∥∞ ≤ ∥(I − ωA)∥∞ ∥ei∥∞ . (3.6)

Hence, the series converges if
∥(I − ωA)∥∞ < 1. (3.7)

Inserting from (3.2) leads to:

∥(I(1− ω) + ωγPπ
xx′)∥∞ < 1. (3.8)

For ω = 1 we receive:
γ ∥(Pπ

xx′)∥∞ < 1. (3.9)

Since the row elements of Pπ
xx′ always sum up to 1,

γ < 1 (3.10)

follows. Hence, when discounting the Richardson iteration always converges for MDPs even if
we assume ω = 1.
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Iterative policy evaluation by Richardson iteration (1)
Applying the Richardson iteration (3.3) with w = 1 to the Bellman equation (2.17) for any
xk ∈ X at iteration i results in:

vi+1(xk) =
∑

uk∈U
π(uk|xk)


Ru

x + γ
∑

xk+1∈X
puxx′vi(xk+1)


 . (3.11)

Matrix form based on (2.19) then is:

vπ
X ,i+1 = rπX + γPπ

xx′vπ
X ,i . (3.12)

Fig. 3.3: Backup diagram for iterative policy evaluation
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Iterative policy evaluation by Richardson iteration (2)

▶ During one Richardson iteration the ’old’ value of xk is replaced with a ’new’ value from the
’old’ values of the successor state xk+1.
▶ Update vi+1(xk) from vi(xk+1), see Fig. 3.3.
▶ Updating estimates (vi+1) on the basis of other estimates (vi) is often called bootstrapping.

▶ The Richardson iteration can be interpreted as a gradient descent algorithm for solving
(3.2).

▶ This leads to synchronous, full backups of the entire state space X .
▶ Also called expected update because it is based on the expectation over all possible next

states (utilizing full model knowledge).

▶ In subsequent lectures, the expected update will be supplemented by data-driven samples
from the environment.
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Iterative policy evaluation example: forest tree MDP
Let’s reuse the forest tree MDP example from Fig. 2.10 with fifty-fifty policy :

Pπ
xx′ =




0 1−α
2 0 1+α

2
0 0 1−α

2
1+α
2

0 0 1−α
2

1+α
2

0 0 0 1


 , rπX =




0.5
1
2
0


 .

i vi(x = 1) vi(x = 2) vi(x = 3) vi(x = 4)

0 0 0 0 0
1 0.5 1 2 0
2 0.82 1.64 2.64 0
3 1.03 1.85 2.85 0
...

...
...

...
...

∞ 1.12 1.94 2.94 0

Tab. 3.1: Policy evaluation by Richardson iteration (3.12) for forest tree MDP with γ = 0.8 and α = 0.2
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Variant: in-place updates

Instead of applying (3.12) to the entire vector vπ
X ,i+1 in ’one shot’ (synchronous backup), an

elementwise in-place version of the policy evaluation can be carried out:

input: full model of the MDP, i.e., ⟨X ,U ,P ,R, γ⟩ including policy π
parameter: δ > 0 as accuracy termination threshold
init: v0(x) ∀x ∈ X arbitrary except v0(x) = 0 if x is terminal
repeat

∆← 0;
for ∀xk ∈ X do

ṽ ← v̂(xk);

v̂(xk)←
∑

uk∈U π(uk|xk)
(
Ru

x + γ
∑

xk+1∈X puxx′ v̂(xk+1)
)
;

∆← max (∆, |ṽ − v̂(xk)|);
until ∆ < δ;

Algo. 3.1: Iterative policy evaluation using in-place updates (output: estimate of vπ
X )
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In-place policy evaluation updates for forest tree MDP
▶ In-place algorithms allow to update states in a beneficial order.
▶ May converge faster than regular Richardson iteration if state update order is chosen wisely

(sweep through state space).
▶ For forest tree MDP: reverse order, i.e., start with x = 4.
▶ As can be seen in Tab. 3.2 the in-place updates especially converge faster for the ’early

states’.

i vi(x = 1) vi(x = 2) vi(x = 3) vi(x = 4)

0 0 0 0 0
1 1.03 1.64 2 0
2 1.09 1.85 2.64 0
3 1.11 1.91 2.85 0
...

...
...

...
...

∞ 1.12 1.94 2.94 0

Tab. 3.2: In-place updates for forest tree MDP

Oliver Wallscheid Reinforcement learning 112



Table of contents

3 Dynamic programming
Policy evaluation
Policy improvement
Policy and value iteration
Further aspects

Oliver Wallscheid Reinforcement learning 113



General idea on policy improvement
▶ If we know vπ of a given MDP, how to improve the policy?
▶ The simple idea of policy improvement is:

▶ Consider a new (non-policy conform) action u ̸= π(xk).
▶ Follow thereafter the current policy π.
▶ Check the action value of this ’new move’. If it is better than the ’old’ value, take it:

qπ(xk, uk) = E [Rk+1 + γvπ(Xk+1)|Xk = xk, Uk = uk] . (3.13)

Theorem 3.1: Policy improvement

If for any deterministic policy pair π and π′

qπ(x, π
′(x)) ≥ vπ(x) ∀x ∈ X (3.14)

applies, then the policy π′ must be as good as or better than π. Hence, it obtains greater or
equal expected return

vπ′(x) ≥ vπ(x) ∀x ∈ X . (3.15)
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Proof of policy improvement theorem

Start with (3.14) and recursively reapply (3.13):

vπ(xk) ≤ qπ(xk, π
′(xk))

= E
[
Rk+1 + γvπ(Xk+1)|Xk = xk, Uk = π′(xk)

]

= Eπ′ [Rk+1 + γvπ(Xk+1)|Xk = xk]

≤ Eπ′
[
Rk+1 + γqπ(xk+1, π

′(xk+1))|Xk = xk
]

= Eπ′
[
Rk+1 + γEπ′

[
Rk+2 + γvπ(Xk+2)|Xk+1, π

′(xk+1)
]
|Xk = xk

]

= Eπ′
[
Rk+1 + γRk+2 + γ2vπ(Xk+2)|Xk = xk

]

≤ Eπ′
[
Rk+1 + γRk+2 + γ2Rk+3 + γ3vπ(Xk+3)|Xk = xk

]

...

≤ Eπ′
[
Rk+1 + γRk+2 + γ2Rk+3 + γ3Rk+4 + · · · |Xk = xk

]

= vπ′(xk).

(3.16)
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Greedy policy improvement (1)

▶ So far, policy improvement addressed only changing the policy at a single state.

▶ Now, extend this scheme to all states by selecting the best action according to qπ(xk, uk) in
every state (greedy policy improvement):

π′(xk) = argmax
uk∈U

qπ(xk, uk)

= argmax
uk∈U

E [Rk+1 + γvπ(Xk+1)|Xk = xk, Uk = uk]

= argmax
uk∈U

Ru
x + γ

∑

xk+1∈X
puxx′vπ(xk+1) .

(3.17)
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Greedy policy improvement (2)

▶ Each greedy policy improvement takes the best action in a one-step look-ahead search and,
therefore, satisfies Theo. 3.1.

▶ If after a policy improvement step vπ(xk) = vπ′(xk) applies, it follows:

vπ′(xk) = max
uk∈U

E [Rk+1 + γvπ′(Xk+1)|Xk = xk, Uk = uk]

= max
uk∈U

Ru
x + γ

∑

xk+1∈X
puxx′vπ′(xk+1) .

(3.18)

▶ This is the Bellman optimality equation, which guarantees that π′ = π must be optimal
policies.

▶ Although proof for policy improvement theorem was presented for deterministic policies,
transfer to stochastic policies π(uk|xk) is possible.

▶ Takeaway message: policy improvement theorem guarantees finding optimal policies in finite
MDPs (e.g., by DP).
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Concept of policy iteration

▶ Policy iteration combines the previous policy evaluation and policy improvement in an
iterative sequence:

π0 → vπ0 → π1 → vπ1 → · · ·π∗ → vπ∗ (3.19)

▶ Evaluate → improve → evaluate → improve ...

▶ In the ’classic’ policy iteration, each policy evaluation step in (3.19) is fully executed, i.e.,
for each policy πi an exact estimate of vπi is provided either by iterative policy evaluation
with a sufficiently high number of steps or by any other method that fully solves (3.2).
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Policy iteration example: forest tree MDP (1)

Small Medium Large

Gone

▶ Two actions possible in each state:
▶ Wait u = w: let the tree grow.
▶ Cut u = c: gather the wood.
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Policy iteration example: forest tree MDP (2)
Assume α = 0.2 and γ = 0.8 and start with ’tree hater’ initial policy:

1 π0 = π(uk = c|xk) ∀xk ∈ X .
2 Policy evaluation: vπ0

X =
[
1 2 3 0

]T
3 Greedy policy improvement:

π1(xk) = argmax
uk∈U

E [Rk+1 + γvπ0(Xk+1)|Xk = xk, Uk = uk]

= {π(uk = w|xk = 1), π(uk = c|xk = 2), π(uk = c|xk = 3)}

4 Policy evaluation: vπ1
X =

[
1.28 2 3 0

]T
5 Greedy policy improvement:

π2(xk) = argmax
uk∈U

E [Rk+1 + γvπ1(Xk+1)|Xk = xk, Uk = uk]

= {π(uk = w|xk = 1), π(uk = c|xk = 2), π(uk = c|xk = 3)} ,
= π1(xk)

= π∗
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Policy iteration example: forest tree MDP (3)
Assume α = 0.2 and γ = 0.8 and start with ’tree lover’ initial policy:

1 π0 = π(uk = w|xk) ∀xk ∈ X .
2 Policy evaluation: vπ0

X =
[
1.14 1.78 2.78 0

]T
3 Greedy policy improvement:

π1(xk) = argmax
uk∈U

E [Rk+1 + γvπ0(Xk+1)|Xk = xk, Uk = uk]

= {π(uk = w|xk = 1), π(uk = c|xk = 2), π(uk = c|xk = 3)}

4 Policy evaluation: vπ1
X =

[
1.28 2 3 0

]T
5 Greedy policy improvement:

π2(xk) = argmax
uk∈U

E [Rk+1 + γvπ1(Xk+1)|Xk = xk, Uk = uk]

= {π(uk = w|xk = 1), π(uk = c|xk = 2), π(uk = c|xk = 3)}
= π1(xk)

= π∗
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Value iteration (1)

▶ Policy iteration involves full policy evaluation steps between policy improvements.

▶ In large state-space MDPs the full policy evaluation may be numerically very costly.

▶ Value iteration: One step iterative policy evaluation followed by policy improvement.

▶ Allows simple update rule which combines policy improvement with truncated policy
evaluation in a single step:

vi+1(xk) = max
uk∈U

E [Rk+1 + γvi(Xk+1)|Xk = xk, Uk = uk]

= max
uk∈U

Ru
x + γ

∑

xk+1∈X
puxx′vi(xk+1) .

(3.20)
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Value iteration (2)

input: full model of the MDP, i.e., ⟨X ,U ,P ,R, γ⟩
parameter: δ > 0 as accuracy termination threshold
init: v0(x) ∀x ∈ X arbitrary except v0(x) = 0 if x is terminal
repeat

∆← 0;
for ∀xk ∈ X do

ṽ ← v̂(xk);

v̂(xk)← maxuk∈U
(
Ru

x + γ
∑

xk+1∈X puxx′ v̂(xk+1)
)
;

∆← max (∆, |ṽ − v̂(xk)|);
until ∆ < δ;
output: deterministic policy π ≈ π∗, such that

π(xk)← argmaxuk∈U
(
Ru

x + γ
∑

xk+1∈X puxx′ v̂(xk+1)
)
;

Algo. 3.2: Value iteration (note: compared to policy iteration, value iteration does not require an
initial policy but only a state-value guess)
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Value iteration example: forest tree MDP

▶ Assume again α = 0.2 and γ = 0.8.

▶ Similar to in-place update policy evaluation, reverse order and start value iteration with
x = 4.

▶ As shown in Tab. 3.3 value iteration converges in one step (for the given problem) to the
optimal state value.

i vi(x = 1) vi(x = 2) vi(x = 3) vi(x = 4)

0 0 0 0 0
1 1.28 2 3 0
* 1.28 2 3 0

Tab. 3.3: Value iteration for forest tree MDP
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Summarizing DP algorithms

▶ All DP algorithms are based on the state value v(x).
▶ Complexity is O(m · n2) for m actions and n states.
▶ Evaluate all n2 state transitions while considering up to m actions per state.

▶ Could be also applied to action values q(x, u).
▶ Complexity is inferior with O(m2 · n2).
▶ There are up to m2 action values which require n2 state transition evaluations each.

Problem Relevant Equations Algorithm

prediction Bellman expectation eq. policy evaluation

control
Bellman expectation eq. &
greedy policy improvement

policy iteration

control Bellman optimality eq. value iteration

Tab. 3.4: Short overview addressing the treated DP algorithms
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Curse of dimensionality

▶ DP is much more efficient than an exhaustive search over all n states and m actions in
finite MDPs in order to find an optimal policy.
▶ Exhaustive search for deterministic policies: mn evaluations.
▶ DP results in polynomial complexity regarding m and n.

▶ Nevertheless, DP uses full-width backups:
▶ For each state update, every successor state and action is considered.
▶ While utilizing full knowledge of the MDP structure.

▶ Hence, DP is can be effective up to medium-sized MDPs (i.e., million finite states)
▶ For large problems DP suffers from the curse of dimensionality:

▶ Single update step may become computational infeasible.
▶ Also: if continuous states need quantization, number of finite states n grows exponentially with

the number of state variables (assuming fixed number of discretization levels).
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Generalized policy iteration (GPI)
▶ Almost all RL methods are well-described as GPI.
▶ Push-pull: Improving the policy will deteriorate value estimation.
▶ Well balanced trade-off between evaluating and improving is required.

86 Chapter 4: Dynamic Programming

to determine the states to which the DP algorithm applies its updates. At the same time,
the latest value and policy information from the DP algorithm can guide the agent’s
decision making. For example, we can apply updates to states as the agent visits them.
This makes it possible to focus the DP algorithm’s updates onto parts of the state set that
are most relevant to the agent. This kind of focusing is a repeated theme in reinforcement
learning.

4.6 Generalized Policy Iteration

Policy iteration consists of two simultaneous, interacting processes, one making the value
function consistent with the current policy (policy evaluation), and the other making
the policy greedy with respect to the current value function (policy improvement). In
policy iteration, these two processes alternate, each completing before the other begins,
but this is not really necessary. In value iteration, for example, only a single iteration of
policy evaluation is performed in between each policy improvement. In asynchronous DP
methods, the evaluation and improvement processes are interleaved at an even finer grain.
In some cases a single state is updated in one process before returning to the other. As
long as both processes continue to update all states, the ultimate result is typically the
same—convergence to the optimal value function and an optimal policy.

evaluation

improvement

⇡ � greedy(V )

V⇡

V � v⇡

v⇤⇡⇤

We use the term generalized policy iteration (GPI) to re-
fer to the general idea of letting policy-evaluation and policy-
improvement processes interact, independent of the granularity
and other details of the two processes. Almost all reinforcement
learning methods are well described as GPI. That is, all have
identifiable policies and value functions, with the policy always
being improved with respect to the value function and the value
function always being driven toward the value function for the
policy, as suggested by the diagram to the right. If both the
evaluation process and the improvement process stabilize, that
is, no longer produce changes, then the value function and policy
must be optimal. The value function stabilizes only when it
is consistent with the current policy, and the policy stabilizes
only when it is greedy with respect to the current value function.
Thus, both processes stabilize only when a policy has been found that is greedy with
respect to its own evaluation function. This implies that the Bellman optimality equation
(4.1) holds, and thus that the policy and the value function are optimal.

The evaluation and improvement processes in GPI can be viewed as both competing
and cooperating. They compete in the sense that they pull in opposing directions. Making
the policy greedy with respect to the value function typically makes the value function
incorrect for the changed policy, and making the value function consistent with the policy
typically causes that policy no longer to be greedy. In the long run, however, these
two processes interact to find a single joint solution: the optimal value function and an
optimal policy.
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v⇤,⇡⇤

⇡ = greed
y(v)

v,⇡

v = v⇡

One might also think of the interaction between
the evaluation and improvement processes in GPI
in terms of two constraints or goals—for example,
as two lines in two-dimensional space as suggested
by the diagram to the right. Although the real
geometry is much more complicated than this, the
diagram suggests what happens in the real case.
Each process drives the value function or policy
toward one of the lines representing a solution to
one of the two goals. The goals interact because the two lines are not orthogonal. Driving
directly toward one goal causes some movement away from the other goal. Inevitably,
however, the joint process is brought closer to the overall goal of optimality. The arrows
in this diagram correspond to the behavior of policy iteration in that each takes the
system all the way to achieving one of the two goals completely. In GPI one could also
take smaller, incomplete steps toward each goal. In either case, the two processes together
achieve the overall goal of optimality even though neither is attempting to achieve it
directly.

4.7 E�ciency of Dynamic Programming

DP may not be practical for very large problems, but compared with other methods for
solving MDPs, DP methods are actually quite e�cient. If we ignore a few technical details,
then the (worst case) time DP methods take to find an optimal policy is polynomial in
the number of states and actions. If n and k denote the number of states and actions, this
means that a DP method takes a number of computational operations that is less than
some polynomial function of n and k. A DP method is guaranteed to find an optimal
policy in polynomial time even though the total number of (deterministic) policies is kn.
In this sense, DP is exponentially faster than any direct search in policy space could
be, because direct search would have to exhaustively examine each policy to provide the
same guarantee. Linear programming methods can also be used to solve MDPs, and in
some cases their worst-case convergence guarantees are better than those of DP methods.
But linear programming methods become impractical at a much smaller number of states
than do DP methods (by a factor of about 100). For the largest problems, only DP
methods are feasible.

DP is sometimes thought to be of limited applicability because of the curse of dimen-
sionality, the fact that the number of states often grows exponentially with the number
of state variables. Large state sets do create di�culties, but these are inherent di�culties
of the problem, not of DP as a solution method. In fact, DP is comparatively better
suited to handling large state spaces than competing methods such as direct search and
linear programming.

In practice, DP methods can be used with today’s computers to solve MDPs with
millions of states. Both policy iteration and value iteration are widely used, and it is not
clear which, if either, is better in general. In practice, these methods usually converge
much faster than their theoretical worst-case run times, particularly if they are started

Fig. 3.4: Interpreting generalized policy iteration to switch back and forth between (arbitrary)
evaluations and improvement steps (source: R. Sutton and G. Barto, Reinforcement learning: an

introduction, 2018, CC BY-NC-ND 2.0)
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Summary: what you’ve learned in this lecture

▶ DP is applicable for prediction and control problems in MDPs.

▶ But requires always full knowledge about the environment (i.e., it is a model-based solution).

▶ DP is more efficient than exhaustive search.

▶ But suffers from the curse of dimensionality for large MDPs.

▶ (Iterative) policy evaluations and (greedy) improvements solve MDPs.

▶ Both steps can be combined via value iteration.

▶ This idea of (generalized) policy iteration is a basic scheme of RL.

▶ Implementing DP algorithms comes with many degrees of freedom regarding the update
order.
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Monte Carlo methods vs. dynamic programming

Dynamic programming:

▶ Model-based prediction and control

▶ Planning inside known MDPs

Monte Carlo methods:

▶ Model-free prediction and control

▶ Estimating value functions and optimize policies in unknown MDPs

▶ But: still assuming finite MDP problems (or problems close to that)

▶ In general: broad class of computational algorithms relying on repeated random sampling to
obtain numerical results
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General Monte Carlo (MC) methods’ characteristics
▶ Learning from experience, i.e., sequences of samples ⟨xk, uk, rk+1⟩
▶ Main concept: Estimation by averaging sample returns
▶ To guarantee well-defined returns: limited to episodic tasks
▶ Consequence: Estimation and policy updates only possible in an episode-by-episode way

compared to step-by-step (online)

Fig. 4.1: Monte Carlo port
(source: www.flickr.com, by Miguel Mendez CC BY 2.0)
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Task description and basic solution

MC prediction problem statement

▶ Estimate state value vπ(x) for a given policy π.

▶ Available are samples ⟨xk,j , uk,j , rk+1,j⟩ for episodes j = 1, . . . , J .

MC solution approach:

▶ Average returns after visiting state xk over episodes j = 1, . . .

vπ(xk) ≈ v̂π(xk) =
1

J

J∑

j=1

gk,j =
1

J

J∑

j=1

Tj∑

i=0

γirk+i+1,j . (4.1)

▶ Above, Tj denotes the terminating time step of each episode j.
▶ First-visit MC: Apply (4.1) only to the first state visit per episode.
▶ Every-visit MC: Apply (4.1) each time visiting a certain state per episode (if a state is

visited more than one time per episode).
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Algorithmic implementation: MC-based prediction

input: a policy π to be evaluated
output: estimate of vπ

X (i.e., value estimate for all states x ∈ X )
init: v̂(x) ∀x ∈ X arbitrary except v0(x) = 0 if x is terminal

l(x)← an empty list for every x ∈ X
for j = 1, . . . , J episodes do

Generate an episode following π: x0, u0, r1, . . . , xTj , uTj , rTj+1 ;

Set g ← 0;
for k = Tj − 1, Tj − 2, Tj − 3, . . . , 0 time steps do

g ← γg + rk+1;
if xk /∈ ⟨x0, x1, . . . , xk−1⟩ then

Append g to list l(xk);
v̂(xk)← average( l(xk) );

Algo. 4.1: MC state-value prediction (first visit)
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Incremental implementation

▶ Algo. 4.1 is inefficient due to large memory demand.

▶ Better: use incremental / recursive implementation.

▶ The sample mean µ1, µ2, . . . of an arbitrary sequence g1, g2, . . . is:

µJ =
1

J

J∑

i=1

gi =
1

J

[
gJ +

J−1∑

i=1

gi

]

=
1

J
[gJ + (J − 1)µJ−1] = µJ−1 +

1

J
[gJ − µJ−1] .

(4.2)

▶ If a given decision problem is non-stationary, using a forgetting factor α ∈ {R|0 < α < 1}
allows for dynamic adaption:

µJ = µJ−1 + α [gJ − µJ−1] . (4.3)
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Statistical properties of MC-based prediction (1)
First-time visit MC:

▶ Each return sample gJ is independent from the others since they were drawn from separate
episodes.

▶ One receives i.i.d. data to estimate E [v̂π] and consequently this is bias-free.
▶ The estimate’s variance Var [v̂π] drops with 1/n (n: available samples).

Every-time visit MC:

▶ Each return sample gJ is not independent from the others since they might be obtained
from same episodes.

▶ One receives non-i.i.d. data to estimate E [v̂π] and consequently this is biased for any
n <∞.

▶ Only in the limit n→∞ one receives (vπ(x)− E [v̂π(x)])→ 0.

More information: S. Singh and R. Sutton, “Reinforcement Learning with Replacing Eligibility Traces”, Machine
Learning, Vol. 22, pp. 123-158, 1996
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Statistical properties of MC-based prediction (2)

▶ State-value estimates for each state are independent.

▶ One estimate does not rely on the estimate of other states
(no bootstrapping compared to DP).

▶ Makes MC particularly attractive when one requires state-value knowledge of only one or
few states.
▶ Hence, generating episodes starting from the state of interest.

Fig. 4.2: Back-up diagrams for DP (left) and MC (right) prediction: shallow one-step back-ups with
bootstrapping vs. deep back-ups over full epsiodes
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MC-based prediction example: forest tree MDP (1)

Let’s reuse the forest tree MDP example with fifty-fifty policy and discount factor γ = 0.8 plus
disaster probability α = 0.2:

Small Medium Large

Gone

Fig. 4.3: Forest MDP with fifty-fifty-policy including state values
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MC-based prediction example: forest tree MDP (2)

0 50 100 150 200
0.2

0.4

0.6

0.8

1

1.2

1.4

Fig. 4.4: State-value estimate of forest tree MDP initial state using MC-based prediction over the
number of episodes being evaluated (mean and standard deviation are calculated based on 2000

independent runs)
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MC estimation of action values
Is a model available (i.e., tuple ⟨X ,U ,P ,R, γ⟩)?
▶ Yes: state values plus one-step prediction deliver optimal policy.

▶ No: action values are very useful to directly obtain optimal choices.

▶ Recap policy improvement from last lecture.

Estimating qπ(x, u) using MC approach:

▶ Analog to state values summarized in Algo. 4.1.

▶ Only small extension: a visit refers to a state-action pair (x, u).

▶ First-visit and every-visit variants exist.

Possible problem when following a deterministic policy π:

▶ Certain state-action pairs (x, u) are never visited.

▶ Missing degree of exploration.

▶ Workaround: exploring starts, i.e., starting episodes in random state-action pairs (x, u) and
thereafter following π.
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Applying generalized policy iteration (GPI) to MC control
GPI concept is directly applied to MC framework using action values:

π0 → q̂π0 → π1 → q̂π1 → · · ·π∗ → q̂π∗ . (4.4)

▶ Degree of freedom: Choose number of episodes to approximate q̂πi .
▶ Policy improvement is done by greedy choices:

π(x) = argmax
u

q(x, u) ∀x ∈ X . (4.5)

5.3. Monte Carlo Control 97

to consider only policies that are stochastic with a nonzero probability of selecting all
actions in each state. We discuss two important variants of this approach in later sections.
For now, we retain the assumption of exploring starts and complete the presentation of a
full Monte Carlo control method.

Exercise 5.3 What is the backup diagram for Monte Carlo estimation of q⇡? ⇤

5.3 Monte Carlo Control

We are now ready to consider how Monte Carlo estimation can be used in control, that
is, to approximate optimal policies. The overall idea is to proceed according to the same
pattern as in the DP chapter, that is, according to the idea of generalized policy iteration

evaluation

improvement

⇡ Q

⇡ � greedy(Q)

Q � q⇡

(GPI). In GPI one maintains both an approximate policy and
an approximate value function. The value function is repeatedly
altered to more closely approximate the value function for the
current policy, and the policy is repeatedly improved with respect
to the current value function, as suggested by the diagram to
the right. These two kinds of changes work against each other to
some extent, as each creates a moving target for the other, but
together they cause both policy and value function to approach
optimality.

To begin, let us consider a Monte Carlo version of classical policy iteration. In
this method, we perform alternating complete steps of policy evaluation and policy
improvement, beginning with an arbitrary policy ⇡0 and ending with the optimal policy
and optimal action-value function:

⇡0
E�! q⇡0

I�! ⇡1
E�! q⇡1

I�! ⇡2
E�! · · · I�! ⇡⇤

E�! q⇤,

where
E�! denotes a complete policy evaluation and

I�! denotes a complete policy
improvement. Policy evaluation is done exactly as described in the preceding section.
Many episodes are experienced, with the approximate action-value function approaching
the true function asymptotically. For the moment, let us assume that we do indeed
observe an infinite number of episodes and that, in addition, the episodes are generated
with exploring starts. Under these assumptions, the Monte Carlo methods will compute
each q⇡k

exactly, for arbitrary ⇡k.

Policy improvement is done by making the policy greedy with respect to the current
value function. In this case we have an action-value function, and therefore no model is
needed to construct the greedy policy. For any action-value function q, the corresponding
greedy policy is the one that, for each s 2 S, deterministically chooses an action with
maximal action-value:

⇡(s)
.
= arg max

a
q(s, a). (5.1)

Policy improvement then can be done by constructing each ⇡k+1 as the greedy policy
with respect to q⇡k

. The policy improvement theorem (Section 4.2) then applies to ⇡k

Fig. 4.5: Transferring GPI to MC-based control
(source: R. Sutton and G. Barto,

Reinforcement learning: an introduction, 2018,
CC BY-NC-ND 2.0)

Oliver Wallscheid Reinforcement learning 143

https://creativecommons.org/licenses/by-nc-nd/2.0/


Policy improvement theorem

Assuming that one is operating in an unknown MDP, the policy improvement theorem
Theo. 3.1 is still valid for MC-based control:

Policy improvement for MC-based control

qπi(x, πi+1(x)) = qπi(x, argmax
u

qπi(x, u))

= max
u

qπi(x, u)

≥ qπi(x, πi(x))

≥ vπi(x).

(4.6)

▶ Each πi+1 is uniformly better or just as good (if optimal) as πi.
▶ Assumption: All state-action pairs are evaluated due to sufficient exploration.

▶ For example using exploring starts.
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Algorithmic implementation: MC-based control

output: Optimal deterministic policy π∗

init: πi=0(x) ∈ U arbitrarily ∀x ∈ X
q̂(x, u) arbitrarily ∀ {x ∈ X , u ∈ U}
n(x, u)← an empty list for state-action visits ∀ {x ∈ X , u ∈ U}

repeat
i← i+ 1 ;
Choose {x0, u0} randomly such that all pairs have probability > 0 ;
Generate an episode from {x0, u0} following πi until termination step Ti;
Set g ← 0;
for k = Ti − 1, Ti − 2, Ti − 3, . . . , 0 time steps do

g ← γg + rk+1;
if {xk, uk} /∈ ⟨{x0, u0} , . . . , {xk−1, uk−1}⟩ then

n(xk, uk)← n(xk, uk) + 1;
q̂(xk, uk)← q̂(xk, uk) + 1/n(xk, uk) · (g − q̂(xk, uk));
πi(xk)← argmaxu q̂(xk, u);

until πi+1 = πi;

Algo. 4.2: MC-based control using exploring starts (first visit)
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Off- and on-policy learning

▶ On-policy learning
▶ Evaluate or improve the policy used to make decisions.
▶ Agent picks own actions.
▶ Exploring starts (ES) is an on-policy method example.
▶ However: ES is a restrictive assumption and not always applicable

(in some cases the starting state-action pair cannot be choosen freely).

▶ Off-policy learning
▶ Evaluate or improve a policy different from that used to generate data.
▶ Agent cannot apply own actions.
▶ Will be focused in the next sections.
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ε-greedy as an on-policy alternative

▶ Exploration requirement:
▶ Visit all state-action pairs with probability:

π(u|x) > 0 ∀ {x ∈ X , u ∈ U} . (4.7)

▶ Policies with this characteristic are called: soft.
▶ Level of exploration can be tuned during the learning process.

▶ ε-greedy on-policy learning
▶ With probability ε the agent’s choice (i.e., the policy output) is overwritten with a random action.
▶ Probability of all non-greedy actions:

ε/|U| . (4.8)

▶ Probability of the greedy action:
1− ε+ ε/|U| . (4.9)

▶ Above, |U| is the cardinality of the action space.

Oliver Wallscheid Reinforcement learning 148



Algorithmic implementation ε-greedy MC-control
output: Optimal ε-greedy policy π∗(u|x), parameter: ε ∈ {R|0 < ε << 1}
init: πi=0(u|x) arbitrarily soft ∀ {x ∈ X , u ∈ U}

q̂(x, u) arbitrarily ∀ {x ∈ X , u ∈ U}
n(x, u)← an empty list counting state-action visits ∀ {x ∈ X , u ∈ U}

repeat
Generate an episode following πi: x0, u0, r1, . . . , xTj , uTj , rTj+1 ;
i← i+ 1 ;
Set g ← 0;
for k = Ti − 1, Ti − 2, Ti − 3, . . . , 0 time steps do

g ← γg + rk+1;
if {xk, uk} /∈ ⟨{x0, u0} , . . . , {xk−1, uk−1}⟩ then

n(xk, uk)← n(xk, uk) + 1;
q̂(xk, uk)← q̂(xk, uk) + 1/n(xk, uk) · (g − q̂(xk, uk));
ũ← argmaxu q̂(xk, u);

πi(u|xk)←
{
1− ε+ ε/|U|, u = ũ

ε/|U|, u ̸= ũ
;

until πi+1 = πi;

Algo. 4.3: MC-based control using ε-greedy approach
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ε-greedy policy improvement (1)

Theorem 4.1: Policy improvement for ε-greedy policy

Given an MDP, for any ε-greedy policy π the ε-greedy policy π′ with respect to qπ is an im-
provement, i.e., vπ′ > vπ ∀x ∈ X .
Small proof:

qπ(x, π
′(x)) =

∑

u

π′(u|x)qπ(x, u)

=
ε

|U|
∑

u

qπ(x, u) + (1− ε)max
u

qπ(x, u)

≥ ε

|U|
∑

u

qπ(x, u) + (1− ε)
∑

u

π(u|x)− ε
|U|

1− ε
qπ(x, u).

(4.10)

In the inequality line, the second term is the weighted sum over action values given an ε-greedy
policy. This weighted sum will be always smaller or equal than maxu qπ(x, u).
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ε-greedy policy improvement (2)

Continuation:

qπ(x, π
′(x)) ≥ ε

|U|
∑

u

qπ(x, u) + (1− ε)
∑

u

π(u|x)− ε
|U|

1− ε
qπ(x, u)

=
ε

|U|
∑

u

(qπ(x, u)− qπ(x, u)) +
∑

u

π(u|x)qπ(x, u)

=
∑

u

π(u|x)qπ(x, u)

= vπ(x).

(4.11)

▶ Policy improvement theorem is still valid when comparing ε-greedy policies against each
other.

▶ But: There might be a non-ε-greedy policy which is better.
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MC-based control example: forest tree MDP (1)
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Fig. 4.6: Different estimates of forest tree MDP (α = 0.2, γ = 0.8) using MC control with ε = 0.2 over
the number of episodes. Mean is red and standard deviation is light blue, both calculated based on 2000

independent uns.
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MC-based control example: forest tree MDP (2)
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Fig. 4.7: Different estimates of forest tree MDP (α = 0.2, γ = 0.8) using MC control with ε = 0.05 over
the number of episodes. Mean is red and standard deviation is light blue, both calculated based on 2000

independent runs.

Oliver Wallscheid Reinforcement learning 153



MC-based control example: forest tree MDP (3)

Observations on forest tree MDP with ε-greedy MC-based control:

▶ Rather slow convergence rate: quite a number of episodes is required.

▶ Significant uncertainty present in a single sequence.

▶ Later states are less often visited and, therefore, more uncertain.

▶ Exploration is controlled by ε: in a totally greedy policy the state x = 3 is not visited at all
(cf. Fig. 2.16). With ε-greedy this state is visited occasionally.

▶ Nevertheless, the above figures highlight that MC-based control for the forest tree MDP
tend towards the optimal policies discovered by dynamic programming (cf. Tab. 3.3).
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Greedy in the limit with infinite exploration (GLIE)

Definition 4.1: Greedy in the limit with infinite exploration (GLIE)

A learning policy π is called GLIE if it satisfies the following two properties:

▶ If a state is visited infinitely often, then each action is chosen infinitely often:

lim
i→∞

πi(u|x) = 1 ∀ {x ∈ X , u ∈ U} . (4.12)

▶ In the limit (i→∞) the learning policy is greedy with respect to the learned action value:

lim
i→∞

πi(u|x) = π(x) = argmax
u

q(x, u) ∀x ∈ X . (4.13)
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GLIE Monte Carlo control

Theorem 4.2: Optimal decision using MC-control with ε-greedy

MC-based control using ε-greedy exploration is GLIE, if ε is decreased at rate

εi =
1

i
(4.14)

with i being the increasing episode index. In this case,

q̂(x, u) = q∗(x, u) (4.15)

follows.

Remarks:

▶ Limited feasibility: infinite number of episodes required.

▶ ε-greedy is an undirected and unmonitored random exploration strategy. Can that be the
most efficient way of learning?
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Off-policy learning background

Drawback of on-policy learning:

▶ Only a compromise: comes with inherent exploration but at the cost of learning action
values for a near-optimal policy.

Idea off-policy learning:

▶ Use two separated policies:
▶ Behavior policy b(u|x): explores in order to generate experience.
▶ Target policy π(u|x): learns from that experience to become the optimal policy.

▶ Use cases:
▶ Learn from observing humans or other agents/controllers.
▶ Re-use experience generated from old policies (π0, π1, . . .).
▶ Learn about multiple policies while following one policy.
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Off-policy prediction problem statement

MC off-policy prediction problem statement

▶ Estimate vπ and/or qπ while following b(u|x).
▶ Both policies are considered fixed (prediction assumption).

Requirement:

▶ Coverage: Every action taken under π must be (at least occasionally) taken under b, too.
Hence, it follows:

π(u|x) > 0⇒ b(u|x) > 0 ∀ {x ∈ X , u ∈ U} . (4.16)

▶ Consequences from that:
▶ In any state b is not identical to π, b must be stochastic.
▶ Nevertheless: π might be deterministic (e.g., control applications) or stochastic.
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Importance sampling
Probability of observing a certain trajectory on random variables Uk, Xk+1, Uk+1, . . . , XT

starting in Xk while following π:

P [Uk, Xk+1, Uk+1, . . . , XT |Xk, π] = π(Uk|Xk)p(Xk+1|Xk, Uk)π(Uk+1|Xk+1) · · ·

=

T−1∏

k

π(Uk|Xk)p(Xk+1|Xk, Uk).
(4.17)

Above p is the state-transition probability (cf. Def. 2.5).

