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What are power electronics?

Power converter Load

Controller

u1, i1 u2, i2

Reference

Feedback

i1

u1

i2

u2

Fig. 1.1: High-level block diagram of a power electronic system

Power electronics – a definition

Power electronics is a multidisciplinary branch of electrical engineering. It focuses on
processing, controlling, and converting electric power. Power electronics manipulate
voltages and currents to deliver a defined power to electrical equipment and devices.
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Power electronics vs. microelectronics

Input power Power electronics Output power

Control signals

Input signals Microelectronics Output signals

Power supply

Fig. 1.2: Power electronics vs. microelectronics
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Typical voltage and current manipulation tasks of power electronics
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Power electronic application examples: residential

(a) Home appliances (source: pxhere, CC0 1.0) (b) Smartphone charger (source: rawpixel, CC0 1.0)

(c) Induction plate (source: flickr, Electrolux,
CC BY-SA-NC 2.0)

(d) LED rectifier (source: Wikimedia Commons,
D. Tribble, CC BY-SA 4.0)
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Power electronic application examples: industrial

(a) Uninterruptible power supply (source: Wikimedia
Commons, Stevebwallace, CC BY-SA 4.0)

(b) Welding power supply (source: Wikimedia
Commons, Trumpf GmbH, CC BY-SA 3.0)

(c) Industrial drives / automation (source: Wikimedia
Commons, M. Blume, CC BY-SA 4.0)

(d) Conveyor belt drive (source: Wikimedia Commons,
K. Hannessen, CC BY-SA 4.0)
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Power electronic application examples: energy system

(a) Wind power plants (source: pxhere, CC0 1.0) (b) PV power plants (source: pxhere, CC0 1.0)

(c) Battery storage systems (source: flickr, Portland
General Electric, CC BY-ND 2.0)

(d) High voltage DC transmission (source: Wikimedia
Commons, Marshelec, CC BY-SA 3.0)
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Power electronic application examples: transportation

(a) Train drive (source: Wikimedia Commons, T. Wolf,
CC0 1.0)

(b) Electric vehicle drive (source: Wikimedia
Commons, Caprolactam123, CC BY-SA 4.0)

(c) Electric scooter (source: Wikimedia Commons,
Raju, CC BY-SA 4.0)

(d) Electic ship (source: Wikimedia Commons,
Wikimalte, CC BY-SA 4.0)
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A broad range of nominal power ratings

100 000 000 W

10 000 000 W

1 000 000 W

100 000 W

10 000 W

1 000 W

100 W

10 W

1 W LED light rectifier

Smartphone charger

Laptop charger

PC power supply

PV inverter

Electric vehicle drive

Train drive

Wind turbine inverter

High voltage DC transmission

Fig. 1.7: Power range overview (figure sources: T. Wolf, KoeppiK, Caprolactam123, D. Hawgood,
Mister rf, D. Tribble and rawpixel under varying CC licenses)
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Typical power electronic objectives
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Fig. 1.8: Illustration of typical, conflicting power electronic (normalized) objectives via a Pareto front
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Terminology: work vs. energy

Work

Work is the integral of the power over a
time integral (or force over distance) and is
a measure of the energy transfer.

Energy

Energy is the capacity to do work, that is, a
quantity depending on the state of a system
at a given point of time.

Work

Heat

Losses

Energy Energy

Fig. 1.9: Illustration addressing the work vs. energy terminology (simplified Sankey diagram)
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Power balance of an electrical energy conversion system

Electrical
output power

Losses

Power converter
Electrical
input power

Power converter

Change of stored energy tEi(t)

Pl(t)

Pout(t)Pin(t)

Fig. 1.10: Power balance of an energy conversion system

The power balance
Pin(t) = Pl(t) +

t
Ei(t) + Pout(t) (1.1)

must hold for any point in time as energy is conserved, that is, not created or destroyed.
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Efficiency

Electrical
output power

Losses

Power converter
Electrical
input power

Pl

PoutPin

Fig. 1.11: Power balance of an energy conversion system in steady state

The power balance in steady state (dx(t)/dt = 0) is

Pin = Pout + Pl (1.2)

and leads to the definition of the efficiency

η =
Pout

Pin
=

Pout

Pout + Pl
. (1.3)
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Four quadrants of operation

Depending on the current and voltage signs, the
power P can be positive or negative. This leads
to four quadrants of operation:

▶ Quadrants I & III: P ≥ 0,
(Power transfer from input to output)

▶ Quadrants II & IV: P ≤ 0.
(Power transfer from output to input)

How many quadrants a power converter can op-
erate in depends on the topology and control
strategy, i.e., is an important design criterion.