Definition 4.2: Importance sampling ratio

The relative probability of a trajectory under the target and behavior policy, the importance
sampling ratio, from sample step k to T is:

ρk:T =

∏T−1
k π(Uk|Xk)p(Xk+1|Xk, Uk)∏T−1
k b(Uk|Xk)p(Xk+1|Xk, Uk)

=

∏T−1
k π(Uk|Xk)∏T−1
k b(Uk|Xk)

. (4.18)

Oliver Wallscheid Reinforcement learning 160



Importance sampling for Monte Carlo prediction

Definition 4.3: State-value estimation via Monte Carlo importance sampling

Estimating the state value vπ following a behavior policy b using (ordinary) importance sampling
(OIS) results in scaling and averaging the sampled returns by the importance sampling ratio per
episode:

v̂π(xk) =

∑
k∈T (xk)

ρk:T (k)gk

|T (xk)|
. (4.19)

Notation remark:

▶ T (xk): set of all time steps in which the state xk is visited.
▶ T (k): Termination of a specific episode starting from k.

General remark:

▶ From (4.18) it can be seen that v̂ is bias-free (first-visit assumption).
▶ However, if ρ is large (distinctly different policies) the estimate’s variance is large (i.e.,

uncertain for small numbers of samples).
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Off-policy Monte Carlo control

Just put everything together:

▶ MC-based control utilizing GPI (cf. Fig. 4.5),

▶ Off-policy learning based on importance sampling (or variants like weighted importance
sampling, cf. Barto/Sutton book chapter 5.5).

Requirement for off-policy MC-based control:

▶ Coverage: behavior policy b has nonzero probability of selecting actions that might be taken
by the target policy π.

▶ Consequence: behavior policy b is soft (e.g., ε-soft).
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Summary: what you’ve learned today

▶ MC methods allow model-free learning of value functions and optimal policies from
experience in the form of sampled episodes.

▶ Using deep back-ups over full episodes, MC is largely based on averaging returns.

▶ MC-based control reuses generalized policy iteration (GPI), i.e., mixing policy evaluation
and improvement.

▶ Maintaining sufficient exploration is important:
▶ Exploring starts: not feasible in all applications but simple.
▶ On-policy ε-greedy learning: trade-off between optimality and exploration cannot be resolved

easily.
▶ Off-policy learning: agent learns about a (possibly deterministic) target policy from an

exploratory, soft behavior policy.

▶ Importance sampling transforms expectations from the behavior to the target policy.
▶ This estimation task comes with a bias-variance-dilemma.
▶ Slow learning can result from ineffective experience usage in MC methods.
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Temporal-difference learning and the previous methods

Temporal-difference (TD) learning combines the previous ideas introduced in DP and MC:

▶ From Monte Carlo (MC) methods: Learns directly from experience.

▶ From dynamic programming (DP): Updates estimates based on other learned estimates
(bootstrap).

Hence, TD characteristics are:

▶ Allows model-free prediction and control in unknown MDPs.

▶ Updates policy evaluation and improvement in an online fashion (i.e., not per episode) by
bootstrapping.

▶ Still assumes finite MDP problems (or problems close to that).

Oliver Wallscheid Reinforcement learning 165



General TD prediction updates
Recap the every-visit MC update rule (4.3) for non-stationary problems:

v̂(xk)← v̂(xk) + α [gk − v̂(xk)] . (5.1)

▶ α ∈ {R|0 < α < 1} is the forgetting factor / step size.
▶ gk is the target of the incremental update rule.
▶ To execute (5.1) one has to wait until the episode’s termination to get gk.

One-step TD / TD(0) update

v̂(xk)← v̂(xk) + α [rk+1 + γv̂(xk+1)− v̂(xk)] (5.2)

▶ Here, the TD target is rk+1 + γv̂(xk+1).

▶ TD is bootstrapping: estimate v̂(xk) based on v̂(xk+1).

▶ Delay time of one step and no need to wait until the episode’s end.
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Algorithmic implementation: TD-based prediction

input: a policy π to be evaluated
output: estimate of vπ

X (i.e., value estimates for all states x ∈ X )
init: v̂(x) ∀x ∈ X arbitrary except v0(x) = 0 if x is terminal
for j = 1, . . . , J episodes do

Initialize x0;
for k = 0, 1, 2 . . . time steps do

uk ← apply action from π(xk);
Observe xk+1 and rk+1;
v̂(xk)← v̂(xk) + α [rk+1 + γv̂(xk+1)− v̂(xk)] ;
Exit loop if xk+1 is terminal;

Algo. 5.1: Tabular TD(0) prediction

▶ Note that the algorithm can be directly adapted to action-value prediction as it will be used
for the later TD-based control approaches.
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TD error

Fig. 5.1: Back up diagram
for TD(0)

▶ TD as well as MC use sample updates.

▶ Looking ahead to a sample successor state including its value and
the reward along the way to compute a backed up value estimate.

The TD error is:
δk = rk+1 + γv̂(xk+1)− v̂(xk). (5.3)

▶ δk is available at time step k + 1.

▶ Iteratively δk converges towards zero.

Oliver Wallscheid Reinforcement learning 168



TD error and its relation to the MC error
Let’s assume that the TD(0) estimate v̂(x) is not changing over one episode as it would be for
MC prediction:

gk − v̂(xk)︸ ︷︷ ︸
MC-error

= rk+1 + γgk+1 − v̂(xk) + γv̂(xk+1)− γv̂(xk+1)

= δk + γ(gk+1 − v̂(xk+1))

= δk + γδk+1 + γ2(gk+2 − v̂(xk+2))

= δk + γδk+1 + γ2δk+2 + γ3(gk+3 − v̂(xk+3)) = · · ·

=

T−1∑

i=k

γi−kδi.

(5.4)

▶ MC error is the discounted sum of TD errors in this simplified case.
▶ If v̂(x) is updated during an episode (as expected in TD(0)), the above identity only holds

approximately.
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Overview of the RL methods considered so far190 Chapter 8: Planning and Learning with Tabular Methods

width
of update

depth
(length)

of update

Temporal-
difference

learning

Dynamic
programming

Monte
Carlo

...

Exhaustive
search

Figure 8.11: A slice through the space of reinforcement learning methods, highlighting the
two of the most important dimensions explored in Part I of this book: the depth and width of
the updates.

ranging from one-step TD updates to full-return Monte Carlo updates. Between these
is a spectrum including methods based on n-step updates (and in Chapter 12 we will
extend this to mixtures of n-step updates such as the �-updates implemented by eligibility
traces).

Dynamic programming methods are shown in the extreme upper-right corner of the
space because they involve one-step expected updates. The lower-right corner is the
extreme case of expected updates so deep that they run all the way to terminal states
(or, in a continuing task, until discounting has reduced the contribution of any further
rewards to a negligible level). This is the case of exhaustive search. Intermediate methods
along this dimension include heuristic search and related methods that search and update
up to a limited depth, perhaps selectively. There are also methods that are intermediate
along the horizontal dimension. These include methods that mix expected and sample
updates, as well as the possibility of methods that mix samples and distributions within
a single update. The interior of the square is filled in to represent the space of all such
intermediate methods.

A third dimension that we have emphasized in this book is the binary distinction
between on-policy and o↵-policy methods. In the former case, the agent learns the value
function for the policy it is currently following, whereas in the latter case it learns the

Fig. 5.2: Comparison of the RL methods considered so far with regard to the update rules (source: R.
Sutton and G. Barto, Reinforcement learning: an introduction, 2018, CC BY-NC-ND 2.0)
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Driving home example6.1. TD Prediction 123
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Figure 6.1: Changes recommended in the driving home example by Monte Carlo methods (left)
and TD methods (right).

estimate that it will take another 25 minutes to get home, for a total of 50 minutes. As
you wait in tra�c, you already know that your initial estimate of 30 minutes was too
optimistic. Must you wait until you get home before increasing your estimate for the
initial state? According to the Monte Carlo approach you must, because you don’t yet
know the true return.

According to a TD approach, on the other hand, you would learn immediately, shifting
your initial estimate from 30 minutes toward 50. In fact, each estimate would be shifted
toward the estimate that immediately follows it. Returning to our first day of driving,
Figure 6.1 (right) shows the changes in the predictions recommended by the TD rule
(6.2) (these are the changes made by the rule if ↵ = 1). Each error is proportional to the
change over time of the prediction, that is, to the temporal di↵erences in predictions.

Besides giving you something to do while waiting in tra�c, there are several computa-
tional reasons why it is advantageous to learn based on your current predictions rather
than waiting until termination when you know the actual return. We briefly discuss some
of these in the next section.

Exercise 6.2 This is an exercise to help develop your intuition about why TD methods
are often more e�cient than Monte Carlo methods. Consider the driving home example
and how it is addressed by TD and Monte Carlo methods. Can you imagine a scenario
in which a TD update would be better on average than a Monte Carlo update? Give
an example scenario—a description of past experience and a current state—in which
you would expect the TD update to be better. Here’s a hint: Suppose you have lots of
experience driving home from work. Then you move to a new building and a new parking
lot (but you still enter the highway at the same place). Now you are starting to learn
predictions for the new building. Can you see why TD updates are likely to be much
better, at least initially, in this case? Might the same sort of thing happen in the original
scenario? ⇤

Fig. 5.3: Updates by MC (left) and TD (right) for α = 1 (source: R. Sutton and G. Barto,
Reinforcement learning: an introduction, 2018, CC BY-NC-ND 2.0)

▶ TD can learn before knowing the final outcome.
▶ TD learns after every step.
▶ MC must wait until the episode’s end.

▶ TD could learn without a final outcome.
▶ MC is only applicable to episodic tasks.
▶ TD can learn from incomplete sequences, i.e., in continuing tasks.
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TD(0) prediction example: forest tree MDP (1)
Let’s reuse the forest tree MDP example with fifty-fifty policy and discount factor γ = 0.8 plus
disaster probability α = 0.2:

Small Medium Large

Gone

Fig. 5.4: Forest MDP with fifty-fifty-policy including state values
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TD(0) prediction example: forest tree MDP (2)
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Fig. 5.5: State-value estimate of forest tree MDP using TD(0) prediction over the number of episodes
being evaluated (mean and standard deviation are calculated based on 2000 independent runs)
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TD(0) vs. MC prediction example: forest tree MDP (1)
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Fig. 5.6: Averaged mean of state-value estimates of forest tree MDP using TD(0) and MC over 1000
independent runs with v̂0(x) = 0∀x ∈ X

Oliver Wallscheid Reinforcement learning 174



TD(0) vs. MC prediction example: forest tree MDP (2)
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0
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Fig. 5.7: Averaged mean of state-value estimates of forest tree MDP using TD(0) and MC over 1000
independent runs with v̂0(x) ≈ v(x)∀x ∈ X
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Convergence of TD(0)

Theorem 5.1: Convergence of TD(0)

Given a finite MDP and a fixed π the state-value estimate of TD(0) converges to the true vπ

▶ in the mean for a constant but sufficiently small step-size α and

▶ with probability 1 if the step-size holds the condition

∞∑

k=1

αk =∞ and
∞∑

k=1

α2
k <∞. (5.5)

Above k is the sample index (i.e., how often the TD update was applied).

▶ In particular, αk = 1
k meets the condition (5.5).

▶ Often TD(0) converges faster than MC, but there is no guarantee.

▶ TD(0) can be more sensitive to bad initializations v̂0(x) compared to MC.
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Batch training
▶ If experience →∞ both MC and TD converge v̂(x)→ v(x).
▶ But how to handle limited experience, i.e., a finite set of episodes

x1,1, u1,1, r2,1, . . . , xT1,1,

x1,2, u1,2, r2,2, . . . , xT2,2,

...

x1,j , u1,j , r2,j , . . . , xTj ,j ,

...

x1,J , u1,J , r2,J , . . . , xTJ ,J .

Batch training

▶ Process all available episodes j ∈ [1, J ] repeatedly to MC and TD.

▶ If the step size α is sufficiently small both will converge to certain steady-state values.
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Batch training: AB-example (1)

6.3. Optimality of TD(0) 127

the learning curves shown in Figure 6.2. Note that the batch TD method was consistently
better than the batch Monte Carlo method.

. 0

.05

. 1

.15

. 2

.25

0 25 50 75 100

TD
MC

BATCH TRAINING

Walks / Episodes

RMS error,
averaged
over states

Figure 6.2: Performance of TD(0) and constant-↵
MC under batch training on the random walk task.

Under batch training, constant-↵
MC converges to values, V (s), that
are sample averages of the actual re-
turns experienced after visiting each
state s. These are optimal estimates
in the sense that they minimize the
mean-squared error from the actual
returns in the training set. In this
sense it is surprising that the batch
TD method was able to perform
better according to the root mean-
squared error measure shown in the
figure to the right. How is it that
batch TD was able to perform better
than this optimal method? The an-
swer is that the Monte Carlo method
is optimal only in a limited way, and
that TD is optimal in a way that is more relevant to predicting returns.

Example 6.4: You are the Predictor Place yourself now in the role of the predictor
of returns for an unknown Markov reward process. Suppose you observe the following
eight episodes:

A, 0, B, 0 B, 1
B, 1 B, 1
B, 1 B, 1
B, 1 B, 0

This means that the first episode started in state A, transitioned to B with a reward of
0, and then terminated from B with a reward of 0. The other seven episodes were even
shorter, starting from B and terminating immediately. Given this batch of data, what
would you say are the optimal predictions, the best values for the estimates V (A) and
V (B)? Everyone would probably agree that the optimal value for V (B) is 3

4 , because six
out of the eight times in state B the process terminated immediately with a return of 1,
and the other two times in B the process terminated immediately with a return of 0.

But what is the optimal value for the estimate V (A) given this data? Here there are

A B

r = 1

100%

75%

25%

r = 0

r = 0

two reasonable answers. One is to observe that 100% of the
times the process was in state A it traversed immediately to
B (with a reward of 0); and because we have already decided
that B has value 3

4 , therefore A must have value 3
4 as well.

One way of viewing this answer is that it is based on first
modeling the Markov process, in this case as shown to the
right, and then computing the correct estimates given the
model, which indeed in this case gives V (A) = 3

4 . This is

Fig. 5.8: Example environment (source: R. Sutton and G.
Barto, Reinforcement learning: an introduction, 2018, CC

BY-NC-ND 2.0)

▶ Only two states: A, B

▶ No discounting

▶ 8 episodes of experience available
(see Tab. 5.1)

▶ What is v̂(A) and v̂(B) using
batch training TD(0) and MC?

A, 0, B, 0 B,1

B,1 B,1

B,1 B,1

B,1 B,0

Tab. 5.1: Example state-reward sequences for Fig. 5.8
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Batch training: AB-example (2)
First, recap MC and TD(0) update rules:

MC : v̂(xk)← v̂(xk) + α [gk − v̂(xk)] ,

TD : v̂(xk)← v̂(xk) + α [rk+1 + γv̂(xk+1)− v̂(xk)] .

Then, in steady state one receives:

MC : 0 = α [gk − v̂(xk)] = gk − v̂(xk),

TD : 0 = α [rk+1 + γv̂(xk+1)− v̂(xk)] = rk+1 + γv̂(xk+1)− v̂(xk).

Considering a batch learning sweep over j = 1, . . . , J episodes:

MC : 0 =
J∑

j=1

gk,j − v̂(xk,j),

TD : 0 =

J∑

j=1

rk+1,j + γv̂(xk+1,j)− v̂(xk,j).
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Batch training: AB-example (3)

Apply the previous equations first to state B. Since B is a terminal state, v̂(xk+1) = 0 and
gk,j = rk+1,j apply, i.e., the MC and TD updates are identical for B:

MC|x=B : 0 =

J∑

j=1

gk,j − v̂(xk,j) ⇔ v̂(B) =
1

J

J∑

j=1

gk,j ,

TD|x=B : 0 =

J∑

j=1

rk+1,j − v̂(xk,j) ⇔ v̂(B) =
1

J

J∑

j=1

gk,j .

This is the average return of the available episodes from Tab. 5.1 , i.e., 6× 1 and 2× 0:

v̂(B)|MC = v̂(B)|TD =
6

8
= 0.75 . (5.6)
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Batch training: AB-example (4)
Now consider state A assuming the steady state of batch learning process:

▶ The instantaneous reward is always r = 0.
▶ The TD bootstrap estimate of B is v̂(xk+1,j) = v̂(B) = 3

4 .

MC : 0 =

J∑

j=1

gk,j − v̂(xk,j) =

J∑

j=1

gk,j − v̂(A)

TD : 0 =

J∑

j=1

rk+1,j + γv̂(xk+1,j)− v̂(xk,j) =

J∑

j=1

γv̂(B)− v̂(A).

Looking at Tab. 5.1 there is only one episode visiting state A, where the sample return is
gk,j = 0. Hence, it follows:

v̂(A)|MC = 0, v̂(A)|TD = γv̂(B) =
3

4
.

Where does this mismatch between the MC and TD estimates come from?
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Certainty equivalence
▶ MC batch learning converges to the least squares fit of the sampled returns:

J∑

j=1

Tj∑

k=1

(gk,j − v̂(xk,j))
2 . (5.7)

▶ TD batch learning converges to the maximum likelihood estimate such that〈
X ,U , P̂, R̂, γ

〉
explains the data with highest probability:

p̂uxx′ =
1

n(x, u)

J∑

j=1

Tj∑

k=1

1(Xk+1 = x′|Xk = x, Uk = u),

R̂u
x =

1

n(x, u)

J∑

j=1

Tj∑

k=1

1(Xk = x|Uk = u)rk+1,j .

(5.8)

▶ Here, TD assumes a MDP problem structure and is absolutely certain that its internal
model concept describes the real world perfectly (so-called certainty equivalence).
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Applying generalized policy iteration (GPI) to TD control
GPI concept is directly applied to the TD framework using action values:

π0 → q̂π0 → π1 → q̂π1 → · · ·π∗ → q̂π∗ . (5.9)

One-step TD / TD(0) action-value update (SARSA)

The TD(0) action-value update is:

q̂(xk, uk)← q̂(xk, uk) + α [rk+1 + γq̂(xk+1, uk+1)− q̂(xk, uk)] . (5.10)

SARSA: state, action, reward, (next) state, (next) action evaluation

▶ In contrast to MC: continuous online updates of policy evaluation and improvement.
▶ On-policy approach requires exploration, e.g., by an ε-greedy policy:

πi(u|x)←
{
1− ε+ ε/|U|, u = ũ,

ε/|U|, u ̸= ũ.
(5.11)
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TD-based on-policy control (SARSA)
parameter: ε ∈ {R|0 < ε << 1} , α ∈ {R|0 < α < 1}
init: q̂(x, u) arbitrarily (except terminal states) ∀ {x ∈ X , u ∈ U}
for j = 1, 2, . . . episodes do

Initialize x0;
Choose u0 from x0 using a soft policy (e.g., ε-greedy) derived from q̂(x, u);
k ← 0;
repeat

Take action uk, observe rk+1 and xk+1;
Choose uk+1 from xk+1 using a soft policy derived from q̂(x, u);
q̂(xk, uk)← q̂(xk, uk) + α [rk+1 + γq̂(xk+1, uk+1)− q̂(xk, uk)];
k ← k + 1;

until xk is terminal ;

Algo. 5.2: TD-based on-policy control (SARSA)

Convergence properties are comparable to MC-based on-policy control:

▶ Policy improvement theorem Theo. 4.1 holds.

▶ Greedy in the limit with infinite exploration (GLIE) from Def. 4.1 and step-size requirements
in Theo. 5.1 apply.
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SARSA example: forest tree MDP (1)

Fig. 5.9: SARSA-based control with αSARSA = 0.2 and ε-greedy policy with ε = 0.2 of forest tree MDP
over the number of episodes being evaluated (mean and standard deviation are calculated based on

2000 independent runs)
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SARSA example: forest tree MDP (2)

Fig. 5.10: SARSA-based control with αSARSA = 0.1 and ε-greedy policy with ε = 0.2 of forest tree
MDP over the number of episodes being evaluated (mean and standard deviation are calculated based

on 2000 independent runs)
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SARSA example: forest tree MDP (3)

Fig. 5.11: SARSA-based control with adaptive αSARSA = 1√
j
(j =episode) and ε-greedy policy with

ε = 0.2 of forest tree MDP over the number of episodes being evaluated (mean and standard deviation
are calculated based on 2000 independent runs)

Oliver Wallscheid Reinforcement learning 188



Table of contents

5 Temporal-difference learning
Temporal-difference prediction
Temporal-difference on-policy control: SARSA
Temporal-difference off-policy control: Q-learning
Maximization bias and double learning

Oliver Wallscheid Reinforcement learning 189



Q-learning approach
Similar to SARSA updates, but Q-learning directly estimates q∗:

Q-learning action-value update

The Q-learning action-value update is:

q̂(xk, uk)← q̂(xk, uk) + α
[
rk+1 + γmax

u
q̂(xk+1, u)− q̂(xk, uk)

]
. (5.12)

This is an off-policy update, since the optimal action-value function is updated independent of
a given behavior policy.

Requirement for Q-learning control:

▶ Coverage: behavior policy b has nonzero probability of selecting actions that might be taken
by the target policy π.

▶ Consequence: behavior policy b is soft (e.g., ε-soft).

▶ Step-size requirements (5.5) regarding α apply.

Oliver Wallscheid Reinforcement learning 190



TD-based off-policy control (Q-learning)

parameter: ε ∈ {R|0 < ε << 1} , α ∈ {R|0 < α < 1}
init: q̂(x, u) arbitrarily (except terminal states) ∀ {x ∈ X , u ∈ U}
for j = 1, 2, . . . episodes do

Initialize x0;
k ← 0;
repeat

Choose uk from xk using a soft behavior policy;
Take action uk, observe rk+1 and xk+1;
q̂(xk, uk)← q̂(xk, uk) + α [rk+1 + γmaxu q̂(xk+1, u)− q̂(xk, uk)];
k ← k + 1;

until xk is terminal ;

Algo. 5.3: TD-based off-policy control (Q-learning)

▶ As discussed with MC-based off-policy control: avoidance of the exploration-optimality
trade-off for on-policy methods.

▶ No importance sampling required as for off-policy MC-based control.
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Q-learning control example: cliff walking

132 Chapter 6: Temporal-Di↵erence Learning

What is the backup diagram for Q-learning? The rule (6.8) updates a state–action
pair, so the top node, the root of the update, must be a small, filled action node. The
update is also from action nodes, maximizing over all those actions possible in the next
state. Thus the bottom nodes of the backup diagram should be all these action nodes.
Finally, remember that we indicate taking the maximum of these “next action” nodes
with an arc across them (Figure 3.4-right). Can you guess now what the diagram is? If
so, please do make a guess before turning to the answer in Figure 6.4 on page 134.

Example 6.6: Cli↵ Walking This gridworld example compares Sarsa and Q-learning,
highlighting the di↵erence between on-policy (Sarsa) and o↵-policy (Q-learning) methods.
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Consider the gridworld shown to the
right. This is a standard undis-
counted, episodic task, with start
and goal states, and the usual ac-
tions causing movement up, down,
right, and left. Reward is �1 on all
transitions except those into the re-
gion marked “The Cli↵.” Stepping
into this region incurs a reward of
�100 and sends the agent instantly
back to the start.

The graph to the right shows the
performance of the Sarsa and Q-
learning methods with "-greedy ac-
tion selection, " = 0.1. After an
initial transient, Q-learning learns
values for the optimal policy, that
which travels right along the edge
of the cli↵. Unfortunately, this re-
sults in its occasionally falling o↵
the cli↵ because of the "-greedy ac-
tion selection. Sarsa, on the other
hand, takes the action selection into
account and learns the longer but
safer path through the upper part
of the grid. Although Q-learning ac-
tually learns the values of the opti-
mal policy, its online performance
is worse than that of Sarsa, which
learns the roundabout policy. Of course, if " were gradually reduced, then both methods
would asymptotically converge to the optimal policy.

Exercise 6.11 Why is Q-learning considered an o↵-policy control method? ⇤
Exercise 6.12 Suppose action selection is greedy. Is Q-learning then exactly the same
algorithm as Sarsa? Will they make exactly the same action selections and weight
updates? ⇤

Fig. 5.12: Cliff walking environment (source: R. Sutton and
G. Barto, Reinforcement learning: an introduction, 2018,

CC BY-NC-ND 2.0)

▶ r = −1 per time step

▶ Large penalty if you fall off the cliff

▶ No discounting

▶ ε = 0.1

▶ Why is SARSA better in this
example?

▶ And what policy’s performance is
shown here in particular?

Oliver Wallscheid Reinforcement learning 192

https://creativecommons.org/licenses/by-nc-nd/2.0/


Table of contents

5 Temporal-difference learning
Temporal-difference prediction
Temporal-difference on-policy control: SARSA
Temporal-difference off-policy control: Q-learning
Maximization bias and double learning

Oliver Wallscheid Reinforcement learning 193



Maximization bias
All control algorithms discussed so far involve maximization operations:

▶ Q-learning: target policy is greedy and directly uses max operator for action-value updates.

▶ SARSA: typically uses an ε-greedy framework, which also involves max updates during
policy improvement.

This can lead to a significant positive bias:

▶ Maximization over sampled values is used implicitly as an estimate of the maximum value.

▶ This issue is called maximization bias.

Small example:

▶ Consider a single state x with multiple possible actions u.

▶ The true action values are all q(x, u) = 0 .

▶ The sampled estimates q̂(x, u) are uncertain, i.e., randomly distributed. Some samples are
above and below zero.

▶ Consequence: The maximum of the estimate is positive.
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Double learning approach
Split the learning process:

▶ Divide sampled experience into two sets.

▶ Use sets to estimate independent estimates q̂1(x, u) and q̂2(x, u).

Assign specific tasks to each estimate:

▶ Estimate the maximizing action:

u∗ = argmax
u

q̂1(x, u). (5.13)

▶ Estimate corresponding action value:

q(x, u∗) ≈ q̂2(x, u
∗) = q̂2(x, argmax

u
q̂1(x, u)). (5.14)
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Double Q-learning algorithm

parameter: ε ∈ {R|0 < ε << 1} , α ∈ {R|0 < α < 1}
init: q̂1(x, u), q̂2(x, u) arbitrarily (except terminal states) ∀ {x ∈ X , u ∈ U}
for j = 1, 2, . . . episodes do

Initialize x0;
k ← 0;
repeat

Choose uk from xk using the policy ε-greedy based on q̂1(x, u) + q̂2(x, u);
Take action uk, observe rk+1 and xk+1;
if n ∼ N (µ = 0, σ) > 0 then

q̂1(xk, uk)← q̂1(xk, uk) + α [rk+1 + γq̂2(xk+1, argmaxu q̂1(xk+1, u))− q̂1(xk, uk)];
else

q̂2(xk, uk)← q̂2(xk, uk) + α [rk+1 + γq̂1(xk+1, argmaxu q̂2(xk+1, u))− q̂2(xk, uk)];
k ← k + 1;

until xk is terminal ;

Algo. 5.4: TD-based off-policy control with double learning

▶ Doubles memory demand while computational demand per episode is remains unchanged

▶ Less sample efficient than regular Q-learning (samples are split between two estimators)

Oliver Wallscheid Reinforcement learning 196



Maximization bias example

6.7. Maximization Bias and Double Learning 135

B A rightleft
0. . .

N(�0.1, 1)

0

Q-learning
Double
Q-learning

Episodes
1001 200 300

% left
actions
from A

100%

75%

50%

25%

5%
0

optimal

Figure 6.5: Comparison of Q-learning and Double Q-learning on a simple episodic MDP (shown
inset). Q-learning initially learns to take the left action much more often than the right action,
and always takes it significantly more often than the 5% minimum probability enforced by
"-greedy action selection with " = 0.1. In contrast, Double Q-learning is essentially una↵ected by
maximization bias. These data are averaged over 10,000 runs. The initial action-value estimates
were zero. Any ties in "-greedy action selection were broken randomly.

mistake. Nevertheless, our control methods may favor left because of maximization bias
making B appear to have a positive value. Figure 6.5 shows that Q-learning with "-greedy
action selection initially learns to strongly favor the left action on this example. Even at
asymptote, Q-learning takes the left action about 5% more often than is optimal at our
parameter settings (" = 0.1, ↵ = 0.1, and � = 1).

Are there algorithms that avoid maximization bias? To start, consider a bandit case in
which we have noisy estimates of the value of each of many actions, obtained as sample
averages of the rewards received on all the plays with each action. As we discussed above,
there will be a positive maximization bias if we use the maximum of the estimates as
an estimate of the maximum of the true values. One way to view the problem is that
it is due to using the same samples (plays) both to determine the maximizing action
and to estimate its value. Suppose we divided the plays in two sets and used them to
learn two independent estimates, call them Q1(a) and Q2(a), each an estimate of the
true value q(a), for all a 2 A. We could then use one estimate, say Q1, to determine
the maximizing action A⇤ = argmaxa Q1(a), and the other, Q2, to provide the estimate
of its value, Q2(A

⇤) = Q2(argmaxa Q1(a)). This estimate will then be unbiased in the
sense that E[Q2(A

⇤)] = q(A⇤). We can also repeat the process with the role of the two
estimates reversed to yield a second unbiased estimate Q1(argmaxa Q2(a)). This is the
idea of double learning. Note that although we learn two estimates, only one estimate is
updated on each play; double learning doubles the memory requirements, but does not
increase the amount of computation per step.

The idea of double learning extends naturally to algorithms for full MDPs. For example,
the double learning algorithm analogous to Q-learning, called Double Q-learning, divides
the time steps in two, perhaps by flipping a coin on each step. If the coin comes up heads,

Fig. 5.13: Comparison of Q-learning and double Q-learning on a simple episodic MDP. Q-learning
initially learns to take the left action much more often than the right action, and always takes it

significantly more often than the 5% minimum probability enforced by ε-greedy action selection with
ε = 0.1. In contrast, double Q-learning is essentially unaffected by maximization bias. These data are
averaged over 10,000 runs. The initial action-value estimates were zero. (source: R. Sutton and G.

Barto, Reinforcement learning: an introduction, 2018, CC BY-NC-ND 2.0)
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Summary: what you’ve learned today

▶ TD unites two key characteristics from DP and MC:
▶ From MC: Sample-based updates (i.e., operating in unknown MDPs).
▶ From DP: Update estimates based on other estimates (bootstrapping).

▶ TD allows certain simplifications and improvements compared to MC:
▶ Updates are available after each step and not after each episode.
▶ Off-policy learning comes without importance sampling.
▶ Exploits MDP formalism by maximum likelihood estimates.
▶ Hence, TD prediction and control exhibit a high applicability for many problems.

▶ Batch training can be used when only limited experience is available, i.e., the available
samples are re-processed again and again.

▶ Greedy policy improvements can lead to maximization biases and, therefore, slow down the
learning process.

▶ TD requires careful tuning of learning parameters:
▶ Step size α: how to tune convergence rate vs. uncertainty / accuracy?
▶ Exploration vs. exploitation: how to visit all state-action pairs?
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Lets unify MC and TD learning190 Chapter 8: Planning and Learning with Tabular Methods

width
of update

depth
(length)

of update

Temporal-
difference

learning

Dynamic
programming

Monte
Carlo

...

Exhaustive
search

Figure 8.11: A slice through the space of reinforcement learning methods, highlighting the
two of the most important dimensions explored in Part I of this book: the depth and width of
the updates.

ranging from one-step TD updates to full-return Monte Carlo updates. Between these
is a spectrum including methods based on n-step updates (and in Chapter 12 we will
extend this to mixtures of n-step updates such as the �-updates implemented by eligibility
traces).

Dynamic programming methods are shown in the extreme upper-right corner of the
space because they involve one-step expected updates. The lower-right corner is the
extreme case of expected updates so deep that they run all the way to terminal states
(or, in a continuing task, until discounting has reduced the contribution of any further
rewards to a negligible level). This is the case of exhaustive search. Intermediate methods
along this dimension include heuristic search and related methods that search and update
up to a limited depth, perhaps selectively. There are also methods that are intermediate
along the horizontal dimension. These include methods that mix expected and sample
updates, as well as the possibility of methods that mix samples and distributions within
a single update. The interior of the square is filled in to represent the space of all such
intermediate methods.

A third dimension that we have emphasized in this book is the binary distinction
between on-policy and o↵-policy methods. In the former case, the agent learns the value
function for the policy it is currently following, whereas in the latter case it learns the

Fig. 6.1: MC and TD are the ’extreme options’ in terms of the update’s depth: what about intermediate
solutions? (source: R. Sutton and G. Barto, Reinforcement learning: an introduction, 2018, CC

BY-NC-ND 2.0)
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n-step bootstrapping idea
1-step TD

'TD(0)'
2-step TD 3-step TD n-step TD       -step TD

MC

Fig. 6.2: Different backup diagrams of n-step state-value
prediction methods

▶ n-step update: consider n
rewards plus estimated value
n-steps later (bootstrapping).

▶ Consequence: Estimate update
is available only after an n-step
delay.

▶ TD(0) and MC are special cases
included in n-step prediction.
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Formal notation (1)
Recap the update targets for the incremental prediction methods (4.3):

▶ Monte Carlo: builds on the complete sampled return series

gk:T = rk+1 + γrk+2 + γ2rk+3 + · · ·+ γT−k−1rT . (6.1)

▶ gk:T denotes that all steps until termination at T are considered to derive an estimate target
adressing step k.

▶ TD(0): utilizes a one-step bootstrapped return

gk:k+1 = rk+1 + γv̂k(xk+1). (6.2)

▶ For TD(0), gk:k+1 highlights that only one future sampled reward step is considered before
bootstrapping.

▶ v̂k is an estimate of vπ at time step k.
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Formal notation (2)

n-step state-value prediction target

Now, the target is generalized to an arbitrary n-step target:

gk:k+n = rk+1 + γrk+2 + · · ·+ γn−1rk+n + γnv̂k+n−1(xk+n). (6.3)

▶ Approximation of full return series truncated after n-steps.
▶ If k + n ≥ T (i.e., n-step prediction exceeds termination lookahead), then all missing terms

are considered zero.

n-step TD

The state-value estimate using the n-step return approximation is

v̂k+n(xk) = v̂k+n−1(xk) + α [gk:k+n − v̂k+n−1(xk)] , 0 ≤ k < T. (6.4)

▶ Delay of n-steps before v̂(x) is updated.
▶ Additional auxiliary update steps required at the end of each episode.
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Convergence

Theorem 6.1: Error reduction property

The worst error of the expected n-step return is always less than or equal to γn times the worst
error under the estimate v̂k+n−1:

max
x
|Eπ [Gk:k+n|Xk = x]− vπ(x)| ≤ γnmax

x
|v̂k+n−1(x)− vπ(x)| . (6.5)

▶ Assuming an infinite number of steps/episodes and an appropriate step-size control
according to Theo. 5.1, n-step TD prediction converges to the true value.

▶ In a more practical framework with limited number of steps/episodes:
▶ Choosing the best n-step lookahead horizon is an engineering degree of freedom.
▶ This is highly application-dependent (i.e., no predefined optimum).
▶ Prediction/estimation errors can remain due to limited data.
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Algorithmic implementation: n-step TD prediction

input: a policy π to be evaluated, parameter: step size α ∈ (0, 1], prediction steps n ∈ Z+

init: v̂(x)∀x ∈ X arbitrary except v0(x) = 0 if x is terminal
for j = 1, . . . , J episodes do

initialize and store x0;
T ←∞;
repeat k = 0, 1, 2, . . .

if k < T then
take action from π(xk), observe and store xk+1 and rk+1;
if xk+1 is terminal: T ← k + 1;

τ ← k − n+ 1 (τ time index for estimate update);
if τ ≥ 0 then

g ←∑min(τ+n,T )
i=τ+1 γi−τ−1ri;

if τ + n < T : g ← g + γnv̂(xτ+n);
v̂(xτ )← v̂(xτ ) + α [g − v̂(xτ )];

until τ = T − 1;

Algo. 6.1: n-step TD prediction (output is an estimate v̂π(x))
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Example: 19 state random walk

A B J SR
-1 +10 0 0 0

Start

Fig. 6.3: Exemplary random walk Markov reward process (MRP)

7.2. n-step Sarsa 145

V (E), which would be incremented toward 1, the observed return. A two-step method,
on the other hand, would increment the values of the two states preceding termination:
V (D) and V (E) both would be incremented toward 1. A three-step method, or any n-step
method for n > 2, would increment the values of all three of the visited states toward 1,
all by the same amount.

Which value of n is better? Figure 7.2 shows the results of a simple empirical test for
a larger random walk process, with 19 states instead of 5 (and with a �1 outcome on the
left, all values initialized to 0), which we use as a running example in this chapter. Results
are shown for n-step TD methods with a range of values for n and ↵. The performance
measure for each parameter setting, shown on the vertical axis, is the square-root of
the average squared error between the predictions at the end of the episode for the 19
states and their true values, then averaged over the first 10 episodes and 100 repetitions
of the whole experiment (the same sets of walks were used for all parameter settings).
Note that methods with an intermediate value of n worked best. This illustrates how
the generalization of TD and Monte Carlo methods to n-step methods can potentially
perform better than either of the two extreme methods.

↵

Average
RMS error

over 19 states
and first 10 
episodes n=1

n=2
n=4

n=8

n=16

n=32

n=32n=64128512
2560.55

0.5

0.45

0.35

0.3

0.25

0.4

0.40.20 0.80.6 1

Figure 7.2: Performance of n-step TD methods as a function of ↵, for various values of n, on
a 19-state random walk task (Example 7.1).

Exercise 7.3 Why do you think a larger random walk task (19 states instead of 5) was
used in the examples of this chapter? Would a smaller walk have shifted the advantage
to a di↵erent value of n? How about the change in left-side outcome from 0 to �1 made
in the larger walk? Do you think that made any di↵erence in the best value of n? ⇤

7.2 n-step Sarsa

How can n-step methods be used not just for prediction, but for control? In this section
we show how n-step methods can be combined with Sarsa in a straightforward way to

Fig. 6.4: n-step TD performance (source: R. Sutton and G.
Barto, Reinforcement learning: an introduction, 2018, CC

BY-NC-ND 2.0)

▶ Early stage performance after
only 10 episodes

▶ Averaged over 100 independent
runs

▶ Best result here: n = 4, α ≈ 0.4

▶ Picture may change for longer
episodes (no generalizable
results)
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Transfer the n-step approach to state-action values (1)
▶ For on-policy control by SARSA action-value estimates are required.
▶ Recap the one-step action-value update as required for ’SARSA(0)’:

q̂(xk, uk)← q̂(xk, uk) + α


rk+1 + γq̂(xk+1, uk+1)︸ ︷︷ ︸

target g

−q̂(xk, uk)


 . (6.6)

n-step state-action value prediction target

Analog to n-step TD, the state-action value target is rewritten as:

gk:k+n = rk+1 + γrk+2 + · · ·+ γn−1rk+n + γnq̂k+n−1(xk+n, uk+n). (6.7)

▶ Again, if an episode terminates within the lookahead horizon (k + n ≥ T ) the target is
equal to the Monte Carlo update:

gk:k+n = gk. (6.8)
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Transfer the n-step approach to state-action values (2)

▶ For n-step expected SARSA, the update is similar but the state-action value estimate at
step k + n becomes the expected approximate value of x under the target policy valid at
time step k:

gk:k+n = rk+1 + γrk+2 + · · ·+ γn−1rk+n + γn
∑

u

π(u|x)q̂k(x, u). (6.9)

▶ Finally, the modified n-step targets can be directly integrated to the state-action value
estimate update rule of SARSA:

n-step SARSA

q̂k+n(xk, uk) = q̂k+n−1(xk, uk) + α [gk:k+n − q̂k+n−1(xk, uk)] , 0 ≤ k < T. (6.10)
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n-step bootstrapping for state-action values
1-step
Sarsa

2-step
Sarsa

3-step 
Sarsa

n-step
Sarsa

      -step Sarsa
(MC)

n-step
expected Sarsa

Fig. 6.5: Different backup diagrams of n-step state-action value update targets
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Algorithmic implementation: n-step SARSA

parameter: α ∈ (0, 1], n ∈ Z+, ε ∈ {R|0 < ε << 1}
init: q̂(x, u) arbitrarily (except terminal states) ∀ {x ∈ X , u ∈ U}
init: π to be ε-greedy with respect to q̂ or to a given, fixed policy
for j = 1, . . . , J episodes do

initialize x0 and action u0 ∼ π(·|x0) and store them;
T ←∞;
repeat k = 0, 1, 2, . . .

if k < T then
take action uk, observe and store xk+1 and rk+1;
if xk+1 is terminal then T ← k + 1 else store uk+1 ∼ π(·|xk+1);

τ ← k − n+ 1 (τ time index for estimate update);
if τ ≥ 0 then

g ←∑min(τ+n,T )
i=τ+1 γi−τ−1ri;

if τ + n < T : g ← g + γnq̂(xτ+n, uτ+n);
q̂(xτ , uτ )← q̂(xτ , uτ ) + α [g − q̂(xτ , uτ )];
if π ≈ π∗ is being learned, ensure π(·|xτ ) is ε-greedy w.r.t q̂;

until τ = T − 1;

Algo. 6.2: n-step SARSA (output is an estimate q̂π or q̂∗)
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Illustration with grid-world example

7.2. n-step Sarsa 147

n-step Sarsa for estimating Q ⇡ q⇤ or q⇡

Initialize Q(s, a) arbitrarily, for all s 2 S, a 2 A

Initialize ⇡ to be "-greedy with respect to Q, or to a fixed given policy
Algorithm parameters: step size ↵ 2 (0, 1], small " > 0, a positive integer n
All store and access operations (for St, At, and Rt) can take their index mod n + 1

Loop for each episode:
Initialize and store S0 6= terminal
Select and store an action A0 ⇠ ⇡(·|S0)
T  1
Loop for t = 0, 1, 2, . . . :
| If t < T , then:
| Take action At

| Observe and store the next reward as Rt+1 and the next state as St+1

| If St+1 is terminal, then:
| T  t + 1
| else:
| Select and store an action At+1 ⇠ ⇡(·|St+1)
| ⌧  t� n + 1 (⌧ is the time whose estimate is being updated)
| If ⌧ � 0:

| G Pmin(⌧+n,T )
i=⌧+1 �i�⌧�1Ri

| If ⌧ + n < T , then G G + �nQ(S⌧+n, A⌧+n) (G⌧ :⌧+n)
| Q(S⌧ , A⌧ ) Q(S⌧ , A⌧ ) + ↵ [G�Q(S⌧ , A⌧ )]
| If ⇡ is being learned, then ensure that ⇡(·|S⌧ ) is "-greedy wrt Q
Until ⌧ = T � 1

Path taken
Action values increased

by one-step Sarsa
Action values increased

 by 10-step Sarsa

G G G

Figure 7.4: Gridworld example of the speedup of policy learning due to the use of n-step
methods. The first panel shows the path taken by an agent in a single episode, ending at a
location of high reward, marked by the G. In this example the values were all initially 0, and all
rewards were zero except for a positive reward at G. The arrows in the other two panels show
which action values were strengthened as a result of this path by one-step and n-step Sarsa
methods. The one-step method strengthens only the last action of the sequence of actions that
led to the high reward, whereas the n-step method strengthens the last n actions of the sequence,
so that much more is learned from the one episode.

Fig. 6.6: Executed updates (highlighted by arrows) for different n-step SARSA implementations during
an episode (source: R. Sutton and G. Barto, Reinforcement learning: an introduction, 2018, CC

BY-NC-ND 2.0)

▶ For one-step SARSA, one state-action value is updated.

▶ For ten-step SARSA, ten state-action values are updated.

▶ Consequence: a trade-off between the resulting learning delay and the number of updated
state-action values results.
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Recap on off-policy learning with importance sampling
Consider two separate policies in order to break the on-policy optimality trade-off:

▶ Behavior policy b(u|x): Explores in order to generate experience.

▶ Target policy π(u|x): Learns from that experience to become the optimal policy.

▶ Important requirement is coverage: Every action taken under π must be (at least
occasionally) taken under b, too. Hence, it follows:

π(u|x) > 0⇒ b(u|x) > 0 ∀ {x ∈ X , u ∈ U} . (6.11)

Importance sampling ratio (revision from Def. 4.2)

The relative probability of a trajectory under the target and behavior policy, the importance
sampling ratio, from sample step k to T is:

ρk:T =

∏T−1
k π(uk|xk)p(xk+1|xk, uk)∏T−1
k b(uk|xk)p(xk+1|xk, uk)

=

∏T−1
k π(uk|xk)∏T−1
k b(uk|xk)

. (6.12)
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Transfer importance sampling to n-step updates
For a straightforward n-step off-policy TD-style update, just weight the update by the
importance sampling ratio:

v̂k+n(xk) = v̂k+n−1(xk) + αρk:k+n−1 [gk:k+n − v̂k+n−1(xk)] , 0 ≤ k < T,

ρk:h =

min(h,T−1)∏

k

π(uk|xk)
b(uk|xk)

. (6.13)

▶ ρk:k+n−1 is the relative probability under the two polices taking n actions from uk to uk+n.

Analog, an n-step off-policy SARSA-style update exists:

q̂k+n(xk, uk) = q̂k+n−1(xk, uk)

+ αρk+1:k+n [gk:k+n − q̂k+n−1(xk, uk)] , 0 ≤ k < T.
(6.14)

▶ Here, ρ starts and ends one step later compared to the TD case since state-action pairs are
updated.
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Algorithmic implementation: off-policy n-step TD-based prediction
input: a target policy π and a behavior policy b with coverage of π
parameter: step size α ∈ (0, 1], prediction steps n ∈ Z+

init: v̂(x)∀x ∈ X arbitrary except v0(x) = 0 if x is terminal
for j = 1, . . . , J episodes do

initialize and store x0 and set T ←∞;
repeat k = 0, 1, 2, . . .

if k < T then
take action from b(xk), observe and store xk+1 and rk+1;
if xk+1 is terminal: T ← k + 1;

τ ← k − n+ 1 (τ time index for estimate update);
if τ ≥ 0 then

ρ←∏min(τ+n−2,T−1)
i=τ

π(ui|xk)
b(ui|xi)

;

g ←∑min(τ+n,T )
i=τ+1 γi−τ−1ri;

if τ + n < T : g ← g + γnv̂(xτ+n);
v̂(xτ )← v̂(xτ ) + αρ [g − v̂(xτ )];

until τ = T − 1;

Algo. 6.3: Off-policy n-step TD prediction (output is an estimate v̂π(x))
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Algorithmic implementation: off-policy n-step SARSA
input: an arbitrary behavior policy b with b(u|x) > 0 ∀ {x ∈ X , u ∈ U}
parameter: α ∈ (0, 1], n ∈ Z+, ε ∈ {R|0 < ε << 1}
init: q̂(x, u) ∀ {x ∈ X , u ∈ U} and a policy π to be greedy with respect to q̂ or to a given, fixed policy
for j = 1, . . . , J episodes do

initialize x0 and action u0 ∼ b(·|x0) and store them, set also T ←∞;
repeat k = 0, 1, 2, . . .

if k < T then
take action uk ∼ b(·|xk), observe and store xk+1 and rk+1;
if xk+1 is terminal then T ← k + 1 else store uk+1 ∼ b(·|xk+1);

τ ← k − n+ 1 (τ time index for estimate update);
if τ ≥ 0 then

ρ←∏min(τ+n−1,T−1)
i=τ+1

π(ui|xi)
b(ui|xi)

;

g ←∑min(τ+n,T )
i=τ+1 γi−τ−1ri;

if τ + n < T : g ← g + γnq̂(xτ+n, uτ+n);
q̂(xτ , uτ )← q̂(xτ , uτ ) + αρ [g − q̂(xτ , uτ )];
if π ≈ π∗ is being learned, ensure π(·|xτ ) is ε-greedy w.r.t to q̂;

until τ = T − 1;

Algo. 6.4: Off-policy n-step SARSA (output is an estimate q̂π or q̂∗)
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Averaging of n-step returns
1-step TD 3-step TD

Fig. 6.7: Exemplary averaging of
n-step returns

▶ Averaging different n-step returns is possible without
introducing a bias (if sum of weights is one).

▶ Example on the left:

g =
1

3
gk:k+1 +

2

3
gk:k+3

▶ Horizontal line in backup diagram indicates the averaging.

▶ Enables additional degree of freedom to reduce prediction
error.

▶ Such updates are called compound updates.
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λ-return (1)

Fig. 6.8: Backup diagram for λ-returns

▶ λ-return: is a compound update with
exponentially decaying weights:

gλk = (1− λ)

∞∑

n=1

λ(n−1)gk:k+n . (6.15)

▶ Parameter is λ ∈ {R|0 ≤ λ ≤ 1}.
▶ Geometric series of weights is one:

(1− λ)

∞∑

n=1

λ(n−1) = 1
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λ-return (2)
▶ Rewrite λ-return for episodic tasks with termination at k = T :

gλk = (1− λ)

T−k−1∑

n=1

λ(n−1)gk:k+n + λT−k−1gk . (6.16)

▶ Return gk after termination is weighted with residual weight λT−k−1.
▶ Above, (6.16) includes two special cases:

▶ If λ = 0: becomes TD(0) update.
▶ If λ = 1: becomes MC update.290 Chapter 12: Eligibility Traces

1!"

weight given to

the 3-step return

decay by "

weight given to

actual, final return

t T

Time

Weight

total area = 1

is (1� �)�2

is �T�t�1

Weighting

Figure 12.2: Weighting given in the �-return to each of the n-step returns.

we want, we can separate these post-termination terms from the main sum, yielding

G�
t = (1� �)

T�t�1X

n=1

�n�1Gt:t+n + �T�t�1Gt, (12.3)

as indicated in the figures. This equation makes it clearer what happens when � = 1. In
this case the main sum goes to zero, and the remaining term reduces to the conventional
return. Thus, for � = 1, updating according to the �-return is a Monte Carlo algorithm.
On the other hand, if � = 0, then the �-return reduces to Gt:t+1, the one-step return.
Thus, for � = 0, updating according to the �-return is a one-step TD method.

Exercise 12.1 Just as the return can be written recursively in terms of the first reward and
itself one-step later (3.9), so can the �-return. Derive the analogous recursive relationship
from (12.2) and (12.1). ⇤
Exercise 12.2 The parameter � characterizes how fast the exponential weighting in
Figure 12.2 falls o↵, and thus how far into the future the �-return algorithm looks in
determining its update. But a rate factor such as � is sometimes an awkward way of
characterizing the speed of the decay. For some purposes it is better to specify a time
constant, or half-life. What is the equation relating � and the half-life, ⌧�, the time by
which the weighting sequence will have fallen to half of its initial value? ⇤

We are now ready to define our first learning algorithm based on the �-return: the
o✏ine �-return algorithm. As an o✏ine algorithm, it makes no changes to the weight
vector during the episode. Then, at the end of the episode, a whole sequence of o✏ine
updates are made according to our usual semi-gradient rule, using the �-return as the
target:

wt+1
.
= wt + ↵

h
G�

t � v̂(St,wt)
i
rv̂(St,wt), t = 0, . . . , T � 1. (12.4)

Fig. 6.9: Weighting overview in λ-return series (source: R. Sutton and G. Barto, Reinforcement learning:
an introduction, 2018, CC BY-NC-ND 2.0)
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Truncated λ-returns for continuing tasks

▶ Using λ-returns as in (6.15) is not feasible for continuing tasks.

▶ One would have to wait infinitely long to receive the trajectory.

▶ Intuitive approximation: truncate λ-return after h steps

gλk:h = (1− λ)

h−k−1∑

n=1

λ(n−1)gk:k+n + λh−k−1gk:h . (6.17)

▶ Horizon h divides continuing tasks in rolling episodes.
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Forward view

▶ Both, n-step and λ-return updates, are based on a forward view.

▶ We have to wait for future states and rewards to arrive before we are able to perform an
update.

▶ Currently, λ-returns are only an alternative to n-step updates with different weighting
options.

292 Chapter 12: Eligibility Traces
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Figure 12.4: The forward view. We decide how to update each state by looking forward to
future rewards and states.

12.2 TD(�)

TD(�) is one of the oldest and most widely used algorithms in reinforcement learning.
It was the first algorithm for which a formal relationship was shown between a more
theoretical forward view and a more computationally-congenial backward view using
eligibility traces. Here we will show empirically that it approximates the o✏ine �-return
algorithm presented in the previous section.

TD(�) improves over the o✏ine �-return algorithm in three ways. First it updates
the weight vector on every step of an episode rather than only at the end, and thus
its estimates may be better sooner. Second, its computations are equally distributed
in time rather than all at the end of the episode. And third, it can be applied to
continuing problems rather than just to episodic problems. In this section we present the
semi-gradient version of TD(�) with function approximation.

With function approximation, the eligibility trace is a vector zt 2 Rd with the same
number of components as the weight vector wt. Whereas the weight vector is a long-term
memory, accumulating over the lifetime of the system, the eligibility trace is a short-term
memory, typically lasting less time than the length of an episode. Eligibility traces assist
in the learning process; their only consequence is that they a↵ect the weight vector, and
then the weight vector determines the estimated value.

In TD(�), the eligibility trace vector is initialized to zero at the beginning of the
episode, is incremented on each time step by the value gradient, and then fades away by
��:

z�1
.
= 0,

zt
.
= ��zt�1 +rv̂(St,wt), 0  t  T,

(12.5)

where � is the discount rate and � is the parameter introduced in the previous section,
which we henceforth call the trace-decay parameter. The eligibility trace keeps track
of which components of the weight vector have contributed, positively or negatively,
to recent state valuations, where “recent” is defined in terms of ��. (Recall that in
linear function approximation, rv̂(St,wt) is just the feature vector, xt, in which case the
eligibility trace vector is just a sum of past, fading, input vectors.) The trace is said to
indicate the eligibility of each component of the weight vector for undergoing learning

Fig. 6.10: The forward view: an update of the current state value is evaluated by future transitions
(source: R. Sutton and G. Barto, Reinforcement learning: an introduction, 2018, CC BY-NC-ND 2.0)
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Backward view of TD(λ)
General idea:

▶ Use λ-weighted returns looking into the past.
▶ Implement this in a recursive fashion to save memory.
▶ Therefore, an eligibility trace zk denoting the importance of past events to the current state

update is introduced.

12.2. TD(�) 293

changes should a reinforcing event occur. The reinforcing events we are concerned with
are the moment-by-moment one-step TD errors. The TD error for state-value prediction
is

�t
.
= Rt+1 + �v̂(St+1,wt)� v̂(St,wt). (12.6)

In TD(�), the weight vector is updated on each step proportional to the scalar TD error
and the vector eligibility trace:

wt+1
.
= wt + ↵�tzt. (12.7)

Semi-gradient TD(�) for estimating v̂ ⇡ v⇡

Input: the policy ⇡ to be evaluated
Input: a di↵erentiable function v̂ : S+ ⇥ Rd ! R such that v̂(terminal,·) = 0
Algorithm parameters: step size ↵ > 0, trace decay rate � 2 [0, 1]
Initialize value-function weights w arbitrarily (e.g., w = 0)

Loop for each episode:
Initialize S
z 0 (a d-dimensional vector)
Loop for each step of episode:
| Choose A ⇠ ⇡(·|S)
| Take action A, observe R, S0

| z ��z +rv̂(S,w)
| �  R + �v̂(S0,w)� v̂(S,w)
| w w + ↵�z
| S  S0

until S0 is terminal
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Figure 12.5: The backward or mechanistic view of TD(�). Each update depends on the current
TD error combined with the current eligibility traces of past events.Fig. 6.11: The backward view: an update of the current state value is evaluated based on a trace of past

transitions (source: R. Sutton and G. Barto, Reinforcement learning: an introduction, 2018, CC
BY-NC-ND 2.0)
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Eligibility trace
The eligibility trace zk(x) ∈ R is defined and tracked for each state x separately:

z0(x) = 0,

zk(x) = γλzk−1(x) +

{
0, if xk ̸= x,

1, if xk = x.

(6.18)
E

lig
ib

ili
ty

 tr
ac

e

Visits of a certain state 

Fig. 6.12: Simplified representation of updating an eligibility trace of an arbitrary state in a finite MDP
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TD(λ) updates using eligibility traces
Based on the eligibility trace definition from (6.18) we can modify our value estimates:

TD(λ) state-value update

The TD(λ) state-value update is:

v̂(xk)← v̂(xk) + α [rk+1 + γv̂(xk+1)− v̂(xk)] zk(xk). (6.19)

SARSA(λ) action-value update

The SARSA(λ) action-value update is:

q̂(xk, uk)← q̂(xk, uk) + α [rk+1 + γq̂(xk+1, uk+1)− q̂(xk, uk)] zk(xk, uk). (6.20)

Already known prediction and control methods can be modified accordingly. In contrast to
n-step forward updates, one can conclude:

▶ Advantage: recursive updates based on past updates (no additional waiting time),
▶ Disadvantage: effort for storing an eligibility trace for each state (scaling problem).
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Algorithmic implementation: SARSA(λ)

parameter: α ∈ (0, 1], λ ∈ (0, 1], ε ∈ {R|0 < ε << 1}
init: q̂(x, u) arbitrarily (except terminal states) ∀ {x ∈ X , u ∈ U}
init: π to be ε-greedy with respect to q̂ or to a given, fixed policy
for j = 1, . . . , J episodes do

initialize x0 and action u0 ∼ π(·|x0);
initialize z0(x, u) = 0 ∀ {x ∈ X , u ∈ U}
repeat

take action uk, observe xk+1 and rk+1;
choose uk+1 ∼ π(·|xk+1)

zk(x, u)← γλzk−1(x, u) +

{
0, if xk ̸= x or uk ̸= u,

1, if xk = x and uk = u.
∀ {x ∈ X , u ∈ U}

δ ← rk+1 + γq̂(xk+1, uk+1)− q̂(xk, uk)
q̂(x, u)← q̂(x, u) + αδzk(x, u) ∀ {x ∈ X , u ∈ U}
k ← k + 1;

until xk is terminal ;

Algo. 6.5: SARSA(λ) (output is an estimate q̂π or q̂∗)
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SARSA learning comparison in gridworld example
▶ λ can be interpreted as the discounting factor acting on the eligibility trace (see right-most

panel below).
▶ Intuitive interpretation: more recent transitions are more certain/relevant for the current

update step.

304 Chapter 12: Eligibility Traces
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Figure 12.9: Sarsa(�)’s backup diagram. Compare with Figure 12.1.

Complete pseudocode for Sarsa(�) with linear function approximation, binary features,
and either accumulating or replacing traces is given in the box on the next page. This
pseudocode highlights a few optimizations possible in the special case of binary features
(features are either active (=1) or inactive (=0).

Example 12.1: Traces in Gridworld The use of eligibility traces can substantially
increase the e�ciency of control algorithms over one-step methods and even over n-step
methods. The reason for this is illustrated by the gridworld example below.

Path taken
Action values increased

by one-step Sarsa
Action values increased
by Sarsa( ) with =0.9

G
G

G

Path taken
Action values increased

by one-step Sarsa
Action values increased
by Sarsa(! ) with ! =0.9by 10-step Sarsa

G G G

Path taken
Action values increased

by one-step Sarsa
Action values increased

 by 10-step Sarsa

G G G

λ λ

The first panel shows the path taken by an agent in a single episode. The initial estimated
values were zero, and all rewards were zero except for a positive reward at the goal
location marked by G. The arrows in the other panels show, for various algorithms, which
action-values would be increased, and by how much, upon reaching the goal. A one-step
method would increment only the last action value, whereas an n-step method would
equally increment the last n actions’ values, and an eligibility trace method would update
all the action values up to the beginning of the episode, to di↵erent degrees, fading with
recency. The fading strategy is often the best.

Fig. 6.13: SARSA variants after an arbitrary episode within a gridworld environment – arrows indicate
action-value change starting from initially zero estimates (source: R. Sutton and G. Barto,

Reinforcement learning: an introduction, 2018, CC BY-NC-ND 2.0)
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Summary: what you’ve learned today

▶ n-step updates allow for an intermediate solution in between temporal difference and Monte
Carlo:
▶ n = 1: TD as special case,
▶ n = T : MC as special case.

▶ The parameter n is a delicate degree of freedom:
▶ It contains a trade-off between the learning delay and uncertainty reduction when considering

more or less steps.
▶ Choosing it is non-trivial and sometimes more art than science.

▶ λ-returns lead to compound updates which introduce an exponential weighting to visited
states.
▶ Rationale: states which have been already visited long ago are less important for the current

learning step.

▶ TD(λ) transfers this idea into a recursive, backward oriented approach.
▶ Eligibility traces store the long-term visiting history of each state in a recursive fashion.

Oliver Wallscheid Reinforcement learning 229



Table of contents

7 Planning and learning with tabular methods
Repetition: model-based and model-free RL
Dyna: integrated planning, acting and learning
Prioritized sweeping
Planning at decision time

Oliver Wallscheid Reinforcement learning 230



Recap: RL agent taxonomy

Lecture 1: Introduction to Reinforcement Learning

Inside An RL Agent

RL Agent Taxonomy

Model

Value Function PolicyActor
Critic

Value-Based Policy-Based

Model-Free 

Model-Based 

Fig. 7.1: Main categories of reinforcement learning algorithms
(source: D. Silver, “Reinforcement learning”, 2015. CC BY-NC 4.0)

▶ Up to now: independent usage of model-free (MC, TD) and model-based RL (DP)
▶ Today: integrating both strategies (on finite state & action spaces)
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Model-based RL
▶ Plan/predict value functions and/or policy from a model.
▶ Requires an a priori model or to learn a model from experience.
▶ Solves control problems by planning algorithms such as

▶ Policy or value iteration.

S0
a1

a0

S2

S1

a 1

a0

a0

a 1

Fig. 7.2: A model for discrete state and action space problems is generally an MDP (source:
www.wikipedia.org, by Waldoalvarez CC BY-SA 4.0)
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What is a model?

▶ A modelM is an MDP tuple ⟨X ,U ,P ,R, γ⟩.
▶ In particular, we require the

▶ state-transition probability

P = P [Xk+1 = xk+1|Xk = xk,Uk = uk] (7.1)

▶ and the reward probability

R = P [Rk+1 = rk+1|Xk = xk,Uk = uk] . (7.2)

▶ State space X and action space U are assumed to be known.

▶ Discount factor γ might be given by environment or engineer’s choice.
▶ What kind of model is available?

▶ IfM is perfectly known a priori: true MDP.
▶ If M̂ ≈M needs to be learned: approximated MDP.
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Model learning / identification
▶ In many real-world applications, a model might be too complex to derive or not exactly

available. Hence, estimate a model M̂ from experience {X0, U0, R1, . . . , XT }.
▶ This is a supervised learning / system identification task:

{X0, U0} → {X1, R1}
...

{XT−1, UT−1} → {XT , RT }

▶ Simple tabular / look-up table approach (with n(x, u) visit count):

p̂uxx′ =
1

n(x, u)

T∑

k=0

1(Xk+1 = x′|Xk = x, Uk = u),

R̂u
x =

1

n(x, u)

T∑

k=0

1(Xk = x|Uk = u)rk+1.

(7.3)
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Distribution vs. sample models
▶ A model based on P and R is called a distribution model.

▶ Contains descriptions of all possibilities by random distributions.
▶ Has full explanatory power, but is still rather complex to obtain.

▶ Alternatively, use sample models to receive realization series.
▶ Remember black jack examples: easy to sample by simulation but hard to model a full

distributional MDP.

Fig. 7.3: Depending on the application distribution models are easily available or not (source: Josh
Appel on Unsplash)
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Model-free RL
▶ Learn value functions and/or policy directly from experience.
▶ Requires no model at all (policy can be considered an implicit model).
▶ Solves control problems by learning algorithms such as

▶ Monte-Carlo,
▶ SARSA or
▶ Q-learning.

162 Chapter 8: Planning and Learning with Tabular Methods

in the near future. If decision making and model learning are both computation-intensive
processes, then the available computational resources may need to be divided between
them. To begin exploring these issues, in this section we present Dyna-Q, a simple
architecture integrating the major functions needed in an online planning agent. Each
function appears in Dyna-Q in a simple, almost trivial, form. In subsequent sections we
elaborate some of the alternate ways of achieving each function and the trade-o↵s between
them. For now, we seek merely to illustrate the ideas and stimulate your intuition.

Within a planning agent, there are at least two roles for real experience: it can be
used to improve the model (to make it more accurately match the real environment)
and it can be used to directly improve the value function and policy using the kinds of

planning

value/policy

experiencemodel

model
learning

acting

direct
RL

reinforcement learning methods we have discussed
in previous chapters. The former we call model-
learning , and the latter we call direct reinforcement
learning (direct RL). The possible relationships
between experience, model, values, and policy are
summarized in the diagram to the right. Each ar-
row shows a relationship of influence and presumed
improvement. Note how experience can improve
value functions and policies either directly or in-
directly via the model. It is the latter, which is
sometimes called indirect reinforcement learning,
that is involved in planning.

Both direct and indirect methods have advantages and disadvantages. Indirect methods
often make fuller use of a limited amount of experience and thus achieve a better policy
with fewer environmental interactions. On the other hand, direct methods are much
simpler and are not a↵ected by biases in the design of the model. Some have argued
that indirect methods are always superior to direct ones, while others have argued that
direct methods are responsible for most human and animal learning. Related debates
in psychology and artificial intelligence concern the relative importance of cognition as
opposed to trial-and-error learning, and of deliberative planning as opposed to reactive
decision making (see Chapter 14 for discussion of some of these issues from the perspective
of psychology). Our view is that the contrast between the alternatives in all these debates
has been exaggerated, that more insight can be gained by recognizing the similarities
between these two sides than by opposing them. For example, in this book we have
emphasized the deep similarities between dynamic programming and temporal-di↵erence
methods, even though one was designed for planning and the other for model-free learning.

Dyna-Q includes all of the processes shown in the diagram above—planning, acting,
model-learning, and direct RL—all occurring continually. The planning method is the
random-sample one-step tabular Q-planning method on page 161. The direct RL method
is one-step tabular Q-learning. The model-learning method is also table-based and assumes
the environment is deterministic. After each transition St, At ! Rt+1, St+1, the model
records in its table entry for St, At the prediction that Rt+1, St+1 will deterministically
follow. Thus, if the model is queried with a state–action pair that has been experienced
before, it simply returns the last-observed next state and next reward as its prediction.

Fig. 7.4: If a perfect a priori model is not available, RL can be realized directly or indirectly (source: R.
Sutton and G. Barto, Reinforcement learning: an introduction, 2018, CC BY-NC-ND 2.0)
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Advantages & drawbacks: model-free vs. model-based RL
Pro model-based / indirect RL:

▶ Efficiently uses limited amount of experience (e.g., by replay).
▶ Allows integration of available a priori knowledge.

Pro model-free / direct RL:

▶ Is simpler to implement (only one task, not two consequent ones).
▶ Not affected by model bias / error during model learning.

Fig. 7.5: What way is better? (source: Mike Kononov on Unsplash)
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The general Dyna architecture (1)
▶ Proposed by R. Sutton in 1990’s
▶ General framework with many different implementation variants

8.2. Dyna: Integrated Planning, Acting, and Learning 163

During planning, the Q-planning algorithm randomly samples only from state–action
pairs that have previously been experienced (in Step 1), so the model is never queried
with a pair about which it has no information.

The overall architecture of Dyna agents, of which the Dyna-Q algorithm is one example,
is shown in Figure 8.1. The central column represents the basic interaction between
agent and environment, giving rise to a trajectory of real experience. The arrow on the
left of the figure represents direct reinforcement learning operating on real experience to
improve the value function and the policy. On the right are model-based processes. The
model is learned from real experience and gives rise to simulated experience. We use the
term search control to refer to the process that selects the starting states and actions
for the simulated experiences generated by the model. Finally, planning is achieved by
applying reinforcement learning methods to the simulated experiences just as if they had
really happened. Typically, as in Dyna-Q, the same reinforcement learning method is
used both for learning from real experience and for planning from simulated experience.
The reinforcement learning method is thus the “final common path” for both learning
and planning. Learning and planning are deeply integrated in the sense that they share
almost all the same machinery, di↵ering only in the source of their experience.

real

direct RL
update

Model

planning update

search
control

Policy/value functions

experience
model

learning

Environment

simulated
experience

Figure 8.1: The general Dyna Architecture. Real experience, passing back and forth between
the environment and the policy, a↵ects policy and value functions in much the same way as does
simulated experience generated by the model of the environment.

Conceptually, planning, acting, model-learning, and direct RL occur simultaneously
and in parallel in Dyna agents. For concreteness and implementation on a serial computer,
however, we fully specify the order in which they occur within a time step. In Dyna-Q,
the acting, model-learning, and direct RL processes require little computation, and we
assume they consume just a fraction of the time. The remaining time in each step can be
devoted to the planning process, which is inherently computation-intensive. Let us assume
that there is time in each step, after acting, model-learning, and direct RL, to complete

Fig. 7.6: Dyna framework (source: R. Sutton and G. Barto, Reinforcement learning: an introduction,
2018, CC BY-NC-ND 2.0)
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The general Dyna architecture (2)
▶ Direct RL update: any model-free algorithm: Q-learning, SARSA, ...
▶ Model learning:

▶ In tabular case: simple distribution estimation as in (7.3)
▶ Simple experience buffer to re-apply model-free algorithm
▶ For large or continuous state/action spaces: function approximation by supervised learning /

system identification (next lecture)
▶ Search control: strategies for selecting starting states and action to generate simulated

experience

8.2. Dyna: Integrated Planning, Acting, and Learning 163

During planning, the Q-planning algorithm randomly samples only from state–action
pairs that have previously been experienced (in Step 1), so the model is never queried
with a pair about which it has no information.

The overall architecture of Dyna agents, of which the Dyna-Q algorithm is one example,
is shown in Figure 8.1. The central column represents the basic interaction between
agent and environment, giving rise to a trajectory of real experience. The arrow on the
left of the figure represents direct reinforcement learning operating on real experience to
improve the value function and the policy. On the right are model-based processes. The
model is learned from real experience and gives rise to simulated experience. We use the
term search control to refer to the process that selects the starting states and actions
for the simulated experiences generated by the model. Finally, planning is achieved by
applying reinforcement learning methods to the simulated experiences just as if they had
really happened. Typically, as in Dyna-Q, the same reinforcement learning method is
used both for learning from real experience and for planning from simulated experience.
The reinforcement learning method is thus the “final common path” for both learning
and planning. Learning and planning are deeply integrated in the sense that they share
almost all the same machinery, di↵ering only in the source of their experience.

real

direct RL
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Model

planning update

search
control

Policy/value functions

experience
model
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Environment

simulated
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Figure 8.1: The general Dyna Architecture. Real experience, passing back and forth between
the environment and the policy, a↵ects policy and value functions in much the same way as does
simulated experience generated by the model of the environment.

Conceptually, planning, acting, model-learning, and direct RL occur simultaneously
and in parallel in Dyna agents. For concreteness and implementation on a serial computer,
however, we fully specify the order in which they occur within a time step. In Dyna-Q,
the acting, model-learning, and direct RL processes require little computation, and we
assume they consume just a fraction of the time. The remaining time in each step can be
devoted to the planning process, which is inherently computation-intensive. Let us assume
that there is time in each step, after acting, model-learning, and direct RL, to complete
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Algorithmic implementation: Dyna-Q
parameter: α ∈ {R|0 < α < 1} , n ∈ {N|n ≥ 1} (planning steps per real step)
init: q̂(x, u) arbitrary (except terminal) and M̂(x, u) ∀ {x ∈ X , u ∈ U}
for j = 1, 2, . . . episodes do

Initialize x0;
k ← 0;
repeat

Choose uk from xk using a soft policy derived from q̂(x, u);
Take action uk, observe rk+1 and xk+1;
q̂(xk, uk)← q̂(xk, uk) + α [rk+1 + γmaxu q̂(xk+1, u)− q̂(xk, uk)];

M̂(xk, uk)← {rk+1, xk+1} (assuming deterministic env.);
for i = 1, 2, . . . n do

x̃i ← random previously visited state;
ũi ← random previously taken action in x̃i;

{r̃i+1, x̃i+1} ← M̂(x̃i, ũi);
q̂(x̃i, ũi)← q̂(x̃i, ũi) + α [r̃i+1 + γmaxu q̂(x̃i+1, u)− q̂(x̃i, ũi)];

k ← k + 1;

until xk is terminal ;

Algo. 7.1: Dyna with Q-learning (Dyna-Q)
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Remarks on Dyna-Q implementation
The specific Dyna-Q characteristics are:

▶ Direct RL update: Q-learning,
▶ Model: simple memory buffer of previous real experience,
▶ Search strategy: random choices from model buffer.

Moreover:

▶ Number of Dyna planning steps n is to be delimited from n-step bootstrapping (same
symbol, two interpretations).

▶ Without the model M̂ one would receive one-step Q-learning.
▶ The model-based learning is done n times per real environment interaction:

▶ Previous real experience is re-applied to Q-learning.
▶ Can be considered a background task: choose maxn s.t. hardware limitations (prevent

turnaround errors).
▶ For stochastic environments: use a distributional model as in (7.3).

▶ Update rule then may be modified from sample to expected update.
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Maze example (1)8.2. Dyna: Integrated Planning, Acting, and Learning 165
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Figure 8.2: A simple maze (inset) and the average learning curves for Dyna-Q agents varying
in their number of planning steps (n) per real step. The task is to travel from S to G as quickly
as possible.