i

u

I
P ≥ 0

II
P ≤ 0

III
P ≥ 0

IV
P ≤ 0

i1

u1

i2

u2

Fig. 1.12: Four quadrants of energy conversion
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Why efficiency matters: a computer supply example

Power supply A Power supply B
80 PLUS Gold 80 PLUS Titanium

Input power 250W
Efficiency 89% 94%
Power loss 27.5W 15W

Operating hours per year 8 h× 220 = 1760 h
Cumulated loss work per year 48.4 kWh 26.4 kWh
Electricity cost for yearly losses 14.52e 7.92e

Cumulated loss work in Germany 1.936TWh 1.056TWh
Electricity cost for yearly losses in Germany 580.8Me 316.8Me

Tab. 1.1: Comparison of two computer power supplies (further assumptions: effective nominal power
calculation, electricity price 0.3 e/kWh, 40 · 106 computers in Germany)
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Why efficiency matters: a wind power plant example

Wind power plant A Wind power plant B

Input power 5MW
Efficiency 97% 97.1%
Power loss 150 kW 145 kW

Nominal power operating hours per year 3000 h
Cumulated loss work per year 450MWh 435MWh
Cumulated loss work (lifetime) 9.0GWh 8.7GWh

Lost sales proceeds due to losses per year 22.5 ke 21.75 ke
Lost sales proceeds due to losses (lifetime) 450 ke 435 ke

Cumulated loss work (lifetime, Germany) 9.0TWh 8.7TWh
Lost sales proceeds (lifetime, Germany) 450Me 435Me

Tab. 1.2: Comparison of two wind power plants (further assumptions: electricity sales price 0.05 e/kWh,
20 years of life time, 1000 newly constructed wind power plants per year in Germany)
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Linear power conversion

u2(t)u1(t)

R1

R2

Fig. 1.13: Adjustable resistive voltage divider as step-down converter

With Kirchhoff’s voltage law, the output voltage u2(t) is

u2(t) = u1(t)
R2

R1 +R2
. (1.4)

By adjusting the resistance R2, the output voltage can be controlled. However, this method is
inefficient as the power loss is independent of the output power and given by

Pl(t) =
u21(t)

R1 +R2
. (1.5)
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Linear power conversion (cont.)

u2(t)u1(t)

i2(t)

Linear amplifier u∗2(t)

uCE(t)

Fig. 1.14: Transistor-based step-down converter

For a transistor-based step-down converter, the
output voltage is u2(t) = u1(t)− uCE(t) leading to
the power losses

Pl(t) = uCE(t)i2(t). (1.6)

UGE

Linear region

Saturation

region

UCE

I C

Fig. 1.15: Output characteristics of an
insulated-gate bipolar transistor (IGBT)
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Switching power conversion
Alternative idea: switch either fully on or off. The average output voltage u2 is controlled by
the duty cycle (assuming that u1(t) = u1 is constant)

D =
Ton

Ts
, u2 =

1

Ts

∫ Ts

0
u2(t)t = Du1. (1.7)

As the switching losses are typically small, the overall efficiency is (much) higher compared to
linear power conversion.

u2(t)u1(t)

Fig. 1.16: Ideal switch-based step-down converter
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Fig. 1.17: Switching output voltage from Fig. 1.16
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Switching power conversion: switching losses
Switching process is not free
of power loss:

P l =
1

Ts

∫ Ts

0
us(t)is(t)t.

u0

i0

is

us

Fig. 1.18: Idealized switching
loss model
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Switching power conversion: soft switching
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(a) Zero-voltage switching (ZVS)

0 0.2 0.4 0.6 0.8 1
off

on

u
ct
rl
(t
)

0 0.2 0.4 0.6 0.8 1
0

0.5

1
is(t)

us(t)

u
s(
t)
/
u
0

i s
(t
)/
i 0

(b) Zero-current switching (ZCS)

Fig. 1.19: Soft switching: reducing switching losses by turning on or off the switch when it does not
transfer any power (note: above’s voltage and current shapes are heavily idealized and require an

appropriate circuit design besides the actual switch to enable soft switching)
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Switching power conversion: passive components as filters / energy buffers
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Fig. 1.20: Exemplary voltage signals for a switched power conversion system with output filter
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Feasible and infeasible filter topologies

(a) Feasible filter topology (b) Infeasible filter topology

Fig. 1.21: Basic filter topologies for switched power conversion

Short and open circuit situations

Prevent the following situations as they can lead to sparkover and damage:

▶ Short circuit of capacitor: current peak,

▶ Open circuit of inductor: voltage peak.
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Important power electronic devices and idealized characteristics
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Important power electronic devices and idealized characteristics (cont.)

Bipolar junction
transistor
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Important power electronic devices and idealized characteristics (cont.)