Figure 8.3 shows why the planning agents found the solution so much faster than
the nonplanning agent. Shown are the policies found by the n = 0 and n = 50 agents
halfway through the second episode. Without planning (n = 0), each episode adds only
one additional step to the policy, and so only one step (the last) has been learned so far.
With planning, again only one step is learned during the first episode, but here during
the second episode an extensive policy has been developed that by the end of the episode
will reach almost back to the start state. This policy is built by the planning process
while the agent is still wandering near the start state. By the end of the third episode a
complete optimal policy will have been found and perfect performance attained.

S

G

S

G
WITHOUT PLANNING ( =0) WITH PLANNING ( =50)n n

Figure 8.3: Policies found by planning and nonplanning Dyna-Q agents halfway through the
second episode. The arrows indicate the greedy action in each state; if no arrow is shown for a
state, then all of its action values were equal. The black square indicates the location of the
agent.

Fig. 7.7: Applying Dyna-Q with different planning steps n to
simple maze (source: R. Sutton and G. Barto, Reinforcement

learning: an introduction, 2018, CC BY-NC-ND 2.0)

▶ Maze with obstacles (gray blocks)

▶ Start at S and reach G

▶ rT = +1 at G

▶ Episodic task with γ = 0.95

▶ Step size α = 0.1

▶ Exploration ε = 0.1

▶ Averaged learning curves
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Maze example (2)

▶ Blocks without an arrow depict a neutral policy (equal action values).

▶ Black squares indicate agent’s position during second episode.

▶ Without planning (n = 0), each episodes only adds one new item to the policy.

▶ With planning (n = 50), the available experience is efficiently utilized.

▶ After the third episode, the planning agent found the optimal policy.

8.2. Dyna: Integrated Planning, Acting, and Learning 165
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  0 planning steps
(direct RL only)

Episodes
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episode 5 planning steps

  50 planning steps

S

G

actions

Figure 8.2: A simple maze (inset) and the average learning curves for Dyna-Q agents varying
in their number of planning steps (n) per real step. The task is to travel from S to G as quickly
as possible.

Figure 8.3 shows why the planning agents found the solution so much faster than
the nonplanning agent. Shown are the policies found by the n = 0 and n = 50 agents
halfway through the second episode. Without planning (n = 0), each episode adds only
one additional step to the policy, and so only one step (the last) has been learned so far.
With planning, again only one step is learned during the first episode, but here during
the second episode an extensive policy has been developed that by the end of the episode
will reach almost back to the start state. This policy is built by the planning process
while the agent is still wandering near the start state. By the end of the third episode a
complete optimal policy will have been found and perfect performance attained.

S

G

S

G
WITHOUT PLANNING ( =0) WITH PLANNING ( =50)n n

Figure 8.3: Policies found by planning and nonplanning Dyna-Q agents halfway through the
second episode. The arrows indicate the greedy action in each state; if no arrow is shown for a
state, then all of its action values were equal. The black square indicates the location of the
agent.

Fig. 7.8: Policies (greedy action) for Dyna-Q agent halfway through second episode (source: R. Sutton
and G. Barto, Reinforcement learning: an introduction, 2018, CC BY-NC-ND 2.0)
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The shortcut maze example

8.3. When the Model Is Wrong 167
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Figure 8.4: Average performance of Dyna agents on a blocking task. The left environment
was used for the first 1000 steps, the right environment for the rest. Dyna-Q+ is Dyna-Q with
an exploration bonus that encourages exploration.
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Figure 8.5: Average performance of Dyna agents on
a shortcut task. The left environment was used for the
first 3000 steps, the right environment for the rest.

Example 8.3: Shortcut Maze
The problem caused by this kind of
environmental change is illustrated
by the maze example shown in Fig-
ure 8.5. Initially, the optimal path is
to go around the left side of the bar-
rier (upper left). After 3000 steps,
however, a shorter path is opened up
along the right side, without disturb-
ing the longer path (upper right).
The graph shows that the regular
Dyna-Q agent never switched to the
shortcut. In fact, it never realized
that it existed. Its model said that
there was no shortcut, so the more it
planned, the less likely it was to step
to the right and discover it. Even
with an "-greedy policy, it is very
unlikely that an agent will take so
many exploratory actions as to dis-
cover the shortcut.

The general problem here is another version of the conflict between exploration and
exploitation. In a planning context, exploration means trying actions that improve the
model, whereas exploitation means behaving in the optimal way given the current model.

Fig. 7.9: Maze with an additional shortcut after 3000 steps
(source: R. Sutton and G. Barto, Reinforcement learning: an

introduction, 2018, CC BY-NC-ND 2.0)

▶ Maze opens a shortcut after 3000
steps

▶ Start at S and reach G

▶ rT = +1 at G

▶ Dyna-Q with random exploration
is likely not finding the shortcut

▶ Dyna-Q+ exploration strategy is
able to correct internal model

▶ Averaged learning curves
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Dyna-Q+ extensions

Compared to default Dyna-Q in Algo. 7.1, Dyna-Q+ contains the following extensions:

▶ Search heuristic: add κ
√
τ to regular reward.

▶ τ : is the number of time steps a state-action transition has not been tried.
▶ κ: is a small scaling factor κ ∈ {R|0 < κ}.
▶ Agent is encouraged to keep testing all accessible transitions.

▶ Actions for given states that had never been tried before are allowed for simulation-based
planning.
▶ Initial model for that: actions lead back to same state without reward.
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Background and idea

▶ Dyna-Q randomly samples from the memory buffer.
▶ Many planning updates maybe pointless, e.g., zero-valued state updates during early training.
▶ In large state-action spaces: inefficient search since transitions are chosen far away from optimal

policies.

▶ Better: focus on important updates.
▶ In episodic tasks: backward focusing starting from the goal state.
▶ In continuing tasks: prioritize according to impact on value updates.

▶ Solution method is called prioritized sweeping.
▶ Build up a queue of every state-action pair whose value would change significantly.
▶ Prioritize updates by the size of change.
▶ Neglect state-action pairs with only minor impact.
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Algorithmic implementation: prioritized sweeping
parameter: α ∈ {R|0 < α < 1} , n ∈ {N|n ≥ 1} , θ ∈ {R|θ ≥ 0}
init: q̂(x, u) arbitrary and M̂(x, u) ∀ {x ∈ X , u ∈ U}, empty queue Q
for j = 1, 2, . . . episodes do

Initialize x0 and k ← 0;
repeat

Take uk from xk using a soft policy derived from q̂(x, u), observe rk+1 and xk+1;

M̂(xk, uk)← {rk+1, xk+1} (assuming deterministic env.);
P ← |rk+1 + γmaxu q̂(xk+1, u)− q̂(xk, uk)|;
if P > θ then insert {xk, uk} in Q with priority P ;
for i = 1, 2, . . . n while queue Q is not empty do
{x̃i, ũi} ← argmaxP (Q);
{r̃i+1, x̃i+1} ← M̂(x̃i, ũi);
q̂(x̃i, ũi)← q̂(x̃i, ũi) + α [r̃i+1 + γmaxu q̂(x̃i+1, u)− q̂(x̃i, ũi)];
for ∀ {x, u} predicted to lead to x̃i do

r ← predicted reward for {x, u, x̃i};
P ← |r + γmaxu q̂(x̃i, u)− q̂(x, u)|;
if P > θ then insert {x, u} in Q with priority P ;

k ← k + 1;

until xk is terminal ;
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Remarks on prioritized sweeping implementation

The specific prioritized sweeping characteristics are:

▶ Direct RL update: Q-learning,

▶ Model: simple memory buffer of previous real experience,

▶ Search strategy: prioritized updates based on predicted value change.

Moreover:

▶ θ is a hyperparameter denoting the update significance threshold.

▶ Prediction step regarding x̃i is a backward search in the model buffer.
▶ For stochastic environments: use a distributional model as in (7.3).

▶ Update rule then may be modified from sample to expected update.
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Comparing against Dyna-Q on simple maze example

170 Chapter 8: Planning and Learning with Tabular Methods

Prioritized sweeping for a deterministic environment

Initialize Q(s, a), Model(s, a), for all s, a, and PQueue to empty
Loop forever:

(a) S  current (nonterminal) state
(b) A policy(S, Q)
(c) Take action A; observe resultant reward, R, and state, S0

(d) Model(S, A) R, S0

(e) P  |R + � maxa Q(S0, a)�Q(S, A)|.
(f) if P > ✓, then insert S, A into PQueue with priority P
(g) Loop repeat n times, while PQueue is not empty:

S, A first(PQueue)
R, S0  Model(S, A)
Q(S, A) Q(S, A) + ↵

⇥
R + � maxa Q(S0, a)�Q(S, A)

⇤

Loop for all S̄, Ā predicted to lead to S:
R̄ predicted reward for S̄, Ā, S
P  |R̄ + � maxa Q(S, a)�Q(S̄, Ā)|.
if P > ✓ then insert S̄, Ā into PQueue with priority P

Backups
until

optimal
solution
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Example 8.4: Prioritized Sweeping
on Mazes Prioritized sweeping has been
found to dramatically increase the speed
at which optimal solutions are found in
maze tasks, often by a factor of 5 to 10.
A typical example is shown to the right.
These data are for a sequence of maze
tasks of exactly the same structure as the
one shown in Figure 8.2, except that they
vary in the grid resolution. Prioritized
sweeping maintained a decisive advantage
over unprioritized Dyna-Q. Both systems
made at most n = 5 updates per environ-
mental interaction. Adapted from Peng
and Williams (1993).

Extensions of prioritized sweeping to stochastic environments are straightforward. The
model is maintained by keeping counts of the number of times each state–action pair has
been experienced and of what the next states were. It is natural then to update each pair
not with a sample update, as we have been using so far, but with an expected update,
taking into account all possible next states and their probabilities of occurring.

Prioritized sweeping is just one way of distributing computations to improve planning
e�ciency, and probably not the best way. One of prioritized sweeping’s limitations is that
it uses expected updates, which in stochastic environments may waste lots of computation
on low-probability transitions. As we show in the following section, sample updates

Fig. 7.10: Comparison of prioritized sweeping and Dyna-Q on
simple maze (source: R. Sutton and G. Barto, Reinforcement

learning: an introduction, 2018, CC BY-NC-ND 2.0)

▶ Environment framework as in
Fig. 7.7

▶ But: changing maze sizes
(number of states)

▶ Both methods can utilize up to
n = 5 planning steps

▶ Prioritized sweeping finds optimal
solution 5-10 times quicker
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Background planning vs. planning at decision time
Background Planning (discussed so far):

▶ Gradually improves policy or value function if time is available.

▶ Backward view: re-apply gathered experience.

▶ Feasible for fast execution: policy or value estimate are available with low latency
(important, e.g., for real-time control).

Planning at decision time1 (not yet discussed alternative):

▶ Select single next future action through planning.

▶ Forward view: predict future trajectories starting from current state.

▶ Typically discards previous planning outcomes (start from scratch after state transition).

▶ If multiple trajectories are independent: easy parallel implementation.

▶ Most useful if fast responses are not required (e.g., turn-based games).

1Can be interpreted as model predictive control in an engineering context.
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Heuristic search
▶ Develop tree-like continuations from each state encountered.
▶ Approximate value function at leaf nodes (using a model) and back up towards the current

state.
▶ Choose action according to predicted trajectory with highest value.
▶ Predictions are normally discarded (new search tree in each state).

8.10. Rollout Algorithms 183

looking ahead from a single position. This great focusing of memory and computational
resources on the current decision is presumably the reason why heuristic search can be so
e↵ective.

The distribution of updates can be altered in similar ways to focus on the current
state and its likely successors. As a limiting case we might use exactly the methods of
heuristic search to construct a search tree, and then perform the individual, one-step
updates from bottom up, as suggested by Figure 8.9. If the updates are ordered in this
way and a tabular representation is used, then exactly the same overall update would
be achieved as in depth-first heuristic search. Any state-space search can be viewed in
this way as the piecing together of a large number of individual one-step updates. Thus,
the performance improvement observed with deeper searches is not due to the use of
multistep updates as such. Instead, it is due to the focus and concentration of updates
on states and actions immediately downstream from the current state. By devoting a
large amount of computation specifically relevant to the candidate actions, decision-time
planning can produce better decisions than can be produced by relying on unfocused
updates.

1 2

3

4 5

6

7

8 9

10

Figure 8.9: Heuristic search can be implemented as a sequence of one-step updates (shown
here outlined in blue) backing up values from the leaf nodes toward the root. The ordering
shown here is for a selective depth-first search.

8.10 Rollout Algorithms

Rollout algorithms are decision-time planning algorithms based on Monte Carlo control
applied to simulated trajectories that all begin at the current environment state. They
estimate action values for a given policy by averaging the returns of many simulated
trajectories that start with each possible action and then follow the given policy. When
the action-value estimates are considered to be accurate enough, the action (or one of the

Fig. 7.11: Heuristic search tree with exemplary order of back-up operations (source: R. Sutton and G.
Barto, Reinforcement learning: an introduction, 2018, CC BY-NC-ND 2.0)
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Rollout algorithms

▶ Similar to heuristic search, but: simulate trajectories following a rollout policy.
▶ Use Monte Carlo estimates of action value only for current state to evaluate on best action.
▶ Gradually improves rollout policy but optimal policy might not be found if rollout sequences

are too short.
▶ Predictions are normally discarded (new rollout in each state).

R
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u
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y

Fig. 7.12: Simplified processing diagram of rollout algorithms
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Monte Carlo tree search (MCTS)
▶ Rollout algorithm, but:

▶ accumulates values estimates from former MC simulations,
▶ makes use of an informed tree policy (e.g., ε-greedy).

186 Chapter 8: Planning and Learning with Tabular Methods

extending the initial portions of trajectories that have received high evaluations from
earlier simulations. MCTS does not have to retain approximate value functions or policies
from one action selection to the next, though in many implementations it retains selected
action values likely to be useful for its next execution.

For the most part, the actions in the simulated trajectories are generated using a simple
policy, usually called a rollout policy as it is for simpler rollout algorithms. When both
the rollout policy and the model do not require a lot of computation, many simulated
trajectories can be generated in a short period of time. As in any tabular Monte Carlo
method, the value of a state–action pair is estimated as the average of the (simulated)
returns from that pair. Monte Carlo value estimates are maintained only for the subset
of state–action pairs that are most likely to be reached in a few steps, which form a tree
rooted at the current state, as illustrated in Figure 8.10. MCTS incrementally extends
the tree by adding nodes representing states that look promising based on the results of
the simulated trajectories. Any simulated trajectory will pass through the tree and then
exit it at some leaf node. Outside the tree and at the leaf nodes the rollout policy is used
for action selections, but at the states inside the tree something better is possible. For
these states we have value estimates for of at least some of the actions, so we can pick
among them using an informed policy, called the tree policy, that balances exploration

Selection SimulationExpansion Backup
Repeat while time remains 

Tree
 Policy

Rollout
Policy

Figure 8.10: Monte Carlo Tree Search. When the environment changes to a new state, MCTS
executes as many iterations as possible before an action needs to be selected, incrementally
building a tree whose root node represents the current state. Each iteration consists of the four
operations Selection, Expansion (though possibly skipped on some iterations), Simulation,
and Backup, as explained in the text and illustrated by the bold arrows in the trees. Adapted
from Chaslot, Bakkes, Szita, and Spronck (2008).

Fig. 7.13: Basic building blocks of MCTS algorithms (source: R. Sutton and G. Barto, Reinforcement
learning: an introduction, 2018, CC BY-NC-ND 2.0)
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Basic MCTS procedure

Repeat the following steps while prediction time is available:

1 Selection: Starting at root node, use a tree policy (e.g., ε-greedy) to travel through the tree
until arriving at a leaf node.
▶ The tree policy exploits auspicious tree regions while maintaining some exploration.
▶ It is improved and (possibly) extended in every simulation run.

2 Expansion: Add child node(s) to the leaf node by evaluating unexplored actions (optional
step).

3 Simulation: Simulate the remaining full episode using the rollout policy starting from the
leaf or child node (if available).
▶ The rollout policy could be random, pre-trained or based on model-free methods using real

experience (if available).

4 Backup: Update the values along the traveled trajectory but only saves those within the
tree policy.
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Further MCTS remarks
What is happening after reaching the feasible simulation runs?

▶ After time is up, MCTS picks an appropriate action regarding the root node, e.g.:
▶ The action visited the most times during all simulation runs or
▶ The action having the largest action value.

▶ After transitioning to a new state, the MCTS procedure re-starts:
▶ Either with a new tree incorporating only the root node or
▶ by re-utilizing the applicable parts from the previous tree.

Further reading on MCTS:

▶ MCTS-based algorithms are not limited to game applications but were able to achieve
outstanding success in this field.
▶ Famous AlphaGo (cf. Keynote lecture from D. Silver)

▶ More in-depth lectures on MCTS can be found (among others) here:
▶ Stanford Online: CS234
▶ MIT OpenCourseWare
▶ Extensive slide set from M. Sebag at Universite Paris Sud
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Summary: what you’ve learned today

▶ Model-free RL is easy to implement and cannot suffer any model learning error while
model-based approaches use a limited amount of experience much more efficient.

▶ Integrating these two RL branches can be achieved using the Dyna framework (background
planning) incorporating the steps:
▶ Direct RL updates (any model-free approach, e.g., Q-learning),
▶ Model learning: use real experience to improve model predictions,
▶ Search control: strategies on how to generate simulated experience.

▶ The Dyna framework allows many different algorithms such as Dyna-Q(+) or prioritized
sweeping.
▶ Learning efficiency is much increased compared to pure model-based/free approaches.
▶ Many degrees of freedom regarding internal update rules exist.

▶ In contrast, planning at decision time predicts future trajectories starting from the current
state (forward view).
▶ Rather computationally expensive leading to high latency responses.
▶ The Monte Carlo tree search rollout algorithm is a well-known example.
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Common key ideas to all discussed RL methods so far
1 Estimating and comparing value functions
2 Backing up values along actual or possible state trajectories
3 Usage of GPI mechanism to maintain an approximate value function and policy trying to

improve each of them on the basis of the other

86 Chapter 4: Dynamic Programming

to determine the states to which the DP algorithm applies its updates. At the same time,
the latest value and policy information from the DP algorithm can guide the agent’s
decision making. For example, we can apply updates to states as the agent visits them.
This makes it possible to focus the DP algorithm’s updates onto parts of the state set that
are most relevant to the agent. This kind of focusing is a repeated theme in reinforcement
learning.

4.6 Generalized Policy Iteration

Policy iteration consists of two simultaneous, interacting processes, one making the value
function consistent with the current policy (policy evaluation), and the other making
the policy greedy with respect to the current value function (policy improvement). In
policy iteration, these two processes alternate, each completing before the other begins,
but this is not really necessary. In value iteration, for example, only a single iteration of
policy evaluation is performed in between each policy improvement. In asynchronous DP
methods, the evaluation and improvement processes are interleaved at an even finer grain.
In some cases a single state is updated in one process before returning to the other. As
long as both processes continue to update all states, the ultimate result is typically the
same—convergence to the optimal value function and an optimal policy.

evaluation

improvement

⇡ � greedy(V )

V⇡

V � v⇡

v⇤⇡⇤

We use the term generalized policy iteration (GPI) to re-
fer to the general idea of letting policy-evaluation and policy-
improvement processes interact, independent of the granularity
and other details of the two processes. Almost all reinforcement
learning methods are well described as GPI. That is, all have
identifiable policies and value functions, with the policy always
being improved with respect to the value function and the value
function always being driven toward the value function for the
policy, as suggested by the diagram to the right. If both the
evaluation process and the improvement process stabilize, that
is, no longer produce changes, then the value function and policy
must be optimal. The value function stabilizes only when it
is consistent with the current policy, and the policy stabilizes
only when it is greedy with respect to the current value function.
Thus, both processes stabilize only when a policy has been found that is greedy with
respect to its own evaluation function. This implies that the Bellman optimality equation
(4.1) holds, and thus that the policy and the value function are optimal.

The evaluation and improvement processes in GPI can be viewed as both competing
and cooperating. They compete in the sense that they pull in opposing directions. Making
the policy greedy with respect to the value function typically makes the value function
incorrect for the changed policy, and making the value function consistent with the policy
typically causes that policy no longer to be greedy. In the long run, however, these
two processes interact to find a single joint solution: the optimal value function and an
optimal policy.

4.7. E�ciency of Dynamic Programming 87

v⇤,⇡⇤

⇡ = greed
y(v)

v,⇡

v = v⇡

One might also think of the interaction between
the evaluation and improvement processes in GPI
in terms of two constraints or goals—for example,
as two lines in two-dimensional space as suggested
by the diagram to the right. Although the real
geometry is much more complicated than this, the
diagram suggests what happens in the real case.
Each process drives the value function or policy
toward one of the lines representing a solution to
one of the two goals. The goals interact because the two lines are not orthogonal. Driving
directly toward one goal causes some movement away from the other goal. Inevitably,
however, the joint process is brought closer to the overall goal of optimality. The arrows
in this diagram correspond to the behavior of policy iteration in that each takes the
system all the way to achieving one of the two goals completely. In GPI one could also
take smaller, incomplete steps toward each goal. In either case, the two processes together
achieve the overall goal of optimality even though neither is attempting to achieve it
directly.

4.7 E�ciency of Dynamic Programming

DP may not be practical for very large problems, but compared with other methods for
solving MDPs, DP methods are actually quite e�cient. If we ignore a few technical details,
then the (worst case) time DP methods take to find an optimal policy is polynomial in
the number of states and actions. If n and k denote the number of states and actions, this
means that a DP method takes a number of computational operations that is less than
some polynomial function of n and k. A DP method is guaranteed to find an optimal
policy in polynomial time even though the total number of (deterministic) policies is kn.
In this sense, DP is exponentially faster than any direct search in policy space could
be, because direct search would have to exhaustively examine each policy to provide the
same guarantee. Linear programming methods can also be used to solve MDPs, and in
some cases their worst-case convergence guarantees are better than those of DP methods.
But linear programming methods become impractical at a much smaller number of states
than do DP methods (by a factor of about 100). For the largest problems, only DP
methods are feasible.

DP is sometimes thought to be of limited applicability because of the curse of dimen-
sionality, the fact that the number of states often grows exponentially with the number
of state variables. Large state sets do create di�culties, but these are inherent di�culties
of the problem, not of DP as a solution method. In fact, DP is comparatively better
suited to handling large state spaces than competing methods such as direct search and
linear programming.

In practice, DP methods can be used with today’s computers to solve MDPs with
millions of states. Both policy iteration and value iteration are widely used, and it is not
clear which, if either, is better in general. In practice, these methods usually converge
much faster than their theoretical worst-case run times, particularly if they are started

Fig. S-I.1: Generalized policy iteration (GPI) as a mutual building block of all previously discussed RL
methods (source: R. Sutton and G. Barto, Reinforcement learning: an introduction, 2018, CC

BY-NC-ND 2.0)
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Two important RL dimensions: update depth and width190 Chapter 8: Planning and Learning with Tabular Methods

width
of update

depth
(length)

of update

Temporal-
difference

learning

Dynamic
programming

Monte
Carlo

...

Exhaustive
search

Figure 8.11: A slice through the space of reinforcement learning methods, highlighting the
two of the most important dimensions explored in Part I of this book: the depth and width of
the updates.

ranging from one-step TD updates to full-return Monte Carlo updates. Between these
is a spectrum including methods based on n-step updates (and in Chapter 12 we will
extend this to mixtures of n-step updates such as the �-updates implemented by eligibility
traces).

Dynamic programming methods are shown in the extreme upper-right corner of the
space because they involve one-step expected updates. The lower-right corner is the
extreme case of expected updates so deep that they run all the way to terminal states
(or, in a continuing task, until discounting has reduced the contribution of any further
rewards to a negligible level). This is the case of exhaustive search. Intermediate methods
along this dimension include heuristic search and related methods that search and update
up to a limited depth, perhaps selectively. There are also methods that are intermediate
along the horizontal dimension. These include methods that mix expected and sample
updates, as well as the possibility of methods that mix samples and distributions within
a single update. The interior of the square is filled in to represent the space of all such
intermediate methods.

A third dimension that we have emphasized in this book is the binary distinction
between on-policy and o↵-policy methods. In the former case, the agent learns the value
function for the policy it is currently following, whereas in the latter case it learns the

Fig. S-I.2: A slice through the RL method space (source: R. Sutton and G. Barto, Reinforcement
learning: an introduction, 2018, CC BY-NC-ND 2.0)
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Other important rl dimensions
Selected, non-exhaustive list:

▶ Problem space: How many states and actions? Stochastic vs. deterministic environment?
Stationary?

▶ Policy objective: on-policy vs. off-policy? Explicit vs. implicit policy?

▶ Task: Episodic vs. continuing?

▶ Return definition: Discounting? General reward design?

▶ Value: State vs. action value estimation?

▶ Model: Required? Distribution vs. sample models? Learning vs. a priori (expert)
knowledge?

▶ Exploration: How to search for new policies?

▶ Update order: synchronous vs. asynchronous? If latter, which order?

▶ Experience: simulated vs. real experience? Memory length and style?

▶ ...
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Outlook

First part of the course:

Reinforcement learning on small finite action and state spaces

The problem space is such small that RL methods based on look-up tables are applicable.

Second part of the course::

Reinforcement learning using function approximators

The problem space is either continuous or contains an unfeasible large amount of discrete state-
action pairs. Value estimates, models or explicit policies stored in look-up tables would let the
memory demand explode. Modifications and extensions of available RL algorithms using function
approximators are required.
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The machine learning triad

Machine
Learning

Unsupervised 
Learning

Process and interpret
data based only

on the input

Supervised
 

Learning

Develop models
 to map input  

 and output data

Reinforcement
 

Learning

Learn optimal control
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long-term reward 

Clustering

Dimension Reduction

Regression

Classification

Single-Agent

Multi-Agent

Fig. 9.1: Disciplines of machine learning
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Introductory material

Machine learning (ML) and especially the field of supervised learning (SL) is extensively
researched and taught.

▶ Renowned online courses
▶ Coursera ML by Stanford’s Andrew Ng
▶ Practical deep learning for coders by fast.ai
▶ Intro to ML by Kaggle Courses

▶ Books classics
▶ Pattern Recognition and Machine Learning by C. M. Bishop
▶ The Elements of Statistical Learning by Hastie et al.
▶ Deep Learning by I. Goodfellow, Y. Bengio, and A. Courville
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Machine learning in industry

Machine learning applications are a fast growing industry itself, and enhance more and more
automation in classical industry as well.
Among others, popular industries are:

▶ Embedded systems,

▶ Mobility, and

▶ Digital assistants

Most applications are of the supervised type.
The demand for highly skilled ML engineers is growing correspondingly.
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Instances of ML applications

▶ Recommendation systems
▶ Which ads to display on a website?
▶ Which items are most likely put into cart next by the user?

▶ Forecasting
▶ Weather, sales, geospatial Uber calls, restaurant/website traffic
▶ Material attrition in engineering processes (predictive maintenance)

▶ Classification/Regression
▶ Speech assistants (Alexa/Siri), pedestrial detection (autonomous driving), fault detection in

engineering processes
▶ large language models (LLM), credit scoring (fintech)

▶ Generative models
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ML competitions with price pool

Fig. 9.2: Kaggle and DrivenData

Open ML competition platforms like kaggle or DrivenData offer a multitude of diverse
competitions to participate in at no cost.

▶ Most competitions come with a decent price pool of 15 tsd. dollars up to 1 mil. dollars
hosted by stakeholders from the industry and government.

▶ These competitions are almost exclusively of the supervised type, but RL challenges are
increasing.
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Typical supervised learning pipeline

Fig. 9.3: A typical supervised learning pipeline – sometimes more art than science
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Supervised learning in reinforcement learning

SL approximates functions, RL approximates policies.

However, there are two situations where SL is auxiliary in RL:

▶ Function approximation of (action-)state values, if the number of possible states exceeds
any reasonable memory capabability, which is often the case.
▶ vπ(x) ≈ v̂(x,w) with w being a trainable weight vector.

▶ Imitation learning. A simple-to-implement, deterministic baseline policy is often available,
but an RL agent might fail to achieve that performance when learning from scratch. With
SL, this baseline policy can be approximated to be the initial behavior of the agent.
▶ Expert moves in board games.
▶ Basic linear controllers in engineering applications with feedback-loops.
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Supervised learning problem statement

Supervised learning

Given a labeled data set ⟨xk,yk⟩ ∈ D with k ∈ [0,K − 1] and K being the data set size,
approximate the mapping function f∗ : xk 7→ yk with a parameterizable ML model fw : xk 7→
ŷk ≈ yk ∀k.

▶ Goodness of fit can be measured by a manifold of metrics
(e.g., mean squared error, classification accuracy, etc.).

▶ Reducing the look-up-table-like mapping f∗ to a parameterized function fw degrades any
metric on the data set but enables interpolation to unseen data.

▶ The dimension ξ of model parameters w ∈ Rξ is adjustable in many model families, which
trades off bias with variance (among other factors, leading to so-called under- and
overfitting).

▶ On top of w, an ML model might also have hyperparameters that can be optimized (e.g.,
number of layers in a neural network).
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Bias and variance

Fig. 9.4: Left: Decision boundaries in binary classification, k-nearest neighbors with one (bright) and
nine (dark) neighbors. Right: Regression example, least squares (dark) and 2-nearest neighbors (bright).
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Generalization error

Supervised learning performance

SL performance is measured by a model’s generalization error, i.e., goodness of fit on unseen
data.

A data set is often finite as opposed to RL environments generating arbitrarily many
observations.

▶ How to generate unseen data?
▶ Hold out portions of the data set for cross-validation.
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k-fold cross-validation

Split 1

Split 2
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Validation 
error

Generalization
error

All data

Test setTraining set

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
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Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fig. 9.5: k-fold CV with five folds

▶ Cross-validation (CV) can be
conducted with k-fold CV.

▶ Training is repeated k times with k
different splits of the training set.

▶ Each observation serves as unseen
instance at least once.

▶ The validation error is an indicator for
tuning hyperparameters.
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Means to improve an SL model

SL performance can be improved by:

▶ Collecting more data, i.e., increasing K (more data is always better).

▶ Choosing a more appropriate model.

▶ Optimizing hyperparameters of the model.

▶ Averaging over several different models (ensembling).

▶ Most effectively: Revealing the most predictive patterns in the data to the model (feature
engineering).
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Feature engineering

Additional features might be:

▶ Coming from the real world via additional sensors or additional tracking mechanisms (think
of a user’s click behavior on a website)

▶ Hand-designed (engineered) by experts in the corresponding domain from the original
feature set

▶ Automatically built according to properties of each feature in the original set (Auto-ML)

Caution

Adding more features is not equivalent to having more data (which is always better). Having a
fixed data set size, adding arbitrarily many features, regardless of their origin, increases chances
to align statistical fluctuations with the target yk - overfitting is the result.
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Feature engineering example (classification)

width

he
ig

ht

class 1 class 2

r

Fig. 9.6: Features r =
√
width2 + height2 and θ = arctan ( heightwidth ) reveal linearly separable class

distribution
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Feature engineering example (regression)

regressor

sig
na

l

regressor

lo
g 

sig
na

l

Fig. 9.7: Log-transform of the target signal exhibits linear relationship to the regressor
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Normalization

Most models require data to be normalized before training (apart from tree-based models).
Typical normalizaton schemes:

▶ Standard scaling: x̃ = (x− Avg(x))/Std(x)

▶ Min-Max scaling: x̃ = (x−min(x))/(max(x)−min(x))

▶ Plain scaling: x̃ = x/max(|x|)
In an unnormalized data set, features with high variance will eclipse patterns in other features.
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Data types

Several different data types can be utilized for ML:

▶ Binary: 1 or 0 (True or False).

▶ Integer: N (e.g., number of rooms in a building).

▶ Real-valued: R (e.g., temperature).

▶ Categorical: like {blue, green, red}
▶ Ordinal: Categoricals that can be ordered, e.g., educational experience (From elementary

school to Ph.D.)
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Data type specific normalization

How to normalize categorical data?

▶ One-hot encoding
▶ Replace a categorical of n values with n binary features.
▶ Feature space gets sparse and might get too big for memory.

▶ Mean target encoding
▶ Replace each value of a categorical with the average (regression) or mode (classification) of the

dependent variable being observed with the corresponding value.
▶ This might lead to information leaking from the dependent variables into the independent

variables, and might exhibit high performance that cannot be reproduced on unseen data.

▶ Entity embeddings
▶ Let a neural network find a cardinality-constrained set of real-valued features for each categorical.
▶ Works well in practice but is more intricate than alternatives.
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Typical feature engineering schemes

Feature design is often of the following form (tricks of the trade):
Given K feature vectors xk ∈ RP with, e.g., P = 3 (two real-valued regressors and a
categorical independent variable xk = (xk,r1 , xk,r2 , xk,c)):

▶ x̃k = xk,r1 + xk,r2 (or any other combination, e.g., product, division, subtraction, also cf.
Fig. 9.6),

▶ x̃k = xk,r − 1
|B|
∑

i∈B xi,r ∀r = {r1, r2} with B = {i : xi,c = xk,c},
▶ Clip/drop/aggregate outliers away,

▶ Coordinate transformations for spatial features (e.g., rotation),
▶ In time domain:

▶ x̃k = (xk,r1 , xk−1,r1 , xk−2,r1 , xk,r2 , xk,c) (lag features),
▶ x̃k = (1− α)x̃k−1 + αxk,r (moving averages).

▶ In frequency domain:
▶ Amplitude and index of frequencies from a fast fourier transform (FFT)
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Model landscape

When trying to find an appropriate mapping between input and output data, one can choose
from a variety of models:

▶ Linear/logistic regression (with regularization)
▶ The simplest data-fitting algorithm

▶ Support vector machines (SVM)
▶ Most popular algorithm before 2012

▶ (Deep) neural networks (DNN)
▶ Also coined as deep learning, soared in popularity since 2012
▶ Most prevalent in the domains of natural language processing (NLP) and image processing

▶ Gradient Boosting Machines (GBM)
▶ Chaining of weak models (most of the time decision trees)
▶ The best performing stand-alone model in tabular ML competitions
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Model choice

Fig. 9.8: Choose models appropriate for the problem! (Source: Adapted from reddit)
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Linear regression (1)

Linear models assume a linear relationship between xk = (1, xk,1, xk,2, . . . , xk,P ) and yk via
trainable coefficients w ∈ RP+1:

f(xk) = ŷk = w0 +

P∑

p=1

xk,pwp, (9.1)

ŷ = Ξw, (9.2)

where Ξ = (x1, . . . ,xK). Among other methods, w can be estimated from K samples by
minimizing the residual sum of squares (RSS), which is coined the least squares method:

RSS(w) =

K∑

k=1

(yk − f(xk))
2 = (y −Ξw)T(y −Ξw). (9.3)

Oliver Wallscheid Reinforcement learning 290



Linear regression (2)
Deriving (9.3) with respect to w and setting it to zero while assuming ΞTΞ is positive-definite,
yields an analytically closed solution form:

ŷ = Ξŵ = Ξ(ΞTΞ)−1ΞTy. (9.4)

Multicollinearity

If two regressors exhibit strong linear correlation, their coefficients can grow indeterministically.
This corresponds to high variance in ŵ. Regularization of ŵ alleviates this effect - it induces
bias for less variance. Most prevalent linear regularized techniques are LASSO and Ridge:

RSSLASSO(w) = (y −Ξw)T(y −Ξw) + λ||w||1, (9.5)

RSSRidge(w) = (y −Ξw)T(y −Ξw) + λ||w||2, (9.6)

where λ controls the growth penalty.
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Artificial neural networks
Artificial neural networks (ANNs) describe nonlinear approximators ŷ = f(Ξ;w) that are
end-to-end differentiable.

Input

OutputSum

Weights

Activation

Fig. 9.9: A typical neuron as the key building
block of ANNs.

▶ An ANN consists of nodes or neurons in one or
more layers.

▶ Each node transforms the weighted sum of all
previous nodes through an activation function.

▶ The weighted connections are called edges,
which represent the ANN’s parameters.
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Multi-layer perceptron

A vanilla ANN is the so-called feed-forward ANN or multi-layer perceptron.

Layer L

Layer L-1

Layer 2

Layer 1

Layer 0

Fig. 9.10: Multi-layer perceptron.

▶ Only forward-flowing edges.

▶ The depth L and width H(l) are
hyperparameters.

With φ(l) and Z(l) denoting the activation func-
tion and activation of layer l respectively, we get
for the output matrix H(l)

H(l) = φ(l)
(
H(l−1)W(l) + b(l)︸ ︷︷ ︸

Z(l)

)
.

Weight matrix W(l) ∈ RH(l−1)×H(l)
and (broadcasted) bias matrix b(l) ∈ RK×H(l)

are
iteratively optimized and denote the full set of parameters w.
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Activation functions

Within hidden layers most
prevalent activation functions φ(·) are
▶ h = tanh(z)

▶ h = 1
1+e−z (sigmoid)

▶ h = max(0, z)
(rectified linear unit (ReLU))

3 2 1 0 1 2 3
1.0

0.5

0.0

0.5

1.0

tanh
sigmoid
ReLU

Fig. 9.11: Common activation functions

Whereas φ(L)(·) is task-dependent:
▶ Regression: ŷ = h(L) = z(L)

▶ Binary classification: sigmoid

▶ Multi-class classification:

h(L)c =
ezc

∑C
i=1 e

zi
(softmax)
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Training neural networks (1)

ANN parameters are usually iteratively optimized via a variant of gradient descent, e.g.,
stochastic gradient descent (SGD).

W(l) ←W(l) − α∇W(l)L(y, ŷ), (9.7)

b(l) ← b(l) − α∇b(l)L(y, ŷ), (9.8)

with α being the step size and L(·) denoting the loss between the ground truth vector and the
estimation vector.
Typical loss functions:

▶ Regression: (root) mean squared error (RMSE), mean absolute error

▶ Classification: Cross-entropy (CE)

Several iterations over the data set D are called epochs.
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Training neural networks (2)

BGD
SGD

Fig. 9.12: BGD vs. SGD

Gradient descent alternatives:

▶ Batch gradient descent (BGD): Average
gradients over all samples, then update
weights.

▶ Stochastic gradient descent (SGD): Update
weights after each sample.

SGD is more computationally efficient, but steps are more random.
Nowadays, mini-batch gradient descent (mix of SGD and BGD) and further improvements are
used, e.g., momentum and second derivatives, to ensure faster convergence to better optima.

Oliver Wallscheid Reinforcement learning 297



Training neural networks (3)

How to retrieve the gradients:
Recall chain rule for vector derivatives, e.g., with y = g(x) and z = f(y) where g : Rm → Rn

and f : Rn → R:

∇xz =
∂z

∂x
=

(
∂y

∂x

)

︸ ︷︷ ︸
Jacobian of g

T

· ∂z

∂y︸︷︷︸
gradient

=
∑

j

∂yj
∂x
· ∂z
∂yj

. (9.9)

This can be used equivalently for matrices/tensors of any shape ∇Ξy = ∂y
∂Ξ when we assume

to enumerate each element of the tensor consecutively and loop through them.

Error Backpropagation

After a forward step through the network, make a backward step in which the gradient γ of the
loss L(y, ŷ) is computed w.r.t the ANN’s parameters from the output layer back to the input
layer.
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Training neural networks (4)

init: H(0) ← Ξ
// forward propagation
for l = 1, . . . , L layers do

Z(l) ←H(l−1)W(l) + b(l)

H(l) ← φ(l)(Z(l))
// backward propagation
γ ← ∇h(L)L(y, ŷ) // note that h(L) = ŷ
for l = L, . . . , 1 layers do

γ ← γ ⊙ ∂(φ(l))(Z(l)) = ∇Z(l)L(y, ŷ) // ⊙: elementwise mult.
Append γ = ∇b(l)L(y, ŷ) to list of bias gradients
Append (H(l−1))T · γ = ∇W(l)L(y, ŷ) to list of weight gradients

γ ← γ · (W(l))T = ∇H(l−1)L(y, ŷ)
Algo. 9.1: Error backpropagation
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Error backpropagation example (1)

Assume x0 = [2, 5, 7], y0 = 2.5, and a two-layered ANN with the MSE cost, and sigmoid
activation functions σ(z) = 1

1+e−z . The hidden layer contains two neurons with output

h(1) ∈ R2, while the weight vectors are initialized with

W(1) =
[
0.1 −0.3 0.2
0.0 0.4 −0.9

]T
, b(1) = [0.05,−0.03], and W(2) = [0.2,−0.8]T, b(2) = [0.1].

Applying SGD, we start with forward propagation:

h(1) = φ(1)(x0W(1) + b(1))

= σ([0.1,−4.3] + [0.05,−0.03]) = [0.53, 0.01]

ŷ0 = h(1)W(2) + b(2) = 0.198
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Error backpropagation example (2)

Backpropagation (with σ′(z) = ∂zσ(z) = σ(z)(1− σ(z))):

γ(2) = ∇ŷ0L(y0, ŷ0) = ∇ŷ(y0 − ŷ0)
2 = −2(y0 − ŷ0) = −4.604

∇b(2)L(y0, ŷ0) = γ(2) ⊙ ∂(φ(2))(z(2)) = γ(2)

∇W(2)L(y0, ŷ0) = (h(1))T · γ(2) = [−2.44,−0.046]T

γ(1) = ∇h(1)L(y0, ŷ0) = γ(2) · (W(2))T = [−0.921, 3.683]
∇b(1)L(y0, ŷ0) = γ(1) ⊙ ∂(φ(1))(z(1)) = γ(1) ⊙ σ′(x0W(1) + b(1))

= γ(1) ⊙ (h(1)(1− h(1))) = [−0.229, 0.036]
∇W(1)L(y0, ŷ0) = xT

0 · γ(1) =
[−1.84 −4.605 −6.447
7.366 18.415 25.781

]T

Now update weights and biases according to (9.7) and (9.8).
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Weight initialization

Early in deep learning research, it was found that random uniform or random normal weight
initialization leads to poor training.
According to Glorot and Bengio1, use the following layer-specific initialization schemes (with
Hin and Hout denoting amount of hidden units of previous and current layer, respectively):

▶ uniform: w ∼ U
(
−

√
6√

Hin+Hout
,

√
6√

Hin+Hout

)

▶ normal: w ∼ N
(
0,

√
2√

Hin+Hout

)

Please note that generally due to the random weight initialization the result of repeated error
backpropagation training is always different regardless of having the same hyperparameters and
the same data.
This equals to local optimization in highly non-linear parameter spaces at random starting
points.

1X. Glorot and Y. Bengio, ”Understanding the difficulty of training deep feedforward neural networks”, Proceedings
of Machine Learning Research, 2010
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Regularizing neural networks

In order to mitigate overfitting, ANNs must be regularized by

▶ weight decay, i.e., adding an ℓ2 penalty term to the weights, see (9.6),
▶ layer normalization during training,

▶ i.e all layers’ activations are normalized by standard scaling separately,

▶ dropout, i.e., randomly disable nodes’ contribution.
▶ This helps especially in deep networks,
▶ and effectively builds an ensemble of ANNs with shared edges.
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Advanced topologies

Output 
Sequence

Input 
Sequence

Hidden
Layer

Output
Layer

Output 
Sequence

Input 
Sequence

...

...Prepadding

Hidden 
Layer

Hidden 
Layer

...

Fig. 9.13: Recurrent (left) and 1-D convolutional (right) ANNs are more appropriate in time domains,
e.g., where the given data set has a dynamic system background
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Hyperparameter optimization (1)

Choice of framework, 
toolboxes, hyper-parameter 

intervals and optimizer

Third level of inference

Second level of inference

First level of inference

manually 
engineered

ML model parameters
optimization

automated by
gradient descent,
meta-heuristics 

automated by
Bayesian search,
meta-heuristics 

Hyperparameter
 optimization

Fig. 9.14: The three levels of optimization
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Hyperparameter optimization (2)

▶ Hyperparameter optimization is, again, a non-linear optimization problem.

▶ Evaluation of any point in this space can be very costly, though.

▶ Information gathered during a search must be fully utilized.
▶ Toolboxes (incomprehensive)

▶ Optuna
▶ Scikit-optimize
▶ Pyswarm
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SL toolboxes

▶ Deep learning
▶ Tensorflow 2 (Keras)
▶ PyTorch
▶ Chainer
▶ CNTK

▶ Gradient boosting machines
▶ XGBoost
▶ LightGBM
▶ CatBoost

▶ Linear, tree-based, memory-based models, SVMs, among others
▶ Scikit-learn
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Summary: what you’ve learned today

▶ Industry has high demand for ML applications.

▶ Higher bias trades off variance for a better overall score.

▶ How to cross-validate and improve SL models.

▶ How features are engineered and normalized.

▶ Fundamentals of linear regression and neural networks.
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Preface
Until further notice we assume that:

▶ The state space is consisting of at least one continuous quantity or an unfeasible large
amount of discrete states (quasi-continuous).

▶ The state is considered a vector: x =
[
x1 x2 · · ·

]T
.

▶ The action space remains discrete and feasible small.
▶ The action can be represented as a scalar: u = u (cf. 2nd lecture).

▶ The applied approximation functions J(w) are differentiable with the parameter vector w.

▶ Therefore, the gradient ∇J(w) =
[
∂J(w)
∂w1

∂J(w)
∂w2

· · ·
]T

exists.

Focus of this and the next lecture:

▶ Transferring previous RL methods from discrete to continuous state-space problems in the
on-policy case.

▶ Applying off-policy approaches with function approximation is not straightforward and will
be largely skipped.
▶ For further insights we refer to chapter 11 in R. Sutton and G. Barto, Reinforcement learning: an

introduction, 2018.
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Non-stationarity
▶ Standard assumption of supervised ML: static and i.i.d. data processes
▶ Deviating impacts in the RL framework:

▶ Changing environments (e.g., by tear and wear)
▶ Dynamic learning in control tasks, i.e., changing policy (next lecture)

86 Chapter 4: Dynamic Programming

to determine the states to which the DP algorithm applies its updates. At the same time,
the latest value and policy information from the DP algorithm can guide the agent’s
decision making. For example, we can apply updates to states as the agent visits them.
This makes it possible to focus the DP algorithm’s updates onto parts of the state set that
are most relevant to the agent. This kind of focusing is a repeated theme in reinforcement
learning.

4.6 Generalized Policy Iteration

Policy iteration consists of two simultaneous, interacting processes, one making the value
function consistent with the current policy (policy evaluation), and the other making
the policy greedy with respect to the current value function (policy improvement). In
policy iteration, these two processes alternate, each completing before the other begins,
but this is not really necessary. In value iteration, for example, only a single iteration of
policy evaluation is performed in between each policy improvement. In asynchronous DP
methods, the evaluation and improvement processes are interleaved at an even finer grain.
In some cases a single state is updated in one process before returning to the other. As
long as both processes continue to update all states, the ultimate result is typically the
same—convergence to the optimal value function and an optimal policy.

evaluation

improvement

⇡ � greedy(V )

V⇡

V � v⇡

v⇤⇡⇤

We use the term generalized policy iteration (GPI) to re-
fer to the general idea of letting policy-evaluation and policy-
improvement processes interact, independent of the granularity
and other details of the two processes. Almost all reinforcement
learning methods are well described as GPI. That is, all have
identifiable policies and value functions, with the policy always
being improved with respect to the value function and the value
function always being driven toward the value function for the
policy, as suggested by the diagram to the right. If both the
evaluation process and the improvement process stabilize, that
is, no longer produce changes, then the value function and policy
must be optimal. The value function stabilizes only when it
is consistent with the current policy, and the policy stabilizes
only when it is greedy with respect to the current value function.
Thus, both processes stabilize only when a policy has been found that is greedy with
respect to its own evaluation function. This implies that the Bellman optimality equation
(4.1) holds, and thus that the policy and the value function are optimal.

The evaluation and improvement processes in GPI can be viewed as both competing
and cooperating. They compete in the sense that they pull in opposing directions. Making
the policy greedy with respect to the value function typically makes the value function
incorrect for the changed policy, and making the value function consistent with the policy
typically causes that policy no longer to be greedy. In the long run, however, these
two processes interact to find a single joint solution: the optimal value function and an
optimal policy.

4.7. E�ciency of Dynamic Programming 87

v⇤,⇡⇤

⇡ = greed
y(v)

v,⇡

v = v⇡

One might also think of the interaction between
the evaluation and improvement processes in GPI
in terms of two constraints or goals—for example,
as two lines in two-dimensional space as suggested
by the diagram to the right. Although the real
geometry is much more complicated than this, the
diagram suggests what happens in the real case.
Each process drives the value function or policy
toward one of the lines representing a solution to
one of the two goals. The goals interact because the two lines are not orthogonal. Driving
directly toward one goal causes some movement away from the other goal. Inevitably,
however, the joint process is brought closer to the overall goal of optimality. The arrows
in this diagram correspond to the behavior of policy iteration in that each takes the
system all the way to achieving one of the two goals completely. In GPI one could also
take smaller, incomplete steps toward each goal. In either case, the two processes together
achieve the overall goal of optimality even though neither is attempting to achieve it
directly.

4.7 E�ciency of Dynamic Programming

DP may not be practical for very large problems, but compared with other methods for
solving MDPs, DP methods are actually quite e�cient. If we ignore a few technical details,
then the (worst case) time DP methods take to find an optimal policy is polynomial in
the number of states and actions. If n and k denote the number of states and actions, this
means that a DP method takes a number of computational operations that is less than
some polynomial function of n and k. A DP method is guaranteed to find an optimal
policy in polynomial time even though the total number of (deterministic) policies is kn.
In this sense, DP is exponentially faster than any direct search in policy space could
be, because direct search would have to exhaustively examine each policy to provide the
same guarantee. Linear programming methods can also be used to solve MDPs, and in
some cases their worst-case convergence guarantees are better than those of DP methods.
But linear programming methods become impractical at a much smaller number of states
than do DP methods (by a factor of about 100). For the largest problems, only DP
methods are feasible.

DP is sometimes thought to be of limited applicability because of the curse of dimen-
sionality, the fact that the number of states often grows exponentially with the number
of state variables. Large state sets do create di�culties, but these are inherent di�culties
of the problem, not of DP as a solution method. In fact, DP is comparatively better
suited to handling large state spaces than competing methods such as direct search and
linear programming.

In practice, DP methods can be used with today’s computers to solve MDPs with
millions of states. Both policy iteration and value iteration are widely used, and it is not
clear which, if either, is better in general. In practice, these methods usually converge
much faster than their theoretical worst-case run times, particularly if they are started

Fig. 10.1: GPI changes the underlying stochastic processes generating data inputs to be learned by
function approximators (source: R. Sutton and G. Barto, Reinforcement learning: an introduction, 2018,

CC BY-NC-ND 2.0)
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Prediction framework with function approximation (1)

▶ Estimate true value function vπ(x) using a parametrizable approximate value function

v̂(x̃,w) ≈ vπ(x). (10.1)

▶ The state x might be enhanced by feature engineering (i.e., additional signal inputs are
derived in the feature vector x̃ = f(x) ∈ Rκ).

▶ Above, w ∈ Rζ is the parameter vector.

▶ Typically, ζ << |X | applies (otherwise approximation is pointless).

Generalization

Due to the usage of function approximation one incremental learning step changes at least one
element wi ∈ w which

▶ affects the estimated value of many states compared to

▶ the tabular case where one update step affects only one state.
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Prediction framework with function approximation (2)
▶ In the tabular case a specific prediction objective was not needed:

▶ The learned value function could exactly match the true value.
▶ The value estimate at each state was decoupled from other states.

▶ Due to generalization impact we need to define an accuracy metric on the entire state space
(the RL prediction goal):

Definition 10.1: Mean Squared Value Error

The RL prediction objective is defined as the mean squared value error

VE(w) =

∫

X
µ(x) [vπ(x)− v̂(x̃,w)]2 (10.2)

with µ(x) ∈ {R|µ(x) ≥ 0} being a state distribution weight with
∫
X µ = 1.

▶ Practical note: As the true value vπ(x) is most likely unknown in most tasks, (10.2) cannot
be computed exactly but only estimated.
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Simplification for on-policy prediction

▶ For prediction we focus entirely on the on-policy case.

▶ Hence, µ(x) is the on-policy distribution under π.

▶ For practical usage we can therefore approximate the weighted integration over the entire
state space X in (10.2) by the sampled MSE of the visited state trajectory:

VE(w) ≈ J(w) =
∑

k

[vπ(xk)− v̂(x̃k,w)]2 . (10.3)

▶ If we would perform off-policy prediction we have to transform the sampled value
(estimates) from the behavior to the target policy.

▶ Likewise when doing this for tabular methods, this increases the prediction variance.

▶ In combination with generalization errors due to function approximation, the overall risk of
diverging is significantly higher compared to the on-policy case.

Oliver Wallscheid Reinforcement learning 314



Prediction challenges with function approximation
Summarizing the two previous slides:

▶ The goal is to find
w∗ = argmin

w
J(w). (10.4)

First challenge:

▶ Function approximator v̂(x̃,w) requires certain form to fit vπ(x).

Second challenge:

▶ If v̂(x̃,w) is linear: convex optimization problem.
▶ The nice case: the local optimum equals the global optimum and is uniquely discoverable. But

requires linear feature dependence.

▶ If v̂(x̃,w) is non-linear: non-linear optimization problem.
▶ The ugly case: possible multitude of local optima with no guarantee to locate the global one.
▶ Depending on optimization strategy the RL algorithm may diverge.
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Updating the parameter vector to find (local) optimum

Transferring the idea of incremental learning steps from the tabular case

v̂(x)← v̂(x) + α [vπ(x)− v̂(x)] (10.5)

to function approximation using a gradient descent update:

w ← w − α∇wJ(w). (10.6)

▶ The search direction is the prediction objective gradient ∇wJ(w).

▶ The learning rate α determines the step size of one update.
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How to retrieve the gradient?

*

*

SGD

GD

Fig. 10.2: Exemplary optimization paths for
(stochastic) gradient descent

(derivative work of www.wikipedia.org, CC0 1.0)

▶ Full calculus of ∇wJ(w):
▶ Batch evaluation on sampled sequence

x0,x1,x2, . . . might be computationally costly.
▶ In RL control: since π changes over time, past

data in batch is not fully representative.

▶ SGD: sample gradient at a given state xk and
parameter vector wk:

∇wJ(w) ≈− [vπ(xk)− v̂(x̃k,wk)]

∇wv̂(x̃k,wk).

▶ Regular gradient descent leads to same result as
SGD in expectation (averaging of samples).
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Asking an expert on convergence properties
The optimization task (10.4) could be

▶ non-linear,
▶ multidimensional and
▶ non-stationary.

Applying gradient descent to such a problem requires:

▶ Enormous luck to initialize w0 close to the global optimum.
▶ Cautious tuning of α to prevent diverging or chattering of wk.
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SGD-based learning step

Despite the possible problems we apply SGD-based learning due to its striking simplicity (and
wide distribution in the literature):

Gradient-based parameter update

To optimize (10.4) by an appropriate function approximator v̂(x̃,w) the incremental learning
update per step is

wk+1 = wk + α [vπ(xk)− v̂(x̃k,wk)]∇wv̂(x̃k,wk). (10.7)

Nevertheless, the true update target vπ(xk) is often unknown due to

▶ noise or

▶ the learning process itself (e.g., bootstrapping estimates).
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Generalization example for parameter update
▶ Function approximation v̂(x̃,w) =

[
w1 w2 w3

] [
x1 x2 1

]T

▶ Initial parameter: wT
0 =

[
1 1 1

]
, vπ(x0 =

[
1 1

]T
) = 1, α = 0.1

▶ New parameter set:

wT
1 = wT

0 + α [vπ(x0)− v̂(x̃0,w0)] (∇wv̂(x̃0,w0))
T

=
[
1 1 1

]
+ 0.1 (1− 3)

[
1 1 1

]
=
[
0.8 0.8 0.8

]

5
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Fig. 10.3: Exemplary state-value estimation update with linear regression model
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Algorithmic implementation: gradient Monte Carlo

▶ Direct transfer from tabular case to function approximation

▶ Update target becomes the sampled return vπ(xk) ≈ gk

input: a policy π to be evaluated, a feature representation x̃ = f(x)
input: a differentiable function v̂ : Rκ × Rζ → R
parameter: step size α ∈ {R|0 < α < 1}
init: value-function weights w ∈ Rζ arbitrarily
for j = 1, 2, . . . , episodes do

generate an episode following π: x0, u0, r1, . . . , xT ;
calculate every-visit return gk;
for k = 0, 1, . . . , T − 1 time steps do

w ← w + α [gk − v̂(x̃k,w)]∇wv̂(x̃k,w);

Algo. 10.1: Every-visit gradient MC (output: parameter vector w for v̂π)
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Semi-gradient methods
▶ If bootstrapping is applied, the true target vπ(xk) is approximated by a target depending on

the estimate v̂(x̃k,w).
▶ If v̂(x̃k,w) does not fit vπ(xk), the update target becomes a biased estimate of vπ(xk).

▶ For example, in the TD(0) case applying SGD we receive:

vπ(x) ≈ r + γv̂(x̃′,w),

J(w) ≈
∑

k

[rk+1 + γv̂(x̃k+1,wk)− v̂(x̃k,wk)]
2 ,

∇wJ(w) ≈ [rk+1 + γv̂(x̃k+1,wk)− v̂(x̃k,wk)]

∇w [γv̂(x̃k+1,wk)− v̂(x̃k,wk)] .

(10.8)

Semi-gradient methods

When bootstrapping is applied, the gradient does not take into account any gradient component
of the bootstrapped target estimate.

▶ Motivation: speed up gradient calculation while assuming that the simplification error is
small (e.g., due to discounting).
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Algorithmic implementation: semi-gradient TD(0)
The semi-gradient of J(w) for TD(0) from prev. slide is then

∇wJ(w) ≈ − [rk+1 + γv̂(x̃k+1,wk)− v̂(x̃k,wk)]∇wv̂(x̃k,wk). (10.9)

input: a policy π to be evaluated, a feature representation x̃ = f(x)
input: a differentiable function v̂ : Rκ × Rζ → R with v̂(x̃T , ·) = 0
parameter: step size α ∈ {R|0 < α < 1}
init: value-function weights w ∈ Rζ arbitrarily
for j = 1, 2, . . . episodes do

initialize x0;
for k = 0, 1, 2 . . . time steps do

uk ← apply action from π(xk);
observe xk+1 and rk+1;
w ← w + α [rk+1 + γv̂(x̃k+1,w)− v̂(x̃k,w)]∇wv̂(x̃k,w);
exit loop if xk+1 is terminal;

Algo. 10.2: Semi-gradient TD(0) (output: parameter vector w for v̂π)
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input: a policy π to be evaluated, a feature representation x̃ = f(x)
input: a differentiable function v̂ : Rκ × Rζ → R with v̂(x̃T , ·) = 0
parameter: step size α ∈ {R|0 < α < 1}, prediction steps n ∈ Z+

init: value-function weights w ∈ Rζ arbitrarily
for j = 1, 2 . . . episodes do

initialize and store x0;
T ←∞;
repeat k = 0, 1, 2, . . .

if k < T then
take action from π(xk), observe and store xk+1 and rk+1;
if xk+1 is terminal: T ← k + 1;

τ ← k − n+ 1 (τ time index for estimate update);
if τ ≥ 0 then

g ←∑min(τ+n,T )
i=τ+1 γi−τ−1ri;

if τ + n < T : g ← g + γnv̂(x̃τ+n,w);
w ← w + α [g − v̂(x̃τ ,w)]∇wv̂(x̃τ ,w);

until τ = T − 1;

Algo. 10.3: n-step semi-gradient TD (output: parameter vector w for v̂π)
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Background and motivation

▶ As already discussed in the tabular case: incremental learning is not data efficient (cf.
example Fig. 5.8).
▶ During one incremental learning step we are not utilizing the given information to the maximum

possible extent.
▶ Also applies to SGD-based updates with function approximation.

▶ Alternative: batch learning methods
▶ Find w∗ given a fixed, consistent data set D = {⟨x0, vπ(x0)⟩ , ⟨x1, vπ(x1)⟩ , . . .}.

▶ What batch learning options do we have?
▶ Experience replay (cf. planning and learning lecture, e.g., Fig. 7.6)
▶ If v̂(x̃,w) is linear: closed-form least-squares solution
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SGD with experience replay
Based on the data set

D = {⟨x0, vπ(x0)⟩ , ⟨x1, vπ(x1)⟩ , . . .}
repeat:

1 Sample uniformly i = 1, . . . , b state-value pairs from experience (so-called mini batch)

⟨xi, vπ(xi)⟩ ∼ D.

2 Apply (semi) SGD update step:

wk+1 = wk +
α

b

b∑

i=1

[vπ(xi)− v̂(x̃i,wi)]∇wv̂(x̃i,wi).

▶ Universally applicable: v̂(x̃,w) can be any differentiable function.
▶ The usual technical tuning requirements regarding α apply.
▶ True target vπ(x) is usually approximated by MC or TD targets.
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(Ordinary) least squares
Assuming the following applies:

▶ v̂(x̃,w) is a linear estimator and
▶ D a fixed, representative data set following the on-policy distribution.

Then, minimizing the quadratic cost function (10.3) becomes

▶ an ordinary least squares (OLS) / linear regression problem.

We focus on the combination of OLS and TD(0) (so-called LSTD), but the following can be
equally extended to n-step learning or MC.

▶ Rewriting J(w) from (10.3) using linear approximation TD(0) target:

vπ(xk) ≈ rk+1 + γv̂(xk+1) = rk+1 + γx̃T
k+1w (10.10)

J(w) =
∑

k

[vπ(xk)− v̂(x̃k,w)]2 =
∑

k

[
rk+1 −

(
x̃T
k − γx̃T

k+1

)
w
]2

.
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Ordinary LSTD
The quadratic cost function

J(w) =
∑

k

[
rk+1 −

(
x̃T
k − γx̃T

k+1

)
w
]2

obtains the least squares

▶ target / dependent variable rk+1 and

▶ regressor / independent variable
(
x̃T
k − γx̃T

k+1

)
.

With b samples we can form a target vector y and regressor matrix Ξ:

y =




r1
r2
...
rb


 , Ξ =




(
x̃T
0 − γx̃T

1

)
(
x̃T
1 − γx̃T

2

)
...(

x̃T
b−1 − γx̃T

b

)


 . (10.11)
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Ordinary LSTD and regularization
Applying the linear regression solution (9.4) from previous lecture:

LSTD solution

Having arranged i = 1, . . . , b samples ⟨xi, vπ(xi)⟩ ∼ D using TD(0) and linear function approx-
imation as in (10.11), the LSTD solution is

w∗ = (ΞTΞ)−1ΞTy. (10.12)

▶ The parameter w∗ is also called the TD fixed point.
▶ The state-value prediction is simply v̂(x̃k) = x̃T

kw
∗.

Depending on the policy π the rows in Ξ might be linearly correlated.

▶ Bad matrix condition of ΞTΞ can lead to unfeasible values in w∗.
▶ Counter measure: Add Tikhonov regularization (Ridge regression with penalty term ϵ, cf.

(9.6)):

w∗
Ridge = (ΞTΞ+ ϵI)−1ΞTy. (10.13)
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Recursive least squares

▶ OLS computational complexity is in the range of O(κ2.3) . . .O(κ3).
▶ κ being the number of features.

▶ Computational costly if new data points ⟨xi, vπ(xi)⟩ are added to D.
▶ Consider supplement / extension: recursive least square (RLS).

▶ Each RLS update complexity is O(κ2).

▶ In the following, we briefly represent the recipe-style RLS equations.
▶ Detailed derivation can be found e.g. R. Isermann and M. Münchhof, Identification of Dynamic

Systems, Springer-Verlag Berlin Heidelberg, 2011 (also as electronic copy on Panda).
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RLS-TD
After every step we receive

▶ a new regressor vector ξTk+1 =
(
x̃T
k − γx̃T

k+1

)
and

▶ a new update target yk+1 = rk+1.

The RLS update rule is then

ck =
Pkξk+1

λk+1 + ξTk+1Pkξk+1
,

wk+1 = wk + ck

(
yk+1 − ξTk+1wk

)
,

Pk+1 =
(
I − ckξ

T
k+1

) Pk

λk+1
,

(10.14)

with

▶ λk ∈ {R|0 < λ ≤ 1} is an optional forgetting factor,
▶ Pk is the covariance matrix and
▶ ck is an adaptive correction to reduce the error

(
yk+1 − ξTkwk+1

)
.
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Algorithmic implementation: RLS-TD
input: a policy π to be evaluated
input: a feature representation x̃ with x̃T = 0 (i.e., v̂(x̃T , ·) = 0)
parameter: forgetting factor λ ∈ {R|0 < λ ≤ 1}
init: weights w ∈ Rζ arbitrarily, covariance P > 0 (e.g. P = βI)
for j = 1, 2, . . . episodes do

initialize x0;
for k = 0, 1, 2 . . . time steps do

uk ← apply action from π(xk), observe xk+1 and rk+1;
y ← rk+1;

ξT ← x̃T
k − γx̃T

k+1;

c← (Pξ) /
(
λ+ ξTPξ

)
;

w ← w + c
(
y − ξTw

)
;

P ←
(
I − cξT

)
P /λ;

exit loop if xk+1 is terminal;

Algo. 10.4: RLS-TD (output: parameter vector w for v̂π)
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Some remarks on RLS usage in RL prediction

▶ Covariance matrix P can be inspected for certainty analysis.
▶ Small-valued elements in P suggest an accurate estimate.

▶ For λ = 1 the RLS converges to a static solution.
▶ Never forgets something (i.e., problematic for non-stationary problem).
▶ Given the same data set D the RLS converges to OLS solution.

▶ However, if RLS-TD should be used online λ ∈ [0.95, 0.99] is typical.
▶ Application-dependent λk might be adapted online after each step.
▶ As seen in (10.14), λ < 1 increases the covariance which potentially could lead to numerical

instabilities depending on the given data set.
▶ In this case, regularization is required.1

▶ General RLS approach (10.14) is also applicable to MC or n-step TD.
▶ Derivation follows presented scheme based on the altered update rules.

1Recommended reading: S. Gunnarson, Combining Tracking and Regularization in Recursive Least Squares Iden-
tification, Proceedings of 35th IEEE Conference on Decision and Control, 1996
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Summary: what you’ve learned today

▶ To cover unfeasible large or continuous state spaces function approximation is required.
▶ Feature engineering supports the learning process.

▶ On-policy prediction seems rather straightforward with function approximation:
▶ Just transfer the incremental learning from tabular case to gradient descent on parameter vector

w.
▶ Stochastic gradient descent allows step-by-step based updates.

▶ Gradient-based prediction is not risk free (especially non-linear case):
▶ no convergence guarantees,
▶ local optima vs. global optimum.

▶ If bootstrapping is applied, the update target depends on w.
▶ True gradient becomes computationally more complex.
▶ Semi-gradient methods reduce computational burden at accuracy costs.

▶ Batch learning squeezes out all available prediction information from a given data set.
▶ If linear function approximation is applied, closed-form solutions exist.
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Preface
Problem space: it is further assumed that

▶ the states x are (quasi-)continuous and

▶ the actions u are discrete.

Today’s focus:

▶ valued-based control tasks, i.e., transferring the established tabular methods to work with
function approximation.

▶ Hence, we need to extend the previous prediction methods to action values

q̂(x, u,w) ≈ qπ(x, u). (11.1)

▶ And apply the well-known generalized policy iteration scheme (GPI) to find optimal actions:

q̂(x, u,w) ≈ q∗(x, u). (11.2)
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Types of action-value function approximation

Fig. 11.1: Possible function approximation settings for discrete actions

▶ Left: one function with both states and actions as input
▶ Middle: one function with i = 1, 2, . . . outputs covering the action space (e.g., ANN with

appropriate output layer)
▶ Right: multiple (sub-)functions one for each possible action ui (e.g., multitude of linear

approximators in small action spaces)
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Feature engineering

▶ Also for action-value estimation a proper feature engineering (FE) is of vital importance.

▶ Compared to the state-value prediction, the action becomes part of the FE processing:

q̂(x, u,w) = q̂ (f (x, u) ,w) . (11.3)

▶ Above, f(x, u) ∈ Rκ is the FE function.

▶ For sake of notation simplicity we write q̂(x, u,w) and understand that FE has already been
considered (i.e., is a part of q̂).
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Gradient-based action-value learning

▶ Transferring the objective (10.3) from on-policy prediction to control yields:

J(w) =
∑

k

[qπ(xk, uk)− q̂(xk, uk,w)]2 . (11.4)

▶ Analogous, the (semi-)gradient-based parameter update from (10.7) is also applied to
action values:

wk+1 = wk + α [qπ(xk, uk)− q̂(xk, uk,wk)]∇wq̂(xk, uk,wk). (11.5)

▶ Depending on the control approach, the true target qπ(xk, uk) is approximated by:
▶ Monte Carlo: full episodic return qπ(xk, uk) ≈ g,
▶ SARSA: one-step bootstrapped estimate qπ(xk, uk) ≈ rk+1 + γq̂(xk+1, uk+1,wk),
▶ n-step SARSA: qπ(xk, uk) ≈ rk+1 + γrk+2 + · · ·+ γn−1rk+n + γnq̂(xk+n, uk+n,wk+n−1).
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Houston: we have a problem

▶ Recall tabular policy improvement theorem (Theo. 3.1): guarantee to find a globally better
or equally good policy in each update step.

▶ With parameter updates (11.5) generalization applies.

▶ Hence, when reacting to one specific state-action transition other parts of the state-action
space within q̂ are affected too.

4.7. E�ciency of Dynamic Programming 87

v⇤,⇡⇤

⇡ = greed
y(v)

v,⇡

v = v⇡

One might also think of the interaction between
the evaluation and improvement processes in GPI
in terms of two constraints or goals—for example,
as two lines in two-dimensional space as suggested
by the diagram to the right. Although the real
geometry is much more complicated than this, the
diagram suggests what happens in the real case.
Each process drives the value function or policy
toward one of the lines representing a solution to
one of the two goals. The goals interact because the two lines are not orthogonal. Driving
directly toward one goal causes some movement away from the other goal. Inevitably,
however, the joint process is brought closer to the overall goal of optimality. The arrows
in this diagram correspond to the behavior of policy iteration in that each takes the
system all the way to achieving one of the two goals completely. In GPI one could also
take smaller, incomplete steps toward each goal. In either case, the two processes together
achieve the overall goal of optimality even though neither is attempting to achieve it
directly.

4.7 E�ciency of Dynamic Programming

DP may not be practical for very large problems, but compared with other methods for
solving MDPs, DP methods are actually quite e�cient. If we ignore a few technical details,
then the (worst case) time DP methods take to find an optimal policy is polynomial in
the number of states and actions. If n and k denote the number of states and actions, this
means that a DP method takes a number of computational operations that is less than
some polynomial function of n and k. A DP method is guaranteed to find an optimal
policy in polynomial time even though the total number of (deterministic) policies is kn.
In this sense, DP is exponentially faster than any direct search in policy space could
be, because direct search would have to exhaustively examine each policy to provide the
same guarantee. Linear programming methods can also be used to solve MDPs, and in
some cases their worst-case convergence guarantees are better than those of DP methods.
But linear programming methods become impractical at a much smaller number of states
than do DP methods (by a factor of about 100). For the largest problems, only DP
methods are feasible.

DP is sometimes thought to be of limited applicability because of the curse of dimen-
sionality, the fact that the number of states often grows exponentially with the number
of state variables. Large state sets do create di�culties, but these are inherent di�culties
of the problem, not of DP as a solution method. In fact, DP is comparatively better
suited to handling large state spaces than competing methods such as direct search and
linear programming.

In practice, DP methods can be used with today’s computers to solve MDPs with
millions of states. Both policy iteration and value iteration are widely used, and it is not
clear which, if either, is better in general. In practice, these methods usually converge
much faster than their theoretical worst-case run times, particularly if they are started

Fig. 11.2: GPI

Loss of policy improvement theorem

▶ Is not applicable with function approximation!