4Q switch Capacitor Inductor Transformer
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Important power electronic devices and idealized characteristics (cont.)
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Fig. 1.22: Power electronic devices and their typical operating ranges
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Internal device resistance
Besides the switching losses, power electronic devices have an internal resistance Ri that
causes conduction losses. Designing such components for a low resistance is crucial, however,
there is typically a conflict with weight and volume constraints.

Ri

i

u

Ri

i

u

Ri

i

u

1
Ri

uD

i D

Fig. 1.23: Qualitative diode characteristic
in the forward direction
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Why is knowledge about power electronics important?

Power electronics are an essential pillar of the modern society

Power electronics are the key technology for the efficient conversion of electrical energy.
They are used in a wide range of applications, such as renewable energy systems,
electric vehicles, industrial automation, computing and communication systems as well
as a wide range of consumer electronics. Hence, power electronics are an essential
pillar of the modern society.

Energy efficiency and sustainability is key

Electricity as a share of primary energy is current at 20% and is expected to further in-
crease (source: Ember and Energy Institute). Power electronics convert a major share
of the worldwide electrical energy as they are used on the generation, transmission,
storage and load side. Increasing the conversion and resource efficiency of power elec-
tronics direct reduces the primary energy consumption and the environmental impact
of the energy system.
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Learning objectives

▶ Understand the electrical energy conversion principles of power electronics.
▶ Differentiate the main converter application types:

▶ DC-DC converters.
▶ DC-AC inverters.
▶ AC-DC rectifiers.
▶ AC-AC converters.
▶ And their plentiful realization variants . . .

▶ Analyze the operation of power electronics:
▶ in steady state and
▶ in transient conditions.

▶ Understand modulation techniques for switching actuators.

▶ Have fun learning about power electronics.
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Necessary prior knowledge for this course

You should have a basic understanding of the following topics:

▶ Linear differential equations (modeling, solution techniques),

▶ Linear algebra basics (e.g., vector and matrix operations),

▶ Basic signal theory knowledge (e.g., signal properties like root mean square),

▶ Basic knowledge of electrical circuit theory,

▶ Basic knowledge of semiconductor physics.

What we will not cover, that is, you do not need to know (covered in separate courses):

▶ Control engineering (design converter controllers),

▶ Specific load characteristics (e.g., electric drives or batteries).
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Recommended reading

▶ R. Erickson and D. Maksimovic, Fundamentals of Power Electronics, Vol. 3, Springer, 2020,
https://doi.org/10.1007/978-3-030-43881-4

▶ J. Kassakian et al, Principles of Power Electronics, Vol. 2, Cambridge University Press,
2023, https://doi.org/10.1017/9781009023894

▶ J. Specovius, Grundkurs Leistungselektronik (in German), Vol. 10, Springer, 2020,
https://doi.org/10.1007/978-3-658-21169-1

▶ F. Zach, Leistungselektronik (in German), Vol. 6, Springer, 2022,
https://doi.org/10.1007/978-3-658-31436-1

▶ D. Schröder and R. Marquardt, Leistungselektronische Schaltungen (in German), Vol. 4,
Springer, 2019, https://doi.org/10.1007/978-3-662-55325-1
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Step-down converter: overview and assumptions

We consider the following assumptions:

▶ The switch is ideal, that is, infinitely fast.

▶ The input voltage is constant: u1(t) = U1.

▶ The output voltage is constant: u2(t) = U2.

▶ The input voltage is greater than the output voltage: U1 > U2.

u2(t)u1(t)

i1(t) iL(t) L

uL(t)

i2(t)

us(t)

Fig. 2.1: Step-down converter (aka buck converter, ideal switch representation)
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Step-down converter: switch states
The voltage at the switch is given by

us(t) =

{
U1, t ∈ [kTs, kTs + Ton],

0, t ∈ [kTs + Ton, (k + 1)Ts]
(2.1)

with k ∈ N being the k-th switching period, Ts the switching period time interval, and Ton the
switch-on time.

U2U1

i1(t) = iL(t) L i2(t)

Us = U1

(a) Switch-on time

U2U1

i1 = 0 iL(t) L i2(t)

Us = 0

(b) Switch-off time

Fig. 2.2: Switch states of the step-down converter
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Basic terms and definitions

Ton Switch-on time Toff Switch-off time

Ts = Ton + Toff Switching period fs = 1/Ts Switching frequency

D = Ton/Ts Duty cycle

0 0.2 0.4 0.6 0.8 1
0

0.5

1

Ton Toff

Ts

t/Ts

u
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U
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Steady-state analysis
The inductor current from Fig. 2.1 is represented by the differential equation

L
diL(t)

dt
= uL(t) = us(t)− U2. (2.2)

During the switch-on period we have

iL(t) = iL(kTs) +
1

L

∫ t

kTs

uL(τ)dτ

= iL(kTs) +
U1 − U2

L
(t− kTs), t ∈ [kTs, kTs + Ton]

(2.3)

and during the switch-off period we receive

iL(t) = iL(kTs + Ton) +
1

L

∫ t

kTs+Ton

uL(τ)dτ = iL(kTs + Ton)−
U2

L
(t− kTs − Ton)

= iL(kTs) +
U1 − U2

L
Ton −

U2

L
(t− kTs − Ton), t ∈ [kTs + Ton, (k + 1)Ts].