▶ We may improve and impair the policy at the same
time!
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Algorithmic implementation: gradient MC control
▶ Direct transfer from tabular case to function approximation
▶ Update target becomes the sampled return qπ(xk, uk) ≈ gk
▶ If operating ε-greedy on q̂: baseline policy (given by w0) must (successfully) terminate the

episode!

input: a differentiable function q̂ : Rκ × Rζ → R
input: a policy π (only if estimating qπ)
parameter: step size α ∈ {R|0 < α < 1}, ε ∈ {R|0 < ε << 1}
init: parameter vector w ∈ Rζ arbitrarily
for j = 1, 2, . . . , episodes do

generate episode following π or ε-greedy on q̂: x0, u0, r1, . . . , xT ;
calculate every-visit return gk;
for k = 0, 1, . . . , T − 1 time steps do

w ← w + α [gk − q̂(xk, uk,w)]∇wq̂(xk, uk,w);

Algo. 11.1: Every-visit gradient MC-based action-value estimation (output: parameter vector w for
q̂π or q̂∗)
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Algorithmic implementation: semi-gradient SARSA

input: a differentiable function q̂ : Rκ × Rζ → R
input: a policy π (only if estimating qπ)
parameter: step size α ∈ {R|0 < α < 1}, ε ∈ {R|0 < ε << 1}
init: parameter vector w ∈ Rζ arbitrarily
for j = 1, 2, . . . episodes do

initialize x0;
for k = 0, 1, 2 . . . time steps do

uk ← apply action from π(xk) or ε-greedy on q̂(xk, ·,w);
observe xk+1 and rk+1;
if xk+1 is terminal then

w ← w + α [rk+1 − q̂(xk, uk,w)]∇w q̂(xk, uk,w);
go to next episode;

choose u′ from π(xk+1) or ε-greedy on q̂(xk+1, ·,w);
w ← w + α [rk+1 + γq̂(xk+1, u

′,w)− q̂(xk, uk,w)]∇w q̂(xk, uk,w);

Algo. 11.2: Semi-gradient SARSA action-value estimation (output: parameter vector w for q̂π or
q̂∗)
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SARSA application example: mountain car (1)

Fig. 11.3: Classic RL control example: mountain
car (derivative work based on

https://github.com/openai/gym, MIT license)

▶ Two cont. states: position, velocity

▶ One discrete action: acceleration given by
{left, none, right}

▶ rk = −1, i.e., goal is to terminate episode as
quick as possible

▶ Episode terminates when car reaches the flag
(or max steps)

▶ Simplified longitudinal car physics with state
constraints

▶ Position initialized randomly within valley, zero
initial velocity

▶ Car is underpowered and requires swing-up
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SARSA application example: mountain car (2)10.1. Episodic Semi-gradient Control 245
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Figure 10.1: The Mountain Car task (upper left panel) and the cost-to-go function
(�maxa q̂(s, a,w)) learned during one run.

can build up enough inertia to carry it up the steep slope even though it is slowing down
the whole way. This is a simple example of a continuous control task where things have
to get worse in a sense (farther from the goal) before they can get better. Many control
methodologies have great di�culties with tasks of this kind unless explicitly aided by a
human designer.

The reward in this problem is �1 on all time steps until the car moves past its goal
position at the top of the mountain, which ends the episode. There are three possible
actions: full throttle forward (+1), full throttle reverse (�1), and zero throttle (0). The
car moves according to a simplified physics. Its position, xt, and velocity, ẋt, are updated
by

xt+1
.
= bound

⇥
xt + ẋt+1

⇤

ẋt+1
.
= bound

⇥
ẋt + 0.001At � 0.0025 cos(3xt)

⇤
,

where the bound operation enforces �1.2  xt+1  0.5 and �0.07  ẋt+1  0.07. In
addition, when xt+1 reached the left bound, ẋt+1 was reset to zero. When it reached
the right bound, the goal was reached and the episode was terminated. Each episode
started from a random position xt 2 [�0.6,�0.4) and zero velocity. To convert the two
continuous state variables to binary features, we used grid-tilings as in Figure 9.9. We
used 8 tilings, with each tile covering 1/8th of the bounded distance in each dimension,

Fig. 11.4: Cost-to-go function −maxu q̂(x, u,w) for mountain car task using linear approximation with
SARSA and tile coding (source: R. Sutton and G. Barto, Reinforcement learning: an introduction, 2018,

CC BY-NC-ND 2.0)
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Tile coding
▶ Problem space is grouped into (overlapping) partitions / tiles.
▶ Performs a discretization of the problem space.
▶ Function approximation serves as interpolation between tiles.
▶ Find an example here: https://github.com/MeepMoop/tilecoding .

9.5. Feature Construction for Linear Methods 217

9.5.4 Tile Coding

Tile coding is a form of coarse coding for multi-dimensional continuous spaces that is
flexible and computationally e�cient. It may be the most practical feature representation
for modern sequential digital computers.

In tile coding the receptive fields of the features are grouped into partitions of the state
space. Each such partition is called a tiling, and each element of the partition is called a
tile. For example, the simplest tiling of a two-dimensional state space is a uniform grid
such as that shown on the left side of Figure 9.9. The tiles or receptive field here are
squares rather than the circles in Figure 9.6. If just this single tiling were used, then the
state indicated by the white spot would be represented by the single feature whose tile
it falls within; generalization would be complete to all states within the same tile and
nonexistent to states outside it. With just one tiling, we would not have coarse coding
but just a case of state aggregation.

Point in 
state space

to be
represented

Tiling 1
Tiling 2

Tiling 3
Tiling 4Continuous 

2D state 
space

Four active
tiles/features 

overlap the point
and are used to 

represent it

Figure 9.9: Multiple, overlapping grid-tilings on a limited two-dimensional space. These tilings
are o↵set from one another by a uniform amount in each dimension.

To get the strengths of coarse coding requires overlapping receptive fields, and by
definition the tiles of a partition do not overlap. To get true coarse coding with tile coding,
multiple tilings are used, each o↵set by a fraction of a tile width. A simple case with
four tilings is shown on the right side of Figure 9.9. Every state, such as that indicated
by the white spot, falls in exactly one tile in each of the four tilings. These four tiles
correspond to four features that become active when the state occurs. Specifically, the
feature vector x(s) has one component for each tile in each tiling. In this example there
are 4⇥ 4⇥ 4 = 64 components, all of which will be 0 except for the four corresponding to
the tiles that s falls within. Figure 9.10 shows the advantage of multiple o↵set tilings
(coarse coding) over a single tiling on the 1000-state random walk example.

An immediate practical advantage of tile coding is that, because it works with partitions,
the overall number of features that are active at one time is the same for any state.
Exactly one feature is present in each tiling, so the total number of features present is
always the same as the number of tilings. This allows the step-size parameter, ↵, to
be set in an easy, intuitive way. For example, choosing ↵ = 1

n , where n is the number

Fig. 11.5: Tile coding example in 2D (source: R. Sutton and G. Barto, Reinforcement learning: an
introduction, 2018, CC BY-NC-ND 2.0)

Oliver Wallscheid Reinforcement learning 347

https://github.com/MeepMoop/tilecoding
https://creativecommons.org/licenses/by-nc-nd/2.0/


input: a differentiable function q̂ : Rκ × Rζ → R
input: a policy π (only if estimating qπ)
parameter: α ∈ {R|0 < α < 1}, ε ∈ {R|0 < ε << 1}, n ∈ Z+

init: parameter vector w ∈ Rζ arbitrarily
for j = 1, 2 . . . episodes do

initialize and store x0;
select and store u0 ∼ π(x0) or ε-greedy w.r.t. q̂(x0, ·,w);
T ←∞;
repeat k = 0, 1, 2, . . .

if k < T then
take action uk observe and store xk+1 and rk+1;
if xk+1 is terminal then T ← k + 1;
else select & store uk+1 ∼ π(xk+1) or ε-greedy w.r.t. q̂(xk+1, ·,w);

τ ← k − n+ 1 (τ time index for estimate update);
if τ ≥ 0 then

g ←∑min(τ+n,T )
i=τ+1 γi−τ−1ri;

if τ + n < T : g ← g + γnq̂(xτ+n, uτ+n,w);
w ← w + α [g − q̂(xτ , uτ ,w)]∇w q̂(xτ , uτ , ,w);

until τ = T − 1;

Algo. 11.3: n-step semi-gradient SARSA (output: parameter vector w for q̂π or q̂∗)
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Transferring LSTD-style batch learning to action values
▶ In the previous lecture we developed a closed-form batch learning tool: LSTD.

▶ Linear function approximation.
▶ Fixed, representative data set D.

▶ Same idea can be transferred to action values when bootstrapping with one-step Sarsa,
called LS-SARSA (or sometimes LSTDQ):

qπ(xk, uk) ≈ rk+1 + γq̂(xk+1, uk+1,wk),

q̂(xk, uk,wk) = q̂(x̃k,wk) = x̃T
kwk.

(11.6)

▶ The cost function for action-value prediction is then:

J(w) =
∑

k

[
rk+1 −

(
x̃T
k − γx̃T

k+1

)
w
]2

. (11.7)

▶ Hence, the closed-form least squares solution for the action values is the same as for the
state value case but the feature vector depends also on the actions:

x̃k = f(xk, uk).
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On and off-policy LS-SARSA
With b samples we can form a target vector y and regressor matrix Ξ:

y =




r1
r2
...
rb


 , Ξ =




(
x̃T
0 − γx̃T

1

)
(
x̃T
1 − γx̃T

2

)
...(

x̃T
b−1 − γx̃T

b

)


 . (11.8)

Regarding the data input to Ξ we can distinguish two cases: The actions uk and uk+1 in the
feature pair

(
x̃T
k − γx̃T

k+1

)
per row in Ξ either descends from the

▶ same policy π (on-policy learning) or

▶ the action uk+1 in x̃k+1 = f(xk+1, uk+1) is chosen based on an arbitrary policy π′

(off-policy learning).

If we apply off-policy LS-SARSA then

▶ we retrieve the flexibility to collect training samples arbitrarily

▶ at the cost of an estimation bias based on the sampling distribution.
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LS-SARSA

LS-SARSA solution

Having arranged i = 1, . . . , b samples ⟨xi, ui, ri+1,xi+1, ui+1⟩ ∼ D using one-step bootstrap-
ping (11.6) and linear function approximation as in (11.8), the LS-SARSA solution is

w∗ = (ΞTΞ)−1ΞTy. (11.9)

Again, basic usage distinction:

▶ If {ui, ui+1} ∼ π: on-policy prediction (as in LSTD)

▶ If ui ∼ π and ui+1 ∼ π′: off-policy prediction (useful for control)

Possible modifications:

▶ To prevent numeric instability regularization is possible, cf. (10.13)

▶ Recursive implementation for online usage straightforward, cf. (10.14)
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Least squares policy iteration (LSPI)
General idea:

▶ Apply general policy improvement (GPI) based on data set D,
▶ Policy evaluation by off-policy LS-SARSA,
▶ Policy improvement by greedy choices on predicted action values.

4.7. E�ciency of Dynamic Programming 87

v⇤,⇡⇤

⇡ = greed
y(v)

v,⇡

v = v⇡

One might also think of the interaction between
the evaluation and improvement processes in GPI
in terms of two constraints or goals—for example,
as two lines in two-dimensional space as suggested
by the diagram to the right. Although the real
geometry is much more complicated than this, the
diagram suggests what happens in the real case.
Each process drives the value function or policy
toward one of the lines representing a solution to
one of the two goals. The goals interact because the two lines are not orthogonal. Driving
directly toward one goal causes some movement away from the other goal. Inevitably,
however, the joint process is brought closer to the overall goal of optimality. The arrows
in this diagram correspond to the behavior of policy iteration in that each takes the
system all the way to achieving one of the two goals completely. In GPI one could also
take smaller, incomplete steps toward each goal. In either case, the two processes together
achieve the overall goal of optimality even though neither is attempting to achieve it
directly.

4.7 E�ciency of Dynamic Programming

DP may not be practical for very large problems, but compared with other methods for
solving MDPs, DP methods are actually quite e�cient. If we ignore a few technical details,
then the (worst case) time DP methods take to find an optimal policy is polynomial in
the number of states and actions. If n and k denote the number of states and actions, this
means that a DP method takes a number of computational operations that is less than
some polynomial function of n and k. A DP method is guaranteed to find an optimal
policy in polynomial time even though the total number of (deterministic) policies is kn.
In this sense, DP is exponentially faster than any direct search in policy space could
be, because direct search would have to exhaustively examine each policy to provide the
same guarantee. Linear programming methods can also be used to solve MDPs, and in
some cases their worst-case convergence guarantees are better than those of DP methods.
But linear programming methods become impractical at a much smaller number of states
than do DP methods (by a factor of about 100). For the largest problems, only DP
methods are feasible.

DP is sometimes thought to be of limited applicability because of the curse of dimen-
sionality, the fact that the number of states often grows exponentially with the number
of state variables. Large state sets do create di�culties, but these are inherent di�culties
of the problem, not of DP as a solution method. In fact, DP is comparatively better
suited to handling large state spaces than competing methods such as direct search and
linear programming.

In practice, DP methods can be used with today’s computers to solve MDPs with
millions of states. Both policy iteration and value iteration are widely used, and it is not
clear which, if either, is better in general. In practice, these methods usually converge
much faster than their theoretical worst-case run times, particularly if they are started

Some remarks:

▶ LSPI is an offline and off-policy control approach.
▶ Exploration is required by feeding suitable sampling distributions in D:

▶ Such as ε-greedy choices based on q̂.
▶ But also complete random samples are conceivable.
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Algorithmic implementation: LSPI
input: a feature representation x̃ with x̃T = 0 (i.e., q̂(x̃T , ·) = 0)
input: a data set ⟨xi, ui, ri+1,xi+1⟩ ∼ D with i = 1, . . . , b samples
parameter: an accuracy threshold ∆ ∈ {R|0 < ∆}
init: linear approximation function weights w ∈ Rζ arbitrarily
π ← argmaxu q̂(·, u,w) (greedy choices based on q̂(w));
repeat

w′ ← w;
w ← LS-SARSA(D, ui+1 ∼ π);
π ← argmaxu q̂(·, u,w);

until ||w′ −w|| < ∆;

Algo. 11.4: Least squares policy iteration (output: w for q̂∗)

▶ In a (small) discrete action space the argmaxu operation is straightforward.
▶ After one full LSPI evaluation the data set D might be altered to include new data obtained

based on the updated w vector.
▶ Source: M. Lagoudakis and R. Parr, Least-Squares Policy Iteration, Journal of Machine

Learning Research 4, pp. 1107-1149, 2003
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LSPI application example: inverted pendulum (1)

y

x

M F
➝

θ

l

m

Fig. 11.6: Classic RL control example: inverted
pendulum (source: www.wikipedia.org, CC0 1.0)

▶ Two continuous states: angular position θ and
velocity θ̇

▶ One discrete action: acceleration force (i.e.,
torque at shaft)

▶ Action noise as disturbance

▶ Non-linear system dynamics

▶ State initialization randomly close to upper
equilibrium

▶ rk = 0 if pendulum is above horizontal line

▶ rk = −1 if below horizontal line and episode
terminates

▶ γ = 0.95
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LSPI application example: inverted pendulum (2)
▶ Initial training samples for D following a policy selecting actions at uniform probability
▶ Additional samples have been manually added during the training
▶ Radial basis function as feature engineering

Least-Squares Policy Iteration
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Figure 16: Inverted pendulum (LSPI): Average balancing steps.

where g is the gravity constant (g = 9.8m/s2), m is the mass of the pendulum (m = 2.0
kg), M is the mass of the cart (M = 8.0 kg), l is the length of the pendulum (l = 0.5 m),
and α = 1/(m +M). The simulation step is set to 0.1 seconds. Thus, the control input is
given at a rate of 10 Hz, at the beginning of each time step, and is kept constant during
any time step. A reward of 0 is given as long as the angle of the pendulum does not exceed
π/2 in absolute value (the pendulum is above the horizontal line). An angle greater than
π/2 signals the end of the episode and a reward (penalty) of −1. The discount factor of the
process is set to 0.95.

We applied LSPI with a set of 10 basis functions for each of the 3 actions, thus a total
of 30 basis functions, to approximate the value function. These 10 basis functions included
a constant term and 9 radial basis functions (Gaussians) arranged in a 3 × 3 grid over the
2-dimensional state space. In particular, for some state s = (θ, θ̇) and some action a, all
basis functions were zero, except the corresponding active block for action a which was

(
1, e

−
‖s− µ1‖

2

2σ2 , e
−
‖s − µ2‖

2

2σ2 , e
−
‖s − µ3‖

2

2σ2 , ... , e
−
‖s− µ9‖

2

2σ2
)

ᵀ

,

where the µi’s are the 9 points of the grid {−π/4, 0, +π/4} × {−1, 0, +1} and σ2 = 1.

Training samples were collected in advance from “random episodes”, that is, starting in
a randomly perturbed state very close to the equilibrium state (0, 0) and following a policy
that selected actions uniformly at random. The average length of such episodes was about
6 steps, thus each one contributed about 6 samples to the set. The same sample set was
used throughout all iterations of each run of LSPI.

Figure 16 shows the performance of the control policies learned by LSPI as a function of
the number of training episodes. For each size of training episodes, the learned policy was

1139

Fig. 11.7: Balancing steps before episode termination with a clipping of maximum 3000 steps (source:
M. Lagoudakis and R. Parr, Least-Squares Policy Iteration, Journal of Machine Learning Research 4, pp.

1107-1149, 2003)
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Algorithmic implementation: online LSPI
input: a feature representation x̃ with x̃T = 0 (i.e., q̂(x̃T , ·, ·) = 0)
parameter: forgetting factor λ ∈ {R|0 < λ ≤ 1}, ε ∈ {R|0 < ε << 1}, update factor

kw ∈ {N|1 ≤ kw}
init: weights w ∈ Rζ arbitrarily, policy π being ε-greedy w.r.t. q̂(w), covariance P > 0
for j = 1, 2, . . . episodes do

initialize x0 and set u0 ∼ π(x0);
for k = 0, 1, 2 . . . time steps do

apply action uk, observe xk+1 and rk+1, set uk+1 ∼ π(xk+1);
y ← rk+1;

ξT ← x̃T
k(xk, uk)− γx̃T

k+1(xk+1, uk+1);

c← (Pξ) /
(
λ+ ξTPξ

)
;

w ← w + c
(
y − ξTw

)
;

P ←
(
I − cξT

)
P /λ;

if k mod kw = 0 then
π ← ε-greedy w.r.t. q̂ = x̃T(x, u)w;

exit loop if xk+1 is terminal;

Algo. 11.5: Online LSPI with RLS-SARSA (output: w for q̂∗)
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Remarks on online LSPI

▶ kw depicts the number of steps between policy improvement cycles.
▶ Forgetting factor λ and kw require mutual tuning:

▶ After each policy improvement the policy evaluation requires sample updates to accurately
predict the altered policy.

▶ Numerically instability may occur for λ < 1 and requires regularization.

▶ Hence, the algorithm is online-capable but its policy is normally not updated in a
step-by-step fashion.

▶ Alternative online LSPI with OLS-SARSA can be found in L. Buşoniu et al., Online
least-squares policy iteration for reinforcement learning control, American Control
Conference, 2010.
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General background on DQN

▶ Recall incremental learning step from tabular Q-learning:

q̂(x, u)← q̂(x, u) + α
[
r + γmax

u
q̂(x′, u)− q̂(x, u)

]
.

▶ Deep Q-networks (DQN) transfer this to an approximate solution:

w = w + α
[
r + γmax

u
q̂(x′, u,w)− q̂(x, u,w)

]
∇wq̂(x, u,w). (11.10)

However, instead of using above semi-gradient step-by-step updates, DQN is characterized by

▶ an experience replay buffer for batch learning (cf. prev. lectures),
▶ a separate set of weights w− for the bootstrapped Q-target.

Motivation behind:

▶ Efficiently use available data (experience replay).
▶ Stabilize learning by trying to make targets and feature inputs more like i.i.d. data from a

stationary process (prevent windup of values).
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Summary of DQN working principle (1)

▶ Take actions u based on q̂(x, u,w) (e.g., ε-greedy).

▶ Store observed tuples ⟨x, u, r,x′⟩ in memory buffer D.

▶ Sample mini-batches Db from D.

▶ Calculate bootstrapped Q-target with a delayed parameter vector w− (so-called target
network):

qπ(x, u) ≈ r + γmax
u

q̂(x′, u,w−).

▶ Optimize MSE loss between above targets and the regular approximation q̂(x, u,w) using
Db

L(w) =
[(

r + γmax
u

q̂(x′, u,w−)
)
− q̂(x, u,w)

]2
Db

. (11.11)

▶ Update w− based on w from time to time.
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Summary of DQN working principle (2)

Memory

Mini-Batch

Target

Parameter

Fig. 11.8: DQN structure from a bird’s-eye perspective (derivative work of Fig. 1.1 and wikipedia.org,
CC0 1.0)
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Algorithmic implementation: DQN

input: a differentiable function q̂ : Rκ × Rζ → R (including feature eng.)
parameter: ε ∈ {R|0 < ε << 1}, update factor kw ∈ {N|1 ≤ kw}
init: weights w = w− ∈ Rζ arbitrarily, memory D with certain capacity
for j = 1, 2, . . . episodes do

initialize x0;
for k = 0, 1, 2 . . . time steps do

uk ← apply action ε-greedy w.r.t q̂(xk, ·,w);
observe xk+1 and rk+1;
store tuple ⟨xk, uk, rk+1,xk+1⟩ in D;
sample mini-batch Db from D (after initial memory warmup);
for i = 1, . . . , b samples do calculate Q-targets

if xi+1 is terminal then yi = ri+1;
else yi = ri+1 + γmaxu q̂(xi+1, u,w

−);
fit w on loss L(w) = [yi − q̂(xi, ui,w)]2Db

;

if k mod kw = 0 then w− ← w (update target weights);

Algo. 11.6: DQN (output: parameter vector w for q̂∗)
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Remarks on DQN implementation

▶ General framework is based on V. Mnih et al., Human-level control through deep
reinforcement learning, Nature, pp. 529-533, 2015.

▶ Often ’deep’ artificial neural networks are used as function approximation for DQN.
▶ Nevertheless, other model topologies are fully conceivable.

▶ The fit of w on loss L is an intermediate supervised learning step.
▶ Comes with degrees of freedom regarding solver choice.
▶ Has own optimization parameters which are not depicted here in details (many tuning options).

▶ Mini-batch sampling from D is often randomly distributed.
▶ Nevertheless, guided sampling with useful distributions for a specific control task can be

beneficial (cf. Dyna discussion in 7th lecture).

▶ Likewise, the simple ε-greedy approach can be extended.
▶ Often a scheduled/annealed trajectory εk is used.
▶ Again referring to the Dyna framework, many more exploration strategies are possible.
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DQN application example: Atari games (1)
▶ End-to-end learning of q̂(x, u) from monitor pixels x
▶ Feature engineering obtains stacking of raw pixes from last 4 frames
▶ Actions u are 18 possible joystick/button combinations
▶ Reward is the change of highscore per step
▶ Interesting lecture from V. Minh with more details: YouTube

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Prediction

DQN in Atari

End-to-end learning of values Q(s, a) from pixels s

Input state s is stack of raw pixels from last 4 frames

Output is Q(s, a) for 18 joystick/button positions

Reward is change in score for that step

Network architecture and hyperparameters fixed across all gamesFig. 11.9: Network architecture overview used for DQN in Atari games (source: D. Silver,
“Reinforcement learning”, 2015. CC BY-NC 4.0)
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DQN application example: Atari games (2)

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Prediction

DQN Results in Atari

Fig. 11.10: DQN performance results in Atari games against human performance (source: D. Silver,
“Reinforcement learning”, 2015. CC BY-NC 4.0)
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Summary: what you’ve learned today

▶ From a simplified perspective, the procedures from the approximate prediction can simply
be transferred to value-based control.

▶ On the contrary, the policy improvement theorem no longer applies in the approximate RL
case (generalization impact).
▶ Control algorithms may diverge completely.
▶ Or a performance trade-off between different parts of the problem space could emerge.

▶ Off-policy batch learning approaches allow for efficient data usage.
▶ LSPI uses LS-SARSA on linear function approximation.
▶ DQN extends Q-learning on non-linear approximation with additional tweaks (experience replay,

target networks,...).
▶ However, a prediction bias results (off-policy sampling distribution).
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Preface (1)
Shift from (indirect) value-based approaches

q̂(x, u,w) ≈ q(x, u) (12.1)

to (direct) policy-based solutions:

π(u|x) = P [U = u|X = x] ≈ π(u|x,θ) . (12.2)

▶ Above, θ ∈ Rd is the policy parameter vector.
▶ Note, that u is now vectorial and might contain multiple continuous quantities.

Goal of today’s lecture

▶ Introduce an algorithm class based on a parameterizable policy π(θ).

▶ Extend the action space to continuous actions.

▶ Combine the policy-based and value-based approach.
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Preface (2)

Lecture 1: Introduction to Reinforcement Learning

Inside An RL Agent

RL Agent Taxonomy

Model

Value Function PolicyActor
Critic

Value-Based Policy-Based

Model-Free 

Model-Based 

Fig. 12.1: Main categories of reinforcement learning algorithms
(source: D. Silver, “Reinforcement learning”, 2015. CC BY-NC 4.0)
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Motivating example: strategic gaming
Task: Two-player game of extended rock-paper-scissors

▶ A deterministic policy (i.e., value-based with given feature representation) can be easily
exploited by the opponent.

▶ Conversely, a uniform random policy would be unpredictable.

Fig. 12.2: Rock paper scissors lizard Spock game mechanics
(source: www.wikipedia.org, by Diriector Doc CC BY-SA 4.0)
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Example policy function: discrete action space
Assumption:

▶ Action space is discrete and compact.

A typical policy function is:

▶ Soft-max in action preferences

π(u|x,θ) = eh(x,u,θ)∑
i e

h(x,i,θ)
(12.3)

with h(x, u,θ) : X × U × Rd → R being the numerical preference per state-action pair.

▶ Denominator of (12.3) sums up action probabilities to one per state.

▶ Is designed as a stochastic policy but can approach deterministic behavior in the limit.

▶ The preference is parametrized via a function approximator, e.g., linear in features

h(x, u,θ) = θTx̃(x, u). (12.4)
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Example policy function: continuous action space (1)

Assumption:

▶ Action space is continuous and there is only one scalar action u ∈ R.

A typical policy function is:

▶ Gaussian probability density

π(u|x,θ) = 1

σ(x,θ)
√
2π

exp

(
−(u− µ(x,θ))2

2σ(x,θ)2

)
(12.5)

with mean µ(x,θ) : X × Rd → R and standard deviation σ(x,θ) : X × Rd → R given by
parametric function approximation.

▶ Variants regarding function µ and σ:
1 Both share a mutual parameter set θ (e.g., artificial neural network with multiple outputs).

2 Both are parametrized independently θ =
[
θµ θσ

]T
(e.g., by two linear regression functions).

3 Only µ(x,θ) is parametrized while σ is scheduled externally.
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Example policy function: continuous action space (2)

▶ Output of the functions µk = (xk,θk) and σk = (xk,θk) can change in every time step.

▶ Depending on σ exploration is an inherent part of the (stochastic) policy.

13.7. Policy Parameterization for Continuous Actions 335

=
X

s

µ(s)
X

a

r⇡(a|s)q⇡(s, a)

+
X

s0

X

s

µ(s)
X

a

⇡(a|s)p(s0 |s, a)

| {z }
µ(s0) (13.16)

rv⇡(s0)�
X

s

µ(s)rv⇡(s)

=
X

s

µ(s)
X

a

r⇡(a|s)q⇡(s, a) +
X

s0

µ(s0)rv⇡(s0)�
X

s

µ(s)rv⇡(s)

=
X

s

µ(s)
X

a

r⇡(a|s)q⇡(s, a). Q.E.D.

13.7 Policy Parameterization for Continuous Actions

Policy-based methods o↵er practical ways of dealing with large actions spaces, even
continuous spaces with an infinite number of actions. Instead of computing learned
probabilities for each of the many actions, we instead learn statistics of the probability
distribution. For example, the action set might be the real numbers, with actions chosen
from a normal (Gaussian) distribution.

The probability density function for the normal distribution is conventionally written

p(x)
.
=

1

�
p

2⇡
exp

✓
� (x� µ)2

2�2

◆
, (13.18)
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◆

where µ and � here are the mean and stan-
dard deviation of the normal distribution,
and of course ⇡ here is just the number
⇡ ⇡ 3.14159. The probability density func-
tions for several di↵erent means and stan-
dard deviations are shown to the right. The
value p(x) is the density of the probability
at x, not the probability. It can be greater
than 1; it is the total area under p(x) that
must sum to 1. In general, one can take
the integral under p(x) for any range of x
values to get the probability of x falling
within that range.

To produce a policy parameterization, the policy can be defined as the normal proba-
bility density over a real-valued scalar action, with mean and standard deviation given
by parametric function approximators that depend on the state. That is,

⇡(a|s,✓)
.
=

1

�(s,✓)
p

2⇡
exp

✓
� (a� µ(s,✓))2

2�(s,✓)2

◆
, (13.19)

where µ : S⇥Rd0 ! R and � : S⇥Rd0 ! R+ are two parameterized function approximators.

Fig. 12.3: Exemplary univariate Gaussian probability density functions (source: R. Sutton and G. Barto,
Reinforcement learning: an introduction, 2018, CC BY-NC-ND 2.0)
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Example policy function: continuous action space (3)

Assumption:

▶ Action space is continuous and there are multiple actions u ∈ Rm.

A typical policy function is:

▶ Multivariate Gaussian probability density

π(u|x,θ) = 1√
(2π)m det(Σ)

exp

(
−1

2
(u− µ)TΣ−1(u− µ)

)
(12.6)

with mean µ(x,θ) : X × Rd → Rm and covariance matrix Σ(x,θ) : X × Rd → Rm×m

given by parametric function approximation.

▶ Same parametrization variants apply to µ and Σ as in the scalar action case.

▶ In addition, Σ can be considered a diagonal matrix and clipped to reduce complexity as well
as ensure nonsingularity.
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Example policy function: continuous action space (4)
▶ Below we find an example for

µ =
[
−0.4 0.3

]T
and Σ =

[
0.04 0
0 0.02

]
.

0
1

2

1

4

0

6

0
-1 -1

Fig. 12.4: Exemplary bivariate Gaussian probability density function
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Policy objective function

▶ Goal: find optimal θ∗ given the policy π(u|x,θ).
▶ Problem: which measure of optimality should we use?

Possible optimality metrics:

▶ Start state value (in episodic tasks):

J(θ) = vπθ
(x0) = E [v|X = x0,θ] (12.7)

▶ Average reward (in continuing tasks):

J(θ) = rπθ
=

∫

X
µπ(x)

∫

U
π(u|x,θ)

∫

X ,R
p(x′, r|x,u)r (12.8)

▶ Above, µπ(x) is again the steady-state distribution µπ(x) = limk→∞ P [Xk = x|U0:k−1 ∼ π].
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Policy optimization

▶ In essence, policy-based RL is an optimization problem.
▶ Depending on the policy function and task, finding θ∗ might be a

▶ non-linear,
▶ multidimensional and
▶ non-stationary problem.

▶ Hence, we might consider global optimization techniques1 like
▶ Simple heuristics: random search, grid search,...
▶ Meta-heuristics: evolutionary algorithms, particle swarm,....
▶ Surrogate-model-based optimization: Bayes opt.,...
▶ Gradient-based techniques with multi-start initialization.

1Recommended reading: J. Stork et al., A new Taxonomy of Continuous Global Optimization Algorithms,
https://arxiv.org/abs/1808.08818, 2020
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Policy gradient

*

*

SGD

GD

Fig. 12.5: Exemplary optimization paths for
(stochastic) gradient ascent

(derivative work of www.wikipedia.org, CC0 1.0)

▶ We will focus on gradient-based methods
(policy gradient).

▶ Hence, we will assume that the gradient

∇θJ(θ) =
[
∂J
∂θ1

· · · ∂J
∂θd

]T

required for gradient ascent optimization always
exists:

θ ← θ + α∇θJ(θ).

▶ True gradient ∇θJ(θ) is usually approximated,
e.g., by stochastic gradient descent (SGD) or
derived variants.
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Policy gradient theorem

Theorem 12.1: Policy Gradient

Given a metric J(θ) for the undiscounted episodic (12.7) or continuing tasks (12.8) and a
parameterizable policy π(u|x,θ) the policy gradient is

∇θJ(θ) = Eπ

[
qπ(x,u)

∇θπ(u|x,θ)
π(u|x,θ)

]
. (12.9)

▶ Having samples ⟨xi,ui⟩, an estimate of qπ and the policy function π(θ) available we receive
an analytical solution for the policy gradient!

▶ Using identity ∇ ln a = ∇a
a we can re-write to

∇θJ(θ) = Eπ [qπ(x,u)∇θ lnπ(u|x,θ)] (12.10)

with ∇θ lnπ(u|x,θ) also called the score function.

▶ Derivation available in chapter 13.2 / 13.6 in the lecture book of Barto and Sutton.
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Intuitive interpretation of policy parameter update

▶ Inserting the policy gradient theorem into gradient ascent approach:

θ ← θ + αEπ

[
qπ(x,u)

∇θπ(u|x,θ)
π(u|x,θ)

]
.

▶ Move in the direction that favor actions that yield an increased value.

▶ Scale the update step size inversely to the action probability to compensate that some
actions are selected more frequently.

Also note:

▶ The policy gradient is not depending on the state distribution!

▶ Hence, we do not need any knowledge of the environment and receive a model-free RL
approach!
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Simple score function examples
Soft-max policy with linear function approximation:

π(u|x,θ) = eθ
Tx̃(x,u)

∑
i e

θTx̃(x,i)

⇔ ∇θ lnπ(u|x,θ) = ∇θ

(
θTx̃(x, u)− ln

(∑

i

eθ
Tx̃(x,i)

))

= x̃(x,u)− Eπ [x̃(x, ·)]
Univariate Gaussian policy with linear function approximation and given σ:

π(u|x,θ) = 1

σ
√
2π

exp

(
−(u− θTx̃(x, u))2

2σ2

)

⇔ ∇θ lnπ(u|x,θ) = ∇θ

(
ln

(
1

σ
√
2π

)
− (u− θTx̃(x, u))2

2σ2

)

=

(
u− θTx̃(x, u)

)
x̃(x, u)

σ2
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Pro and cons: policy vs. value-based approaches
Pro value-based solutions (e.g., Q-learning):

▶ Estimated value is an intuitive performance metric.

▶ Considered sample-efficient (cf. replay buffer or bootstrapping).

Pro policy-based solutions (e.g., using policy gradient):

▶ Seamless integration of stochastic and dynamic policies.

▶ Straightforward applicable to large/continuous action spaces. In contrast, value-based
approaches would require explicit optimization

u∗ = argmax
u

q(x,u,w).

Mutual hassle:

▶ Gradient-based optimization with (non-linear) function approximation is likely to deliver only
suboptimal and local policy optima.

Oliver Wallscheid Reinforcement learning 383



Table of contents

12 Stochastic policy gradient methods
Stochastic policy approximation and the policy gradient theorem
Monte Carlo policy gradient
Actor-critic methods

Oliver Wallscheid Reinforcement learning 384



Basic concept
Initial situation:

▶ Score function ∇θ lnπ(u|x,θ) can be calculated analytically using suitable policy and chain
rule (e.g., by algorithmic differentiation).

▶ Open question: how to retrieve qπ(x,u) in

∇θJ(θ) = Eπ [qπ(x,u)∇θ lnπ(u|x,θ)] ?

Monte Carlo policy gradient:

▶ Use sampled episodic return gk to approximate qπ(x,u):

qπ(x,u) ≈ gk

θk+1 = θk + αγkgk∇θ lnπ(uk|xk,θk).

▶ The discounting of the policy gradient is introduced as an extension to Theo. 12.1 (which
assumed an undiscounted episodic task).

▶ Also known as REINFORCE approach.
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Algorithmic implementation: Monte Carlo policy gradient (REINFORCE)

▶ Usual technical convergence requirements regarding α apply.

▶ Use sampled return as unbiased estimate of q.

▶ Recall previous MC-based methods: high variance, slow learning.

input: a differentiable policy function π(u|x,θ)
parameter: step size α ∈ {R|0 < α < 1}
init: parameter vector θ ∈ Rd arbitrarily
for j = 1, 2, . . . , episodes do

generate an episode following π(·|·,θ): x0,u0, r1, . . . ,xT ;
for k = 0, 1, . . . , T − 1 time steps do

g ←∑T
i=k+1 γ

i−k−1ri;

θ ← θ + αγkg∇θ lnπ(uk|xk,θ);

Algo. 12.1: Monte Carlo policy gradient (output: parameter vector θ∗ for π∗(u|x,θ∗))
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REINFORCE example: short-corridor problem (1)
▶ Gridworld style problem with two actions: left (l), right (r)
▶ Second-left state’s action execution is reversed
▶ Feature representation: x̃(x, u = r) =

[
1 0

]T
, x̃(x, u = l) =

[
0 1

]T
▶ A policy-based approach searches for the optimal probability split

13.1. Policy Approximation and its Advantages 323

A second advantage of parameterizing policies according to the soft-max in action
preferences is that it enables the selection of actions with arbitrary probabilities. In
problems with significant function approximation, the best approximate policy may be
stochastic. For example, in card games with imperfect information the optimal play is
often to do two di↵erent things with specific probabilities, such as when blu�ng in Poker.
Action-value methods have no natural way of finding stochastic optimal policies, whereas
policy approximating methods can, as shown in Example 13.1.

Example 13.1 Short corridor with switched actions

Consider the small corridor gridworld shown inset in the graph below. The reward
is �1 per step, as usual. In each of the three nonterminal states there are only
two actions, right and left. These actions have their usual consequences in the first
and third states (left causes no movement in the first state), but in the second
state they are reversed, so that right moves to the left and left moves to the right.
The problem is di�cult because all the states appear identical under the function
approximation. In particular, we define x(s, right) = [1, 0]> and x(s, left) = [0, 1]>,
for all s. An action-value method with "-greedy action selection is forced to choose
between just two policies: choosing right with high probability 1 � "/2 on all steps
or choosing left with the same high probability on all time steps. If " = 0.1, then
these two policies achieve a value (at the start state) of less than �44 and �82,
respectively, as shown in the graph. A method can do significantly better if it can
learn a specific probability with which to select right. The best probability is about
0.59, which achieves a value of about �11.6.

probability of right action

-11.6

0.1 0.2

-20

-40

-60

-80

-100
0.3 0.40 0.6 0.7 0.8 0.90.5 1

�-greedy left 

�-greedy right 

optimal
stochastic

policy 

J(✓) = v⇡✓
(S)

GS

Perhaps the simplest advantage that policy parameterization may have over action-
value parameterization is that the policy may be a simpler function to approximate.
Problems vary in the complexity of their policies and action-value functions. For some,
the action-value function is simpler and thus easier to approximate. For others, the policy
is simpler. In the latter case a policy-based method will typically learn faster and yield a
superior asymptotic policy (as in Tetris; see Şimşek, Algórta, and Kothiyal, 2016).

Fig. 12.6: Short-corridor problem with ε = 0.1 (source: R. Sutton and G. Barto, Reinforcement learning:
an introduction, 2018, CC BY-NC-ND 2.0)
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REINFORCE example: short-corridor problem (2)

328 Chapter 13: Policy Gradient Methods

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for ⇡⇤

Input: a di↵erentiable policy parameterization ⇡(a|s,✓)
Algorithm parameter: step size ↵ > 0

Initialize policy parameter ✓ 2 Rd0
(e.g., to 0)

Loop forever (for each episode):
Generate an episode S0, A0, R1, . . . , ST�1, AT�1, RT , following ⇡(·|·,✓)
Loop for each step of the episode t = 0, 1, . . . , T � 1:

G PT
k=t+1 �

k�t�1Rk (Gt)
✓  ✓ + ↵�tGr ln⇡(At|St,✓)

The second di↵erence between the pseudocode update and the REINFORCE update
equation (13.8) is that the former includes a factor of �t. This is because, as mentioned
earlier, in the text we are treating the non-discounted case (�=1) while in the boxed
algorithms we are giving the algorithms for the general discounted case. All of the ideas
go through in the discounted case with appropriate adjustments (including to the box on
page 199) but involve additional complexity that distracts from the main ideas.

⇤Exercise 13.2 Generalize the box on page 199, the policy gradient theorem (13.5), the
proof of the policy gradient theorem (page 325), and the steps leading to the REINFORCE
update equation (13.8), so that (13.8) ends up with a factor of �t and thus aligns with
the general algorithm given in the pseudocode. ⇤

Figure 13.1 shows the performance of REINFORCE on the short-corridor gridworld
from Example 13.1.

↵ = 2�13

↵ = 2�12

Episode
10008006004002001

-80

-90

-60

-40

-20

-10

Total reward
on episode

averaged over 100 runs

G0

v⇤(s0)

↵ = 2�14

Figure 13.1: REINFORCE on the short-corridor gridworld (Example 13.1). With a good step
size, the total reward per episode approaches the optimal value of the start state.

Fig. 12.7: Comparison of Monte Carlo policy gradient approach on short-corridor problem from Fig. 12.6
for different learning rates (source: R. Sutton and G. Barto, Reinforcement learning: an introduction,

2018, CC BY-NC-ND 2.0)
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Baseline

▶ Motivation: add a comparison term to the policy gradient to reduce variance while not
affecting its expectation.

▶ Introduce the baseline b(x):

∇θJ(θ) = Eπ [(qπ(x,u)−b(x))∇θ lnπ(u|x,θ)] . (12.11)

▶ Since b(x) is only depending on the state but not on the actions/policy we did not change
the policy gradient in expectation:

∇θJ(θ) = Eπ [qπ(x,u)∇θ lnπ(u|x,θ)]− Eπ [b(x)∇θ lnπ(u|x,θ)]︸ ︷︷ ︸
=0

.

▶ Consequently, the Monte Carlo policy parameter update yields:

θk+1 = θk + αγk (gk − b(xk))∇θ lnπ(uk|xk,θk).
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Advantage function

▶ Intuitive choice of the baseline is the state value b(x) = vπ(x).

▶ The resulting policy gradient becomes

∇θJ(θ) = Eπ [(qπ(x,u)− vπ(x))∇θ lnπ(u|x,θ)] . (12.12)

▶ Here, the difference between action and state value is the advantage function

aπ(x,u) = qπ(x,u)− vπ(x). (12.13)

▶ Interpretation: value difference taking (arbitrary) action u and thereafter following policy π
compared to the state value following same policy (i.e., choosing u ∼ π) given the state.

▶ Hence, we might rewrite to:

∇θJ(θ) = Eπ [aπ(x,u)∇θ lnπ(u|x,θ)] . (12.14)
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Algo. implementation: MC policy gradient with baseline
▶ Implementation requires approximation b(x) ≈ v̂(x,w).
▶ Hence, we are learning two parameter sets θ and w.
▶ Keep using sampled return as action-value estimate: qπ(x,u) ≈ gk.

input: a differentiable policy function π(u|x,θ) and state-value function v̂(x,w)
parameter: step sizes {αw, αθ} ∈ {R|0 < α < 1}
init: parameter vectors w ∈ Rζ and θ ∈ Rd arbitrarily
for j = 1, 2, . . . , episodes do

generate an episode following π(·|·,θ): x0,u0, r1, . . . ,xT ;
for k = 0, 1, . . . , T − 1 time steps do

g ←∑T
i=k+1 γ

i−k−1ri;
δ ← g − v̂(xk,w);
w ← w + αwδ∇wv̂(xk,w);

θ ← θ + αθγ
kδ∇θ lnπ(uk|xk,θ);

Algo. 12.2: Monte Carlo policy gradient with baseline (output: parameter vector θ∗ for π∗(u|x,θ∗))
and w∗ for v̂∗(x,w∗))
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REINFORCE comparison w/o baseline

330 Chapter 13: Policy Gradient Methods

Because REINFORCE is a Monte Carlo method for learning the policy parameter, ✓,
it seems natural to also use a Monte Carlo method to learn the state-value weights, w.
A complete pseudocode algorithm for REINFORCE with baseline using such a learned
state-value function as the baseline is given in the box below.

REINFORCE with Baseline (episodic), for estimating ⇡✓ ⇡ ⇡⇤

Input: a di↵erentiable policy parameterization ⇡(a|s,✓)
Input: a di↵erentiable state-value function parameterization v̂(s,w)
Algorithm parameters: step sizes ↵✓ > 0, ↵w > 0

Initialize policy parameter ✓ 2 Rd0
and state-value weights w 2 Rd (e.g., to 0)

Loop forever (for each episode):
Generate an episode S0, A0, R1, . . . , ST�1, AT�1, RT , following ⇡(·|·,✓)
Loop for each step of the episode t = 0, 1, . . . , T � 1:

G PT
k=t+1 �

k�t�1Rk (Gt)
�  G� v̂(St,w)
w w + ↵w �rv̂(St,w)
✓  ✓ + ↵✓ �t �r ln⇡(At|St,✓)

This algorithm has two step sizes, denoted ↵✓ and ↵w (where ↵✓ is the ↵ in (13.11)).
Choosing the step size for values (here ↵w) is relatively easy; in the linear case we have

rules of thumb for setting it, such as ↵w = 0.1/E
⇥
krv̂(St,w)k2µ

⇤
(see Section 9.6). It is

much less clear how to set the step size for the policy parameters, ↵✓, whose best value
depends on the range of variation of the rewards and on the policy parameterization.

↵ = 2�13

Episode
10008006004002001

-80

-90

-60

-40

-20

-10 v⇤(s0)

REINFORCE

REINFORCE with baseline
↵ = 2�9

↵✓ = 2�9, ↵w = 2�6

Total reward
on episode

averaged over 100 runs

G0

Figure 13.2: Adding a baseline to REINFORCE can make it learn much faster, as illus-
trated here on the short-corridor gridworld (Example 13.1). The step size used here for plain
REINFORCE is that at which it performs best (to the nearest power of two; see Figure 13.1).

Fig. 12.8: Comparison of Monte Carlo policy gradient on short-corridor problem from Fig. 12.6 where
both algorithms’ learning rates have been tuned (source: R. Sutton and G. Barto, Reinforcement

learning: an introduction, 2018, CC BY-NC-ND 2.0)
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General actor-critic idea
Conclusion of Monte Carlo policy gradient with baseline:

▶ Will learn an unbiased policy gradient.
▶ As the other MC-based methods: learns slowly due to high variance.
▶ Updates only available after full episodes.

Alternative: use an additional function approximator, the so-called critic, to estimate qπ (i.e.,
approximate policy gradient):

v(x) ≈ v̂(x,wv),

q(x,u) ≈ q̂(x,u,wq),

a(x,u) ≈ q̂(x,u,wq)− v̂(x,wv).

▶ Realization: any prediction tool discussed so far (TD(0), LSTD,...).
▶ Potential: we can use online step-by-step updates to estimate q̂.
▶ Disadvantage: we would train two value estimates by wv and wq.
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Integrating the advantage function

▶ The TD error is
δπ = r + γvπ(x

′)− vπ(x). (12.15)

▶ In expectation the TD error is equivalent to the advantage function

Eπ [δπ|x,u] = Eπ

[
r + γvπ(x

′)|x,u
]
− vπ(x)

= qπ(x,u)− vπ(x)

= aπ(x,u).

(12.16)

▶ Hence, the TD error can be used to calculate the policy gradient:

∇θJ(θ) = Eπ [δπ∇θ lnπ(u|x,θ)] . (12.17)

▶ This results in requiring only one function parameter set:

δπ ≈ r + γv̂π(x
′,w)− v̂π(x,w). (12.18)
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Actor-critic structure
▶ Critic (policy evaluation) and actor (policy improvement) can be considered another form of

generalized policy iteration (GPI).
▶ Online and on-policy algorithm for discrete and continuous action spaces with built-in

exploration by stochastic policy functions.

Critic

Actor

Fig. 12.9: Simplified flow diagram of actor-critic-based RL
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Algo. implementation: actor-critic with TD(0) targets

▶ Analog to MC-based policy gradient optional discounting on the gradient updates is
introduced.

input: a differentiable policy function π(u|x,θ) and state-value function v̂(x,w)
parameter: step sizes {αw, αθ} ∈ {R|0 < α < 1}
init: parameter vectors w ∈ Rζ and θ ∈ Rd arbitrarily
for j = 1, 2, . . . , episodes do

initialize x0;
for k = 0, 1, . . . , T − 1 time steps do

apply uk ∼ π(·|xk,θ) and observe xk+1 and rk+1;
δ ← rk+1 + γv̂(xk+1,w)− v̂(xk,w);
w ← w + αwδ∇wv̂(xk,w);

θ ← θ + αθγ
kδ∇θ lnπ(uk|xk,θ);

Algo. 12.3: Actor-critic for episodic tasks using TD(0) targets (output: parameter vector θ∗ for
π∗(u|x,θ∗)) and w∗ for v̂∗(x,w∗))
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Actor-critic generalization

▶ Using the TD(0) error as the target to train the critic is convenient.

▶ However, the usual alternatives can be applied to train v̂(x,w).

▶ n-step bootstrapping:

v(xk) ≈ rk+1 + γrk+2 + · · ·+ γn−1rk+n + γnv̂k+n−1(xk+n,w).

▶ λ-return (forward view):

v(xk) ≈ (1− λ)

T−k−1∑

n=1

λ(n−1)gk:k+n + λT−k−1gk.

▶ TD(λ) using eligibility traces (backward view):

zk = γλzk−1 +∇wv̂(xk,wk),

δk = rk+1 + γv̂(xk+1,wk)− v̂(xk,wk).
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Algo. implementation: actor-critic with TD(λ) targets

input: a differentiable policy function π(u|x,θ)
input: a differentiable state-value function v̂(x,w)
parameter: {αw, αθ} ∈ {R|0 < α < 1}, {λw, λθ} ∈ {R|0 ≤ λ ≤ 1}
init: parameter vectors w ∈ Rζ and θ ∈ Rd arbitrarily
for j = 1, 2, . . . , episodes do

initialize x0, zw = 0, zθ = 0;
for k = 0, 1, . . . , T − 1 time steps do

apply uk ∼ π(·|xk,θ) and observe xk+1 and rk+1;
δ ← rk+1 + γv̂(xk+1,w)− v̂(xk,w);
zw ← γλwzw +∇wv̂(xk,w);

zθ ← γλdzθ + γk∇θ lnπ(uk|xk,θ);
w ← w + αwδzw;
θ ← θ + αθδzθ;

Algo. 12.4: Actor-critic for episodic tasks using TD(λ) targets (output: parameter vector θ∗ for
π∗(u|x,θ∗) and w∗ for v̂∗(x,w∗))
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Summary: what you’ve learned today

▶ Policy-based methods are a new class within the RL toolbox.
▶ Instead of learning a policy indirectly from a value the policy is directly parametrized.
▶ The policy function allows discrete and continuous actions with inherent stochastic exploration.

▶ Solving the underlying optimization task is complex. However, the policy gradient theorem
provides a suitable theoretical baseline for gradient-based optimization.

▶ Anyhow, to calculate policy gradients we require a value estimate.
▶ Monte Carlo prediction is straightforward, but comes with high variance and slow learning.
▶ Adding a state-dependent baseline comparison does not change the policy gradient in expectation

but enables decreasing the variance.

▶ Extending this idea naturally leads to integrating a critic network, i.e., an additional
function approximation to estimate the value.

▶ The critic can be fed by the usual targets (TD(0), TD(λ),...).
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Background and motivation
Recap on policy gradient so far:

▶ The previously discussed policy functions and the policy gradient theorem were assuming
stochastic polices.

▶ The resulting on-policy algorithms may not provide top-class learning performance:
▶ Non-guided exploration with step-by-step updates and
▶ Greedy actions only in the limit (i.e., infeasible long learning).

The alternative:

▶ Apply a deterministic policy with separate exploration.

▶ Enable off-policy learning (with experience replay as a possible extension).

▶ Hence, we will focus on a deterministic policy function

π(x,θ) = µ(x,θ). (13.1)
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Deterministic policy gradient (DPG) theorem

Theorem 13.1: Deterministic Policy Gradient

Given a metric J(θ) for the undiscounted episodic (12.7) or continuing tasks (12.8) and a
parameterizable policy µ(x,θ) the deterministic policy gradient is

∇θJ(θ) = Eµ

[
∇θµ(x,θ)∇uq(x,u)|u=µ(x)

]
. (13.2)

▶ Again, q needs to be approximated using samples, e.g., implementing a critic via TD
learning.

▶ It turns out that (13.2) is also (approximately) valid in the off-policy case, i.e., if the sample
distribution is obtained from a behavior policy.

▶ Proof can be found in D. Silver et al., Deterministic Policy Gradient Algorithms,
International Conference on Machine Learning, 2014
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Exploration with a deterministic policy

▶ If the DPG approach is applied on-policy there is no inherent exploration.
▶ How to learn something?

▶ The environment itself is sufficiently noisy (random impacts, measurement noise).
▶ Or we have to add noise to the actions, i.e., making the approach off-policy.
▶ Hence, utilizing a behavior policy is also possible.

▶ That additional action noise could be:
▶ Simple Gaussian noise or
▶ a shaped noise process like a discrete-time Ornstein-Uhlenbeck (OU) process

νk+1 = λνk + σϵk

where νk is the OU noise output, 0 < λ < 1 is a smoothing factor and σ is the variance scaling a
standard Gaussian sequence (no mean) ϵk.
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Algo. implementation: deterministic actor-critic

input: a differentiable deterministic policy function µ(x,θ)
input: a differentiable action-value function q̂(x,u,w)
parameter: step sizes {αw, αθ} ∈ {R|0 < α < 1}
init: parameter vectors w ∈ Rζ and θ ∈ Rd arbitrarily
for j = 1, 2, . . . , episodes do

initialize x0;
for k = 0, 1, . . . , T − 1 time steps do

uk ← apply from µ(xk,θ) w/wo noise or from behavior policy;
observe xk+1 and rk+1;
choose u′ from µ(xk+1,θ);
δ ← rk+1 + γq̂(xk+1,u

′,w)− q̂(xk,uk,w);
w ← w + αwδ∇w q̂(xk,uk,w);

θ ← θ + αθγ
k∇θµ(xk,θ)∇uq̂(xk,uk,w)|u=µ(x);

Algo. 13.1: Deterministic actor-critic for episodic tasks using SARSA(0) targets applicable on- and
off-policy (output: parameter vector θ∗ for µ∗(x,θ∗)) and w∗ for q̂∗(x,u,w∗))
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Exemplary comparison to stochastic policy gradient

▶ DPG-based approach uses compatible function approximation, i.e., suitable linear q̂
estimation. A fixed Gaussian behavior policy is applied for exploration.

▶ SAC uses a Gaussian policy with linear function approximation.

Deterministic Policy Gradient Algorithms
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Figure 1. Comparison of stochastic actor-critic (SAC-B) and deterministic actor-critic (COPDAC-B) on the continuous bandit task.
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(a) Mountain Car
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(b) Pendulum
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(c) 2D Puddle World

Figure 2. Comparison of stochastic on-policy actor-critic (SAC), stochastic off-policy actor-critic (OffPAC), and deterministic off-policy
actor-critic (COPDAC) on continuous-action reinforcement learning. Each point is the average test performance of the mean policy.

5.2. Continuous Reinforcement Learning
In our second experiment we consider continuous-action
variants of standard reinforcement learning benchmarks:
mountain car, pendulum and 2D puddle world. Our goal
is to see whether stochastic or deterministic actor-critic is
more efficient under Gaussian exploration. The stochas-
tic actor-critic (SAC) algorithm was the actor-critic algo-
rithm in Degris et al. (2012a); this algorithm performed
best out of several incremental actor-critic methods in a
comparison on mountain car. It uses a Gaussian policy
based on a linear combination of features, πθ,y(s, ·) ∼
N (θ>φ(s), exp(y>φ(s))), which adapts both the mean
and the variance of the policy; the critic uses a linear value
function approximator V (s) = v>φ(s) with the same fea-
tures, updated by temporal-difference learning. The deter-
ministic algorithm is based on COPDAC-Q, using a lin-
ear target policy, µθ(s) = θ>φ(s) and a fixed-width Gaus-
sian behaviour policy, β(·|s) ∼ N (θ>φ(s), σ2

β). The critic
again uses a linear value function V (s) = v>φ(s), as a
baseline for the compatible action-value function. In both
cases the features φ(s) are generated by tile-coding the
state-space. We also compare to an off-policy stochastic
actor-critic algorithm (OffPAC), using the same behaviour
policy β as just described, but learning a stochastic pol-
icy πθ,y(s, ·) as in SAC. This algorithm also used the same
critic V (s) = v>φ(s) algorithm and the update algorithm
described in Degris et al. (2012b) with λ = 0 and αu = 0.

For all algorithms, episodes were truncated after a maxi-
mum of 5000 steps. The discount was γ = 0.99 for moun-
tain car and pendulum and γ = 0.999 for puddle world.
Actions outside the legal range were capped. We performed
a parameter sweep over step-size parameters; variance was
initialised to 1/2 the legal range. Figure 2 shows the per-
formance of the best performing parameters for each algo-
rithm, averaged over 30 runs. COPDAC-Q slightly outper-
formed both SAC and OffPAC in all three domains.

5.3. Octopus Arm
Finally, we tested our algorithms on an octopus arm (Engel
et al., 2005) task. The aim is to learn to control a simulated
octopus arm to hit a target. The arm consists of 6 segments
and is attached to a rotating base. There are 50 continu-
ous state variables (x,y position/velocity of the nodes along
the upper/lower side of the arm; angular position/velocity
of the base) and 20 action variables that control three mus-
cles (dorsal, transversal, central) in each segment as well as
the clockwise and counter-clockwise rotation of the base.
The goal is to strike the target with any part of the arm.
The reward function is proportional to the change in dis-
tance between the arm and the target. An episode ends
when the target is hit (with an additional reward of +50)
or after 300 steps. Previous work (Engel et al., 2005) sim-
plified the high-dimensional action space using 6 “macro-
actions” corresponding to particular patterns of muscle ac-
tivations; or applied stochastic policy gradients to a lower

Fig. 13.1: Comparison of stochastic on-policy actor-critic (SAC), stochastic off-policy actor-critic
(OffPAC), and deterministic off-policy actor-critic (COPDAC) on continuous-action reinforcement

learning (source: D. Silver et al., Deterministic Policy Gradient Algorithms, International Conference on
Machine Learning, 2014)
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Motivation / general idea

▶ The upcoming deep deterministic policy gradient (DDPG) algorithm was very much inspired
by the successes of DQNs (cf. Algo. 11.6 and landmark paper by Mnih et al.) on discrete
action spaces.

▶ However, DQNs are not directly applicable to (quasi-)continuous action spaces.

▶ Recall the incremental Q-learning equation using function approximation

w ← w + α
[
r + γmax

u
q̂(x′, u,w)− q̂(x, u,w)

]
∇wq̂(x, u,w).

▶ For every policy inference and updating step we need to find maxu q̂(x
′, u,w).

▶ If u ∈ U ⊂ Z (i.e., using integer-encoded actions) is a sufficiently small discrete set, that is
straightforward by an exhaustive search.

▶ In contrast, if u ∈ U ⊂ Rm is a (quasi-)continuous variable solving maxu q̂(x′,u,w)
requires an own optimization routine which is computationally expensive if we use nonlinear
function approximation.
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The deterministic policy trick

▶ When using a greedy, deterministic policy π(x,θ) = µ(x,θ) we can utilize it to approximate

max
u

q̂(x′,u,w) ≈ q̂(x′,µ(x′,θ),w). (13.3)

▶ Hence, we can obtain explicit Q-learning targets for continuous actions when using a
deterministic policy.

▶ For improving the policy we reuse the deterministic policy gradient theorem in an off-policy
fashion

∇θJ(θ) = Eb [∇θµ(X,θ)∇uq(X,U) |U = µ(X,θ) ] (13.4)

given a behavior policy b(u|x).
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DDPG ≈ DQN + DPG

▶ Hence, we can consider the DDPG approach as a combination of DQN + DPG rendering it
an actor-critic off-policy approach for continuous state and action spaces.

▶ Similarly to DQN we will introduce several ’tweaks’ to stabilize and improve the DDPG
learning process.

Tweak #1: experience replay buffer

▶ We store ⟨x,u, r,x′⟩ in D after each transition step.

▶ The replay buffer D is of limited capacity, i.e., it discards the oldest data sample when
updating once it is full (ring memory).

▶ This allows us to improve the Q-learning critic minimizing the mean-squared Bellman error
(MSBE):

L(w) =
[(
r + γq(x′,µ(x′,θ),w)

)
− q(x,u,w)

]2
D . (13.5)
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Additional DDPG tweaks (1)
Tweak #2: target networks

▶ Similar to DQN we introduce a (delayed) target network to estimate the Q-learning target

r + γq(x′,µ(x′,θ),w)

since it depends on the same parameters w which we want to update.

▶ Hence, the target network’s purpose it to mimic the generation of i.i.d. data as the ground
truth to minimize (13.5).

▶ Since the policy parameters θ are also part of the target calculation it turns out that an
additional policy target network is also beneficial to stabilize the Q-learning.

▶ In contrast to the classical DQN implementation, the original DDPG algorithm does not
perform periodically hard target network updates but continuous ones using a low-pass filter
characteristic

w− ← (1− τ)w− + τw, θ− ← (1− τ)θ− + τθ (13.6)

with τ representing the equivalent filter constant (hyperparameter).
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Additional DDPG tweaks (2)
Tweak #3: mini-batch sampling

▶ Given a sufficiently filled memory D and the target networks parametrized by w− and θ−

we draw uniformly distributed mini-batch samples Db from D.
▶ The actual Q-learning is then based on the loss

L(w) =
[(
r + γq(x′,µ(x′,θ−),w−)

)
− q(x,u,w)

]2
Db

. (13.7)

Tweak #4: batch normalization

▶ Minimizing (13.7) is a supervised learning step within the DDPG.
▶ The original DDPG paper by Lillicrap et al. back in 2015/16 suggested to use batch

normalization, i.e., re-centering and re-scaling the inputs of each layer in an ANN.
▶ This idea of batch normalization was presented at that time shortly before by Ioffe and

Szegedy (cf. original paper).
▶ Today’s perspective: stick to the current state-of-the-art supervised ML algorithms for

top-class Q-learning stability and speed (which are normally well-covered in popular
supervised ML toolboxes).
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Additional DDPG tweaks (3)

Tweak #5: exploration

▶ Since our policy is deterministic we require an exploratory behavior policy.

▶ Similar to DPG the standard approach is to add noise to the greedy actions, e.g., again
from an Ornstein-Uhlenbeck (OU) process

uk ∼ b(u|xk) = µ(xk,θk) + νk, νk = λνk−1 + σϵk−1.

▶ One might also add a schedule for λ and σ along the training procedure, e.g., starting with
significant noise levels (increased exploration) while reducing it over time (focusing
exploitation)1.

▶ However, many other behavior policies are possible, e.g., using model or expert-based
guidance.

1Please note that this ’lambda’ is not related to TD(λ), SARSA(λ), etc. Here, it is representing the stiffness of
the OU noise process.
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Visual summary of DDPG working principle

Memory

Mini-Batch

Critic Actor

Noise

Fig. 13.2: DDPG structure from a bird’s-eye perspective (derivative work of Fig. 1.1 and wikipedia.org,
CC0 1.0)
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Algo. implementation: DDPG
input: diff. deterministic policy function µ(x,θ) and action-value function q̂(x,u,w)
parameter: step sizes and filter constant {αw, αθ, τ} ∈ {R|0 < α, τ < 1}
init: weights w = w− ∈ Rζ and θ = θ− ∈ Rd arbitrarily, memory D
for j = 1, 2, . . . , episodes do

initialize x0;
for k = 0, 1, . . . , T − 1 time steps do

uk ← apply from µ(xk,θ) w/wo noise or from behavior policy;
observe xk+1 and rk+1;
store tuple ⟨xk,uk, rk+1,xk+1⟩ in D;
sample mini-batch Db from D (after initial memory warmup);
for i = 1, . . . , b samples do calculate Q-targets

if xi+1 is terminal then yi = ri+1;
else yi = ri+1 + γq̂(xi+1,µ(xi+1,θ

−),w−);
fit w on loss L(w) = [y − q̂(x,u,w)]2Db

with step size αw;

θ ← θ + αθ[∇θµ(x,θ)∇uq̂(x,u,w)|u=µθ(x)]Db
;

Update target net. w− ← (1− τ)w− + τw, θ− ← (1− τ)θ− + τθ;

Algo. 13.2: Deep deterministic policy gradient (output: θ∗ for µ∗(x,θ∗) and w∗ for q̂∗(x,u,w∗))
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Overestimation bias

▶ For Q-learning in the tabular case we have already discussed the maximization bias (cf.
Fig. 5.13) issue.

▶ Recap: Due to the greedy policy targets, q̂ was overestimated when calculated using
sampled values of stochastic MDPs.

▶ Additional problem when applying function approximation: the estimator itself introduces
additional variance during the learning process which represents another source of the
maximization bias problem.

This issue is already known in the DQN context (cf. Algo. 11.6). Similar to the tabular case,
double DQN introduces a second Q-network counteracting the overestimation issue (cf. paper
by van Hasselt et al.).

However, we did not address this possible problem in an actor-critic context using function
approximation (e.g., DDPG).
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Overestimation bias in actor-critic approaches (1)

▶ It turns out that the overestimation bias is also an issue for actor-critic methods1.

▶ Consider an actor-critic policy with the current policy parameters θ.

▶ Let θ̃ define the parameters from the actor update induced by the maximization of the
approximate critic q̂w(x,u).

▶ Let θ∗ be the parameters from the hypothetical actor update w.r.t. the true underlying
value function qπ(x,u).

▶ Then, we perform the policy update

θ̃ = θ +
α

Z1
Eπ [∇θπθ(X)∇uq̂w(X,U) |U = πθ(X) ] ,

θ∗ = θ +
α

Z2
Eπ [∇θπθ(X)∇uq

π(X,U) |U = πθ(X) ] ,
(13.8)

where Z1 and Z2 normalize the gradient such that Z−1||E [·] || = 1.
1Source: S. Fujimoto et al., Addressing Function Approximation Error in Actor-Critic Methods,
https://arxiv.org/abs/1802.09477, 2018
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Overestimation bias in actor-critic approaches (2)

▶ Lets denote π̃ and π∗ as the policies with updated parameters θ̃ and θ∗ respectively.

▶ As the gradient direction is a local maximizer, there exists ϵ1 sufficiently small such that if
α ≤ ϵ1 then the approximate value of π̃ will be bounded below by the approximate value of
π∗:

E [q̂w(X, π̃(X))] ≥ E [q̂w(X,π∗(X))] . (13.9)

▶ Conversely, there exists ϵ2 sufficiently small such that if α ≤ ϵ2 then the true value of π̃ will
be bounded above by the true value of π∗:

E [qπ(X,π∗(X))] ≥ E [qπ(X, π̃(X))] . (13.10)

▶ In other words: if the approximate and true critics differ from each other, the according
policy gradient updates cannot lead to better policy updates of the respective other
framework.
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Overestimation bias in actor-critic approaches (3)

▶ If the expected, estimated action value will be at least as large as the true action value
w.r.t. θ∗

E [q̂w(X,π∗(X))] ≥ E [qπ(X,π∗(X))] , (13.11)

then (13.9) and (13.10) imply

E [q̂w(X, π̃(X))] ≥ E [qπ(X, π̃(X))] (13.12)

with a sufficiently small α < min{ϵ1, ϵ2}.
▶ Hence, the maximization bias is also present in actor-critic updates.

▶ It can add up over several estimation updates and, therefore, may lead to suboptimal policy
updates.

▶ A proof for unnormalized gradients can be also found in S. Fujimoto et al., Addressing
Function Approximation Error in Actor-Critic Methods, 2018.
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Overestimation example for DDPG
Addressing Function Approximation Error in Actor-Critic Methods

objective y over multiple updates:

y = r + γQθ′(s
′, a′), a′ ∼ πφ′(s′), (3)

where the actions are selected from a target actor network
πφ′ . The weights of a target network are either updated
periodically to exactly match the weights of the current
network, or by some proportion τ at each time step θ′ ←
τθ + (1− τ)θ′. This update can be applied in an off-policy
fashion, sampling random mini-batches of transitions from
an experience replay buffer (Lin, 1992).

4. Overestimation Bias
In Q-learning with discrete actions, the value estimate is
updated with a greedy target y = r + γmaxa′ Q(s′, a′),
however, if the target is susceptible to error ε, then the max-
imum over the value along with its error will generally be
greater than the true maximum, Eε[maxa′(Q(s′, a′)+ε)] ≥
maxa′ Q(s′, a′) (Thrun & Schwartz, 1993). As a result,
even initially zero-mean error can cause value updates to
result in a consistent overestimation bias, which is then prop-
agated through the Bellman equation. This is problematic as
errors induced by function approximation are unavoidable.

While in the discrete action setting overestimation bias is
an obvious artifact from the analytical maximization, the
presence and effects of overestimation bias is less clear in an
actor-critic setting where the policy is updated via gradient
descent. We begin by proving that the value estimate in de-
terministic policy gradients will be an overestimation under
some basic assumptions in Section 4.1 and then propose
a clipped variant of Double Q-learning in an actor-critic
setting to reduce overestimation bias in Section 4.2.

4.1. Overestimation Bias in Actor-Critic

In actor-critic methods the policy is updated with respect
to the value estimates of an approximate critic. In this
section we assume the policy is updated using the deter-
ministic policy gradient, and show that the update induces
overestimation in the value estimate. Given current policy
parameters φ, let φapprox define the parameters from the ac-
tor update induced by the maximization of the approximate
critic Qθ(s, a) and φtrue the parameters from the hypothet-
ical actor update with respect to the true underlying value
function Qπ(s, a) (which is not known during learning):

φapprox = φ+
α

Z1
Es∼pπ

[
∇φπφ(s)∇aQθ(s, a)|a=πφ(s)

]

φtrue = φ+
α

Z2
Es∼pπ

[
∇φπφ(s)∇aQπ(s, a)|a=πφ(s)

]
,

(4)
where we assume Z1 and Z2 are chosen to normalize the
gradient, i.e., such that Z−1||E[·]|| = 1. Without normal-
ized gradients, overestimation bias is still guaranteed to
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Figure 1. Measuring overestimation bias in the value estimates
of DDPG and our proposed method, Clipped Double Q-learning
(CDQ), on MuJoCo environments over 1 million time steps.

occur with slightly stricter conditions. We examine this case
further in the supplementary material. We denote πapprox
and πtrue as the policy with parameters φapprox and φtrue re-
spectively.

As the gradient direction is a local maximizer, there exists ε1
sufficiently small such that if α ≤ ε1 then the approximate
value of πapprox will be bounded below by the approximate
value of πtrue:

E [Qθ(s, πapprox(s))] ≥ E [Qθ(s, πtrue(s))] . (5)

Conversely, there exists ε2 sufficiently small such that if
α ≤ ε2 then the true value of πapprox will be bounded above
by the true value of πtrue:

E [Qπ(s, πtrue(s))] ≥ E [Qπ(s, πapprox(s))] . (6)

If in expectation the value estimate is at least as large as
the true value with respect to φtrue, E [Qθ (s, πtrue(s))] ≥
E [Qπ (s, πtrue(s))], then Equations (5) and (6) imply that if
α < min(ε1, ε2), then the value estimate will be overesti-
mated:

E [Qθ(s, πapprox(s))] ≥ E [Qπ(s, πapprox(s))] . (7)

Although this overestimation may be minimal with each
update, the presence of error raises two concerns. Firstly, the
overestimation may develop into a more significant bias over
many updates if left unchecked. Secondly, an inaccurate
value estimate may lead to poor policy updates. This is
particularly problematic because a feedback loop is created,
in which suboptimal actions might be highly rated by the
suboptimal critic, reinforcing the suboptimal action in the
next policy update.

Does this theoretical overestimation occur in practice
for state-of-the-art methods? We answer this question by
plotting the value estimate of DDPG (Lillicrap et al., 2015)
over time while it learns on the OpenAI gym environments
Hopper-v1 and Walker2d-v1 (Brockman et al., 2016). In
Figure 1, we graph the average value estimate over 10000
states and compare it to an estimate of the true value. The

Fig. 13.3: Comparison of true and estimated values averaged over 10000 states in two robotic examples
from OpenAI Gym. Estimated values originate from the approximate DDPG critic while the true values
are based on the average discounted return over 1000 episodes following the current policy, starting

from states sampled from the replay buffer (source: S. Fujimoto et al., Addressing Function
Approximation Error in Actor-Critic Methods, 2018.
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Increased variance due to accumulating TD errors

▶ Using function approximation, the Bellman equation is never exactly satisfied leaving room
for some amount of residual TD-error δ̃(x,u):

q̂w(x,u) = r + γEπ

[
q̂w(X

′,U ′)|X ′ = x′,U ′ = u′]− δ̃(x,u). (13.13)

▶ Although this error might be considered small per update step, it may accumulate over
future steps if biased:

q̂w(x,u) = Eπ

[ ∞∑

k=0

γk
(
Rk − δ̃k(X,U)

) ∣∣∣∣∣X = x,U = u

]
. (13.14)

▶ Observation: the variance of q̂ will be proportional to the variance of future reward and
residual TD-errors.

▶ If γ is large, the estimation variance might increase significantly.
▶ Mini-batch sampling will contribute to this variance issue.
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TD3 extensions and modifications (1)

In order to reduce both the maximization bias and the learning variance, TD3 introduces mainly
three measures on top of the DDPG algorithm. Hence, TD3 is a direct successor of DDPG.

Measure #1: clipped double Q-learning for actor-critic

▶ Following double Q-learning, a pair of critics {q̂w1 , q̂w2} is introduced.
▶ In contrast, the clipped target (with target networks {w−

1 ,w
−
2 })

y = r + γ min
i=1,2

q̂w−
i
(x′,u′) (13.15)

provides an upper-bound on the estimated action value.

▶ May introduce some underestimation, which is considered less critical than overestimation,
since the value of underestimated actions will not be explicitly propagated through the
policy update.

▶ The min operator will also (indirectly) favor actions leading to values with estimation errors
of lower variance.
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TD3 extensions and modifications (2)
Measure #2: target policy smoothing regularization

▶ Background: deterministic policies µ tend to overfit to narrow peaks in the action-value
estimate.

▶ Counteraction: fit the action value of a small area around the target action (i.e., smoothing
q̂ in the action space):

y = r + γq̂w−(x′,µθ−(x′) + ϵ). (13.16)

▶ Here, ϵ ∼ clip (N (0,Σ),−c, c) is a mean-free, Gaussian noise with covariance Σ, which is
clipped at ±c while θ− are the policy target network parameters.

▶ To satisfy possible action constraints (denoted by upper and lower box constraints {u,u}),
we add an additional clipping:

u′ = clip
(
µθ−(x′) + ϵ,u,u

)
. (13.17)

▶ This modified action is then used for the target calculation (13.15).
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TD3 extensions and modifications (3)
Measure #3: delayed policy updates

▶ Similar to DDPG, TD3 uses policy target networks θ− and (two) critic target networks
{w−

1 ,w
−
2 } in order to provide (rather) fixed Q-learning targets trying to stabilize the

learning of q̂.

▶ The target networks are also continuously updated using

w−
i ← (1− τ)w−

i + τwi, θ− ← (1− τ)θ− + τθ.

▶ However, each policy update will inherently change the (true) Q-learning target directly
adding variance to the learning process (cf. Fig. 13.4 on next slide).

▶ Therefore, it is argued that a policy update should not follow after each Q-learning update
such that the critic can adapt properly to the previous policy update.

▶ The original TD3 implementation suggests a policy update every second Q-learning update,
however, we can consider this update rate a hyperparameter.
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TD3 extensions and modifications (4)

Addressing Function Approximation Error in Actor-Critic Methods

bias, high variance estimates provide a noisy gradient for the
policy update. This is known to reduce learning speed (Sut-
ton & Barto, 1998) as well as hurt performance in practice.
In this section we emphasize the importance of minimizing
error at each update, build the connection between target
networks and estimation error and propose modifications to
the learning procedure of actor-critic for variance reduction.

5.1. Accumulating Error

Due to the temporal difference update, where an estimate of
the value function is built from an estimate of a subsequent
state, there is a build up of error. While it is reasonable to
expect small error for an individual update, these estimation
errors can accumulate, resulting in the potential for large
overestimation bias and suboptimal policy updates. This is
exacerbated in a function approximation setting where the
Bellman equation is never exactly satisfied, and each update
leaves some amount of residual TD-error δ(s, a):

Qθ(s, a) = r + γE[Qθ(s
′, a′)]− δ(s, a). (11)

It can then be shown that rather than learning an estimate
of the expected return, the value estimate approximates the
expected return minus the expected discounted sum of future
TD-errors:

Qθ(st, at) = rt + γE[Qθ(st+1, at+1)]− δt
= rt + γE [rt+1 + γE [Qθ(st+2, at+2)− δt+1]]− δt

= Esi∼pπ,ai∼π

[
T∑

i=t

γi−t(ri − δi)
]
. (12)

If the value estimate is a function of future reward and es-
timation error, it follows that the variance of the estimate
will be proportional to the variance of future reward and es-
timation error. Given a large discount factor γ, the variance
can grow rapidly with each update if the error from each
update is not tamed. Furthermore each gradient update only
reduces error with respect to a small mini-batch which gives
no guarantees about the size of errors in value estimates
outside the mini-batch.

5.2. Target Networks and Delayed Policy Updates

In this section we examine the relationship between target
networks and function approximation error, and show the
use of a stable target reduces the growth of error. This
insight allows us to consider the interplay between high
variance estimates and policy performance, when designing
reinforcement learning algorithms.

Target networks are a well-known tool to achieve stabil-
ity in deep reinforcement learning. As deep function ap-
proximators require multiple gradient updates to converge,
target networks provide a stable objective in the learning
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Figure 3. Average estimated value of a randomly selected state
on Hopper-v1 without target networks, (τ = 1), and with slow-
updating target networks, (τ = 0.1, 0.01), with a fixed and a
learned policy.

procedure, and allow a greater coverage of the training data.
Without a fixed target, each update may leave residual error
which will begin to accumulate. While the accumulation of
error can be detrimental in itself, when paired with a policy
maximizing over the value estimate, it can result in wildly
divergent values.

To provide some intuition, we examine the learning behavior
with and without target networks on both the critic and actor
in Figure 3, where we graph the value, in a similar manner to
Figure 1, in the Hopper-v1 environment. In (a) we compare
the behavior with a fixed policy and in (b) we examine the
value estimates with a policy that continues to learn, trained
with the current value estimate. The target networks use a
slow-moving update rate, parametrized by τ .

While updating the value estimate without target networks
(τ = 1) increases the volatility, all update rates result in sim-
ilar convergent behaviors when considering a fixed policy.
However, when the policy is trained with the current value
estimate, the use of fast-updating target networks results in
highly divergent behavior.

When do actor-critic methods fail to learn? These results
suggest that the divergence that occurs without target net-
works is the result of policy updates with a high variance
value estimate. Figure 3, as well as Section 4, suggest failure
can occur due to the interplay between the actor and critic
updates. Value estimates diverge through overestimation
when the policy is poor, and the policy will become poor if
the value estimate itself is inaccurate.

If target networks can be used to reduce the error over mul-
tiple updates, and policy updates on high-error states cause
divergent behavior, then the policy network should be up-
dated at a lower frequency than the value network, to first
minimize error before introducing a policy update. We pro-
pose delaying policy updates until the value error is as small
as possible. The modification is to only update the policy
and target networks after a fixed number of updates d to the
critic. To ensure the TD-error remains small, we update the

Fig. 13.4: Average estimated action value of a randomly selected state on Hopper-v1 environment from
OpenAI Gym (source: S. Fujimoto et al., Addressing Function Approximation Error in Actor-Critic

Methods, 2018.
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input: diff. deterministic policy function µ(x,θ) and action-value function q̂(x,u,w)
parameter: step sizes and filter constant {αw, αθ, τ} ∈ {R|0 < α, τ < 1}, policy update rate

kw ∈ {N|1 ≤ kw}, target noise Σ ∈ Rm×m and c ∈ Rm

init: weights {w1 = w−
1 , w2 = w−

2 } ∈ Rζ , θ = θ− ∈ Rd arbitrarily, memory D
for j = 1, 2, . . . , episodes do

initialize x0;
for k = 0, 1, . . . , T − 1 time steps do

uk ← apply from µ(xk,θ) w/wo noise or from behavior policy;
observe xk+1 and rk+1;
store tuple ⟨xk,uk, rk+1,xk+1⟩ in D;
sample mini-batch Db from D (after initial memory warmup);
for i = 1, . . . , b samples do calculate Q-targets

if xi+1 is terminal then yi = ri+1;
else

u′ = clip (µθ−(xi+1) + clip (N (0,Σ),−c, c) ,u,u);
yi = ri+1 + γminl=1,2 q̂(xi+1,u

′,w−
l );

fit wl on loss L(wl) = [y − q̂(x,u,wl)]
2
Db

with step size αw ∀ l;
if k mod kw = 0 then

θ ← θ + αθ[∇θµ(x,θ)∇uq̂(x,u,w1)|u=µθ(x)]Db ;

w−
l ← (1− τ)w−

l + τwl, θ− ← (1− τ)θ− + τθ;

Algo. 13.3: Twin delayed deep deterministic policy gradient (TD3)
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Summary: what you’ve learned today

▶ The deep deterministic policy gradient (DDPG) approach ’transfers’ many deep Q-network
(DQN) ideas to continuous action spaces.

▶ It mainly combines DQN + deterministic policy gradients + policy and value target
networks (plus additional minor tweaks).

▶ However, the DDPG actor-critic suffers from value overestimation and high variance during
learning. Hence, sampled policy gradients might not be optimal (pointing towards overrated
action values).

▶ Twin delayed DDPG (TD3) adds clipped double Q-learning, delayed policy updates and
target policy smoothing to counteract these issues.
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Reinterpreting the stochastic policy gradient (1)
▶ In the following we will focus on stochastic policies π(u|x) .
▶ First, we rewrite the performance metric (12.7) to obtain

Jπ = Eπ

[ ∞∑

k=0

γkRk

]
. (14.1)

▶ Using the advantage aπ(x,u) = qπ(x,u)− vπ(x) we can calculate the performance of an
updated policy π → π̃1:

Jπ̃ = Jπ +

∫

X
pπ̃(x)

∫

U
π̃(u|x)aπ(x,u). (14.2)

▶ While for finite MDPs, the policy improvement theorem guaranteed Jπ̃ ≥ Jπ for each policy
update, there might be some states where

∫
U π̃(u|x)aπ < 0 for continuous MDPs using

function approximation.

1proof from: S. Kakade and J. Langford, Approximately optimal approximate reinforcement learning, ICML, vol.
2, pp 267-274, 2002
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Reinterpreting the stochastic policy gradient (2)
▶ For easier calculation, we introduce a local approximation to (14.2)

Lπ(π̃) = Jπ +

∫

X
pπ(x)

∫

U
π̃(u|x)aπ(x,u) (14.3)

where pπ(x) is used instead of pπ̃(x), i.e., neglecting the state distribution change due to a
policy update.

▶ For any parametrized and differentiable policy πθ(u|x), it can be shown that

L(πθ0) = J(πθ0),

∇θLπθ0
(πθ)|θ=θ0 = ∇θJ(πθ)|θ=θ0

(14.4)

for any initial parameter set θ0.
▶ For a sufficiently small step size, improving Lπθ0

will also improve J .

However, we do not know how much the actual stochastic policy will change while moving
through the parameter space. Hence, we do not have a good decision basis to choose the policy
gradient step size.
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Adding a trust region constraint (1)

▶ From the previous discussion it can be concluded that we want a metric describing how
much a policy is changed in the action space when updating the policy in the parameter
space.

▶ Against this background, we make use of the Kullback-Leibler divergence (also called
relative entropy)

DKL(P ∥ Q) =

∫ ∞

−∞
p(x) log

(
p(x)

q(x)

)
dx (14.5)

defined for continuous distributions P and Q with their probability densities p and q.

▶ Example: for two multivariate Gaussian distributions of equal dimensions d, with means
µ0,µ1 and with (non-singular) covariance matrix Σ0,Σ1 we receive

DKL (N0 ∥ N1) =
1

2

(
tr
(
Σ−1

1 Σ0

)
+ (µ1 − µ0)

T
Σ−1

1 (µ1 − µ0)

−d+ ln

(
detΣ1

detΣ0

))
.
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Adding a trust region constraint (2)

▶ The trust region policy optimization (TRPO) updates the policy parameters while
constraining the KL divergence between the new and the old policy distribution:

max
θ
Lθk(θ),

s.t. DKL(θk,θ) ≤ κ
(14.6)

with

DKL(θk,θ) = DKL(πθk , πθ) = Eπθk
[DKL(πθk(·|X) ∥ πθ(·|X))] .

▶ Hence, we want to limit the average KL divergence w.r.t. the states visited by the old policy.

▶ The constraint κ is a TRPO hyperparameter (typically κ << 1).

▶ Although (14.6) does not provide any formal convergence guarantee, we at least have a link
between changes in the parameter and policy distribution space. Therefore, we can use this
tool to prevent erratic policy changes.

Oliver Wallscheid Reinforcement learning 432



Smooth policy updates via TRPO
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Fig. 14.1: Simplified representation of the policy evolution for a scalar action given some fixed state.
Left: TRPO-style updates finding the optimal action with increasing probability. Right: Unmonitored

policy distributions not converging towards an optimal policy (’policy chattering’).
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Sample-based objective and constraint estimation (1)

▶ To actually solve (14.6) we will make use of samplings from Monte Carlo rollouts.
▶ Expanding the objective yields

max
θ
Lθk(θ) = max

θ
Jπk

+

∫

X
pπk(x)

∫

U
πθ(u|x)aπk

(x,u). (14.7)

▶ The first term Jπk
can be dropped, since it is irrelevant for the optimization result

(constant).
▶ Using samples we can approximate

∫
X pπk(x) ≈ 1

1−γEπθk
[X].

▶ Moreover,
∫
U πθ(u|x)aπk

(x,u) ≈ Eπθk

[
πθ(U |X)
πθk

(U |X)aπk
(X,U)

]
is also approximated

applying importance sampling based on data from the old policy.
▶ Hence, the sampled objective is

max
θ

Eπθk

[
πθ(U |X)

πθk(U |X)
aπk

(X,U)

]
. (14.8)
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Sample-based objective and constraint estimation (2)

▶ Applying the previous sample-based estimation we obtain

θk+1 = argmax
θ

Eπθk

[
πθ(U |X)

πθk(U |X)
aπk

(X,U)

]
,

s.t. Eπθk
[DKL(πθk(·|X) ∥ πθ(·|X))] ≤ κ.

(14.9)

▶ Hence, we have a three-step procedure for each TRPO update:

1 Use Monte Carlo simulations based on the old policy to obtain data.

2 Use the data to construct (14.9).

3 Solve the constrained optimization problem to update the policy parameter vector.

Solving (14.9) is generally a nonlinear optimization problem. The original TRPO implementation
uses a local objective and constraint approximation together with conjugate gradient and line
search algorithms. However, many other constrained-nonlinear solvers are also applicable.
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Generalized advantage estimation

▶ Having data ⟨x,u, r,x′⟩ in D from a Monte Carlo rollout available, an imporant problem is
to estimate aπk

(x,u) in (14.9).

▶ A particular suggestion in the TRPO context is to use a generalized advantage estimator
(GAE) 1 defined as

â
(γ,λ)
k =

∞∑

i=0

(γλ)iδk+i. (14.10)

▶ Here, δk = rk + γv(xk+1)− v(xk) is a single advantage sample.

▶ Hence, the GAE is the exponentially-weighted average of the discounted advantage samples
with an additional weighting λ.

▶ Similar formulation compared to TD(λ) but the estimator’s target is the advantage.

▶ The choice of (γλ) trade-offs the bias and variance of the estimator.

1cf. J. Schulmann et al., High Dimensional Continuous Control Using Generalized Advantage Estimation,
https://arxiv.org/abs/1506.02438, 2015
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TRPO summary
The TRPO’s key facts are:

▶ The TRPO constrains policy distribution changes when updating the policy parameters (for
stochastic policies and on-policy learning).

▶ The objective is to enable a monotonically improving learning process.

▶ Using trust regions, erratic policy updates should be prevented.

The TRPO’s main hurdles are:

▶ Constructing the objective function and constraint requires Monte Carlo rollouts (time
consuming, data inefficient).

▶ When the sampled optimization problem is set up, a nonlinear and constrained optimization
step is required (no simple policy gradient, computational costly).

We will not provide any specific TRPO implementation suggestion at this point, since this is
rather cumbersome. Instead we will move forward to a similar algorithm which is pursuing the
same goal (prevent erratic policy changes) with a much simpler implementation.
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Background and motivation

▶ The upcoming proximal policy optimization (PPO) algorithm tries to mimic the constrained
TRPO problem

θk+1 = argmax
θ

Eπθk

[
πθ(U |X)

πθk(U |X)
aπk

(X,U)

]
,

s.t. Eπθk
[DKL(πθk(·|X) ∥ πθ(·|X))] ≤ κ.

based on related unconstrained problems.

▶ Hence, the objective will be reformulated to incorporate mechanisms preventing excessively
large variations of the policy distribution during a parameter update (leading to an updated
policy with sufficient proximity to the old one).

▶ Moreover, PPO incorporates two variants which we will discuss:
1 Clipping the surrogate objective,
2 Adaptive tuning of a KL-associated penalty coefficient.
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Clipped surrogate objective

▶ The first approach is based on the following clipped objective:

Eπθk

[
min

{
πθ(U |X)

πθk
(U |X)

aπk
(X,U), clip

(
πθ(U |X)

πθk
(U |X)

, 1− ϵ, 1 + ϵ

)
aπk

(X,U)

}]
. (14.11)

▶ Above, ϵ < 1 is a PPO hyperparameter serving as a regularizer.

▶ The first element of min{·} is the previous TPRO objective.

▶ The second element of min{·} modifies the surrogate objective by clipping the importance
sampling ratio πθ/πθk .

▶ The latter should remove the incentive for moving the importance sampling ratio outside of
the interval [1− ϵ, 1 + ϵ].

▶ The modified objective is therefore a lower bound of the unclipped TRPO objective.
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Clipped surrogate objective: positive advantage

▶ Consider a single sample (x,u) with a positive advantage aπk
(x,u):

max
θ

min

{
πθ(u|x)
πθk(u|x)

aπk
(x,u), clip

(
πθ(u|x)
πθk(u|x)

, 1− ϵ, 1 + ϵ

)
aπk

(x,u)

}
.

▶ Because the advantage is positive, the objective will increase if the action becomes more
likely, i.e., if πθ(u|x) increases.

▶ If πθ(u|x) > (1 + ϵ)πθk(u|x) the clipping becomes active.
▶ Hence, the objective reduces to

max
θ

min

{
πθ(u|x)
πθk(u|x)

, 1 + ϵ

}
aπk

(x,u).

▶ Due to the min{·} operator, the entire objective is therefore limited to (1 + ϵ)aπk
(x,u).

▶ Interpretation: the new policy does not benefit from going very away from the old policy
distribution.
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Clipped surrogate objective: negative advantage

▶ Consider a single sample (x,u) with a negative advantage aπk
(x,u):

max
θ

min

{
πθ(u|x)
πθk(u|x)

aπk
(x,u), clip

(
πθ(u|x)
πθk(u|x)

, 1− ϵ, 1 + ϵ

)
aπk

(x,u)

}
.

▶ Because the advantage is negative, the objective will increase if the action becomes less
likely, i.e., if πθ(u|x) decreases.

▶ If πθ(u|x) < (1− ϵ)πθk(u|x) the clipping becomes active.

▶ Hence, the objective reduces to

max
θ

max

{
πθ(u|x)
πθk(u|x)

, 1− ϵ

}
aπk

(x,u).

▶ Due to the max{·} operator, the entire objective is limited to (1− ϵ)aπk
(x,u).
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Adaptive KL penalty

▶ The second PPO variant makes use of the following KL-penalized objective

Eπθk

[
πθ(U |X)

πθk
(U |X)

aπk
(X,U)−βDKL(πθk

(·|X) ∥ πθ(·|X))

]
. (14.12)

▶ Transfers the KL-based constraint into a penalty for large policy distribution changes.

▶ The parameter β weights the penalty against the policy improvement.

▶ The original PPO implementation suggests an adaptive tuning of β w.r.t. the sampled
average KL divergence DKL(θk,θ) estimated from previous experience

DKL(θk,θ) < D
∗
KL : β ← β/2,

DKL(θk,θ) > D
∗
KL : β ← β · 2.

(14.13)

with some target value of the KL divergence D
∗
KL (additional hyperparameter).
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Algo. implementation: PPO

input: diff. stochastic policy fct. π(u|x,θ) and value fct. v̂(x,w)
parameter: step sizes {αw, αθ} ∈ {R|0 < α}
init: weights w ∈ Rζ and θ ∈ Rd arbitrarily, memory D
for j = 1, 2, . . . , (sub-)episodes do

initialize x0 (if new episode);
collect a set of tuples ⟨xk,uk, rk+1,xk+1⟩ by a rollout using π(u|x,θj);
store them in D;
estimate the advantage âπj (x,u) based on v̂(x,wj) and D (e.g., GAE);
θj+1 ← policy gradient update based on the PPO variant (14.11) or (14.12);
wj+1 ← minimizing the mean-squared TD errors using D (critic);
delete entries in D (due to on-policy learning);

Algo. 14.1: Proximal policy optimization (output: parameter vectors θ∗ for π∗(u|x,θ∗) and w∗ for
v̂∗(x,w∗))
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Some PPO remarks

▶ Clipping the surrogate objective (14.11) was reported to achieve higher performances than
the KL penalty (14.12).1

▶ Like TRPO, PPO is an on-policy algorithm. Hence, the memory D is not a rolling replay
buffer (cf. off-policy algorithms like DQN, DDPG or TD3) but a rollout buffer using one
fixed policy.

▶ These rollouts are likely to result in an increased sample demand either using a simulator or
a real experiment.

Although PPO is derived from a TRPO background pursuing monotonically increasing policy
performance, its realization is based on multiple heuristics and approximations. Hence, there is
no guarantee on achieving this goal and the specific performance of the PPO algorithm must be
evaluated empirically given a certain application.

1cf. original PPO paper results by J. Schulman et al., Proximal Policy Optimization Algorithms,
https://arxiv.org/abs/1707.06347, 2017
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Exemplary performance comparison
Addressing Function Approximation Error in Actor-Critic Methods
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Figure 5. Learning curves for the OpenAI gym continuous control tasks. The shaded region represents half a standard deviation of the
average evaluation over 10 trials. Curves are smoothed uniformly for visual clarity.

Table 1. Max Average Return over 10 trials of 1 million time steps. Maximum value for each task is bolded. ± corresponds to a single
standard deviation over trials.

Environment TD3 DDPG Our DDPG PPO TRPO ACKTR SAC

HalfCheetah 9636.95 ± 859.065 3305.60 8577.29 1795.43 -15.57 1450.46 2347.19
Hopper 3564.07 ± 114.74 2020.46 1860.02 2164.70 2471.30 2428.39 2996.66
Walker2d 4682.82 ± 539.64 1843.85 3098.11 3317.69 2321.47 1216.70 1283.67
Ant 4372.44 ± 1000.33 1005.30 888.77 1083.20 -75.85 1821.94 655.35
Reacher -3.60 ± 0.56 -6.51 -4.01 -6.18 -111.43 -4.26 -4.44
InvPendulum 1000.00 ± 0.00 1000.00 1000.00 1000.00 985.40 1000.00 1000.00
InvDoublePendulum 9337.47 ± 14.96 9355.52 8369.95 8977.94 205.85 9081.92 8487.15

6.1. Evaluation

To evaluate our algorithm, we measure its performance on
the suite of MuJoCo continuous control tasks (Todorov et al.,
2012), interfaced through OpenAI Gym (Brockman et al.,
2016) (Figure 4). To allow for reproducible comparison, we
use the original set of tasks from Brockman et al. (2016)
with no modifications to the environment or reward.

For our implementation of DDPG (Lillicrap et al., 2015), we
use a two layer feedforward neural network of 400 and 300
hidden nodes respectively, with rectified linear units (ReLU)
between each layer for both the actor and critic, and a final
tanh unit following the output of the actor. Unlike the orig-
inal DDPG, the critic receives both the state and action as
input to the first layer. Both network parameters are updated
using Adam (Kingma & Ba, 2014) with a learning rate of
10−3. After each time step, the networks are trained with a
mini-batch of a 100 transitions, sampled uniformly from a
replay buffer containing the entire history of the agent.

The target policy smoothing is implemented by adding ε ∼

N (0, 0.2) to the actions chosen by the target actor network,
clipped to (−0.5, 0.5), delayed policy updates consists of
only updating the actor and target critic network every d
iterations, with d = 2. While a larger d would result in a
larger benefit with respect to accumulating errors, for fair
comparison, the critics are only trained once per time step,
and training the actor for too few iterations would cripple
learning. Both target networks are updated with τ = 0.005.

To remove the dependency on the initial parameters of the
policy we use a purely exploratory policy for the first 10000
time steps of stable length environments (HalfCheetah-v1
and Ant-v1) and the first 1000 time steps for the remaining
environments. Afterwards, we use an off-policy exploration
strategy, adding Gaussian noise N (0, 0.1) to each action.
Unlike the original implementation of DDPG, we used un-
correlated noise for exploration as we found noise drawn
from the Ornstein-Uhlenbeck (Uhlenbeck & Ornstein, 1930)
process offered no performance benefits.

Each task is run for 1 million time steps with evaluations
every 5000 time steps, where each evaluation reports the

Fig. 14.2: Learning curves for OpenAI Gym continuous control tasks. The shaded region represents half
a standard deviation of the average evaluation over ten trials (source: S. Fujimoto et al., Addressing

Function Approximation Error in Actor-Critic Methods, 2018).
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Algorithmic outlook: other contemporary model-free algorithms (1)
The selection of algorithms appears endless:

▶ DQN variants such as
▶ (Prioritized) dueling DQN
▶ Noisy DQN
▶ Distributional DQN

▶ Rainbow (combining multiple DQN extensions)
▶ Soft actor-critic (SAC)
▶ Actor critic using Kronecker-factored trust region (ACKTR)
▶ Asynchronous advantage actor-critic (A3C)
▶ ....

Remarks:

▶ You have already learned the basic building blocks in order to make yourself familiar with
any value-/policy-based model-free RL approach.

▶ Use this knowledge!
▶ Focus on primary scientific literature for self-studying and not on unreliable sources!
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Algorithmic outlook: other contemporary model-free algorithms (2)

Algorithm collections with tutorial-style documentation:

▶ Intel Reinforcement Learning Coach

▶ OpenAI Spinning Up

Algorithm collections with decent application-oriented documentation:

▶ RLlib (Ray)

▶ Stable Baselines3

▶ Acme

▶ Google Dopamine

▶ TF-Agents

▶ ...
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Summary: what you’ve learned today

▶ Trust region policy optimization (TRPO) pursues monotonically increasing policy
performance by limiting policy distribution changes.

▶ This results in a nonlinear constrained optimization problem adding computational
complexity (no simple policy gradients).

▶ Proximal policy optimization (PPO) converts the TRPO idea into an unconstrained
optimization problem by a modified objective. Likewise, the PPO’s objective is to prevent
erratic policy distribution changes.
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Recap: optimal control and constraints
Real-world systems are always subject to certain state constraints X and input limitations U .
Violating those can lead to safety issues.

v∗k = max
uk

Np∑

i=0

γirk+i+1(xk+i,uk+i) ,

s.t. xk+i+1 = f(xk+i,uk+i), xk+i ∈ X , uk+i ∈ U .

(15.1)

...

Fig. 15.1: MPC scheme (source: www.wikipedia.org, by Martin Behrendt CC BY-SA 3.0)
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Application examples with safety-relevant constraints

Collaborative robot
control (source:

www.wikipedia.org,
CC BY-SA 4.0)

Autonomous car
driving (source:

www.wikipedia.org,
CC BY-SA 4.0)

Energy system
control

Medication control
(source:

www.wikipedia.org,
CC BY-SA 4.0)
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Safety levels
Soft constraint

Possible
minimal
violation

No violation
with high
probability

No violation

Probabilistic constraint Hard constraint

Fig. 15.2: Different levels of safety (derived from L. Brunke et al., Safe Learning in Robotics: From
Learning-Based Control to Safe Reinforcement Learning, Annual Review of Control, Robotics, and

Autonomous Systems, 2022)
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Bird’s eye view on RL concepts integrating safety
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(b) Safety shield: use a priori or learned
model knowledge of the environment to
make predictions identifying actions

leading to unsafe situations
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Achievable safety levels and model knowledge

unresolved

safety level

data reliance /
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generic
nonlinear
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control-
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linear
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structured
nonlinear
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with certain deviations

none

structurally stable RL with 
application specific safety shields

RL with a learning safety shield

RL with a static safety shield

safety-encouraged RL

pure RL

 model-
based 
control

(requires specific
function approximators)

Fig. 15.4: Safety and model knowledge map (derived from L. Brunke et al., Safe Learning in Robotics:
From Learning-Based Control to Safe Reinforcement Learning, Annual Review of Control, Robotics, and

Autonomous Systems, 2022)
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Energy system control application

(a) Example microgrid that can be emulated in
the LEA Microgrid Laboratory.

+

+

L
oa
d

(b) Application under investigation: Three-phase
grid-forming inverter disturbed by stochastic load
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Reference tracking with disturbance rejection

Agent
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Fig. 15.6: Simulation setting with environment
modeled using OpenModelica Microgrid Gym

▶ Cont. state- and actionspace

▶ Deep deterministic policy gradient agent

▶ Gird-forming inverter

▶ Stochastic load acts as disturbance

▶ State per phase: xk = [if , vC ], vi = vDC · uk
▶ rk = f(vC, v

∗, if) ∈ [1,−0.75]
▶ sk = −1, if limit (if or vC) is exceeded
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Reward design for grid-forming inverter

v
∗ /v

lim

−0.6
−0.4
−0.2

0.0
0.2

0.4
0.6

vc/vlim

−1.0 −0.5
0.0

0.5
1.0

r

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Fig. 15.7: Reward function 15.2 for different
reference and measured voltages and currents

below nominal current

▶ Three cases, depending on operation point

r =





MRE(vC, v
∗), A○

MRE(vC, v
∗) + f(if), B○

−1, C○
(15.2)

▶ A○ vC ≤ vlim ∧ if ≤ inom
▶ B○ vC ≤ vlim ∧ inom ≤ if ≤ ilim
▶ C○ otherwise

▶ Linear punishment term f(if)
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Reference tracking with disturbance rejection using saftey shield
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Fig. 15.8: Safety shield based on feasible set

▶ Safety shield: Ensure that action does not cause
state limit violation in future system trajectories

▶ Such a state action pair is called feasible

▶ Calculation of feasible set requires a model

▶ Training data can be utilized to identify model

▶ Here, recursive least squares (RLS) is applied
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Saftey shield based on feasible set - proof of concept (1)
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Fig. 15.9: Accumulated unsafe events
(overcurrent/-voltage) per trainingstep k

▶ Three different approaches

▶ DDPG: Agent without safety shield

▶ DDPGSG: Agent with safety shield using
perfect a priori knowledge

▶ DDPGSG,RLS: Agent with safety shield without
a priori knowledge, identifying model using RLS

▶ Five agents trained per approach

▶ Results in D. Weber et al., Safe Reinforcement
Learning-Based Control in Power Electronic
Systems, 2023
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Saftey shield based on feasible set - proof of concept (2)
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Fig. 15.10: Blackstart after training using DDPGSG,RLS

▶ DDPGSG,RLS agent trained for 150000
steps

▶ RLoad changes every step based on
random process

▶ Additional events – load steps and
drifts – trigged randomly
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Real-time implementation aspects (1)

Memory

CPU

FPGA

GPU

Mini-Batch

Critic Actor

NoiseReal timeBackground

Fig. 15.11: DDPG implementation example (derivative work of Fig. 1.1 and wikipedia.org, CC0 1.0)
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https://creativecommons.org/publicdomain/zero/1.0/deed.en


Real-time implementation aspects (2)

...

Real-time control interval

RL mini-batch training step

(a) Real-time control requirement vs. learning
time
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smooth and small changes over time due to 
gradient-based learning and step size tuning

(b) Typical evolution of RL parameter weights
during learning
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Application example: deep Q direct torque control

Fig. 15.13: Deep Q direct torque control schematic

▶ The DQ-DTC is basically a DQN

▶ Sampling time of the plant system is
Ts = 50 µs

▶ DQN inference, safeguarding and
system identification must fit into Ts

▶ Source: M. Schenke et al., Finite-Set
Direct Torque Control via Edge
Computing-Assisted Safe
Reinforcement Learning for a
Permanent Magnet Synchronous
Motor , 2023
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Fast neural network inference

Fig. 15.14: Conceptual comparison of CPU and FPGA
evaluation of a neural network

▶ Each neuron has the same job
yn,l+1 = f(y⊤

l wn,l + bn,l)

▶ CPU must evaluate each neuron
sequentially

▶ FPGA can evaluate each neuron at the
same time

▶ Maximum number of parallel
computations is limited
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Edge reinforcement learning

Fig. 15.15: Our edge reinforcement learning pipeline

▶ Backward pass / learning steps are
outsource to workstation

▶ Communication between test bench
and workstation is based on TCP/IP

▶ Backward pass is generic and has no
time constraints → low application
effort
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Demonstration video
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https://www.youtube.com/watch?v=hQ49Mc6LV78&t=13
https://www.youtube.com/watch?v=hQ49Mc6LV78&t=13


Table of contents

15 Outlook and practical research insights
Safe reinforcement learning
Real-world implementation with fast policy inference
Meta reinforcement learning
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Meta reinforcement learning - the setting (1)

Environment
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(a) General problem class is similar, environments
only differ in some characteristics, the agent could

transfer learned behavior

Environment

Agent
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n

Reward
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Observation

(b) Solution approach: treat the
environment as partially observable,
distinguishing details are not directly

available
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Meta reinforcement learning - the setting (2)

▶ The agent must have some mechanism
that allows adaptation to the specific
environment

▶ This means, the distinguishing details
must be extracted in some way

▶ Usually, they can be retrieved from a
larger set of observations

Fig. 15.17: Different concepts of meta learning
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Usage in electric drive control: classical agent

Motor 1 Motor 1RL AgentRL Agent

Motor 2 Motor 2RL AgentRL Agent

Motor 3 Motor 3RL AgentRL Agent

Training
Field 
application

Training

Training

Field 
application

Field 
application

Fig. 15.18: Each agent must be trained individually → huge effort
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Usage in electric drive control: meta agent

MRL AgentMRL Agent

Training Field 
application

Set of 
Motors

Known 
Motors

New 
Motors

Fig. 15.19: One agent to control them all → effort is limited and independent of the number of
controlled environments
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Our setup

▶ Make use of context network

▶ Generate context z with a fix set
of observations → z = const.

▶ Source: D. Jakobeit et al.,
Meta-Reinforcement
Learning-Based Current Control of
Permanent Magnet Synchronous
Motor Drives for a Wide Range of
Power Classes, IEEE TPEL, 2023

Fig. 15.20: A meta learning concept that we implemented
successfully
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https://ieeexplore.ieee.org/abstract/document/10068250
https://ieeexplore.ieee.org/abstract/document/10068250
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Evaluation on (very) different motors

(a) Current control on a PMSM with low
rated power

(b) Current control on a PMSM with high
rated power
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Summary

▶ Application of RL on technical systems comes with many challenges, e.g.,
▶ Safety limits,
▶ Real-time / computational constraints,
▶ Varying and/or partially unknown environments.

▶ Real-world implementations often require more than bare RL algorithms, e.g.,
▶ Integration of available a priori expert knowledge,
▶ Combination with model-based control engineering tools.

▶ Ideal integration of data-driven RL solutions together with expert-based control engineering
parts is subject to many open research question.
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What was covered in the course

Function
Approximation

Lookup Table 

Fig. S-II.1: Main categories of reinforcement learning algorithms
(derived work based on D. Silver, Reinforcement learning, 2016. CC BY-NC 4.0)
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Additional topics not covered in this lecture (1)

▶ Structured exploration: can we find a systematic way for fast and robust exploration?
▶ R. Houthooft et al., ”Vime: Variational information maximizing exploration”, Advances in Neural

Information Processing Systems, 2016
▶ S. Levine, CS285 Deep Reinforcement Learning (lecture notes UC Berkeley), 2019
▶ D. Silver, Reinforcement Learning (lecture notes UC London), 2015

▶ Imitation learning: how can we mimic the behavior of a certain baseline agent / controller /
human expert?
▶ A. Hussein et al., ”Imitation learning: A survey of learning methods”, ACM Computing Surveys

(CSUR) 50.2, pp. 1-35, 2017
▶ A. Attia and S. Dayan, ”Global overview of imitation learning”, arXiv:1801.06503, 2018
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https://papers.nips.cc/paper/6591-vime-variational-information-maximizing-exploration.pdf
https://papers.nips.cc/paper/6591-vime-variational-information-maximizing-exploration.pdf
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Additional topics not covered in this lecture (2)

▶ Multi-agent algorithms: finding solutions to distributed problems (e.g., for distributed
energy systems).
▶ L. Busoniu, R. Babuska and B. De Schutter. ”A comprehensive survey of multiagent

reinforcement learning.” IEEE Transactions on Systems, Man, and Cybernetics, Part C 38.2, pp.
156-172, 2008

▶ P. Hernandez-Leal, B. Kartal and M. Taylor. ”Is multiagent deep reinforcement learning the
answer or the question? A brief survey”, Researchgate preprint, 2018

▶ Federated learning: finding solutions to distributed problems via multiple independent
sessions, each using its own local information (addressing critical issues such as data
privacy, data security, data access rights).
▶ H. Zhuo et al. ”Federated Deep Reinforcement Learning”, arXiv:1901.08277, 2019
▶ J. Qi et al. ”Federated Reinforcement Learning: Techniques, Applications, and Open

Challenges”, arXiv:2108.11887, 2021
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https://www.researchgate.net/profile/Robert_Babuska/publication/3421909_A_Comprehensive_Survey_of_Multiagent_Reinforcement_Learning/links/02bfe511a5153c4b2c000000/A-Comprehensive-Survey-of-Multiagent-Reinforcement-Learning.pdf
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https://arxiv.org/abs/2108.11887
https://arxiv.org/abs/2108.11887


Learning summary
What you should have learned

▶ How to model decision processes using a Markov framework.

▶ Finding exact solutions using iterative tabular methods for discrete problem spaces.

▶ Finding approximate solutions for large discrete or continuous problem spaces based on
function approximation.

▶ Application of just these techniques on a practical programming level.

Concluding remarks

▶ This is an introductory course to RL. We have only scratched the surface.

▶ Some aspects, especially within the exercises, had a control focus. In other application,
specific RL solutions can look quite different.

▶ If you are interested in more practical RL insights in the field of electrical power systems, do
not hesitate to contact us.
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