(2.4)
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Steady-state analysis (cont.)
In steady state the inductor current is periodic with period Ts, that is,

iL(t) = iL(t+ Ts).

From (2.4) we obtain for t = kTs

Start of period︷ ︸︸ ︷
iL(kTs) =

End of period︷ ︸︸ ︷
iL(kTs) +

U1 − U2

L
Ton −

U2

L
(Ts − Ton)

⇔ 0 =
U1 − U2

L
Ton −

U2

L
(Ts − Ton)

⇔ 0 = U1Ton − U2Ts.

(2.5)

Rewriting delivers the output voltage as

U2 =
Ton

Ts
U1 = DU1. (2.6)
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Step-down converter: steady-state time-domain behavior

0
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Alternative steady-state analysis: average values
From the previous slide we know that the average inductor voltage is zero in steady state

uL =
1

Ts

∫ Ts

0
uL(t)dt = uL = 0, (2.7)

since otherwise the average inductor current would change between periods, compare

L
diL(t)

dt
= uL(t).

From Fig. 2.1 we can apply Kirchhoff’s voltage law to obtain

us(t) = uL(t) + u2(t) ⇒ us = uL + U2 ⇔ us = U2. (2.8)

The average switch voltage is given by

us =
1

Ts

∫ Ts

0
us(t)dt =

1

Ts

∫ Ton

0
U1dt = U1

Ton

Ts
= U1D. (2.9)
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Alternative steady-state analysis: average values (cont.)

Combining (2.8) and (2.9) we obtain the voltage transfer ratio

U2

U1
= D. (2.10)

In addition, we can calculate the average input current as

i1 =
1

Ts

∫ Ts

0
i1(t)dt =

1

Ts

∫ Ton

0
iL(t)dt =

Ton

Ts
iL = DiL. (2.11)

Since i2(t) = iL(t) applies, we can conclude

U2

U1
=

i1

i2
= D. (2.12)

Hence, the duty cycle D has a similar interpretation for the DC-DC step-down converter as the
turn ratio for an ideal transformer in the AC domain.
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Stationary averaged model of the step-down converter

i1

Di2

U1

i2

DU1 U2

Fig. 2.3: Stationary averaged model of the step-down converter

Switching vs. linear power conversion

In contrast to the linear power conversion approaches from Fig. 1.13 and Fig. 1.14, the
switching step-down converter transforms the current and voltage levels with the same
factor D which results from the (idealized) loss-less transformation of energy.
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Current ripple

Due to the switching operation of the step-down converter, the inductor current exhibits an
inherent ripple. The peak-to-peak current ripple is given by

∆iL = max{iL(t)} −min{iL(t)} = iL(t = Ton)− iL(t = Ts)

=
U1 − U2

L
Ton =

U2

L
Toff

=
D(1−D)Ts

L
U1.

(2.13)

The current ripple has two main implications:

▶ The output power is not constant but varies with the current ripple.

▶ The root mean square (RMS) current is higher than the average current.

The latter point should be investigated in more detail as it influences the design and loss
characteristics of the converter.
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Current ripple (cont.)
We define

∆IL =

√
1

Ts

∫ Ts

0

(
iL(t)− iL

)2
dt (2.14)

as the RMS deviation of the inductor current from its average value. As the average-corrected
inductor current has a triangular shape (cf. Fig. 2.4) we can calculate the RMS current as

∆IL =
1√
3

∆iL
2

=
D(1−D)TsU1

2
√
3L

. (2.15)

0 0.2 0.4 0.6 0.8 1

−∆iL/2

0

∆iL/2

∆IL ∆iL

t/Ts

i L
(t
)
−
i L

Fig. 2.4: Inductor current ripple
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Current ripple (cont.)
The (total) RMS value of the inductor current (triangular signal with offset) is given by

IL =

√
i
2
L +∆I2L. (2.16)

Considering the internal resistance Ri of the inductor, the ohmic power loss in the inductor is

PL = RiI
2
L = Ri

(
i
2
L +∆I2L

)
. (2.17)

The power loss in the inductor is thus composed of a constant part PL = Rii
2
L, which is

related to the power transfer from input to output, and a ripple part ∆PL = Ri∆I2L.

Current ripple and power losses

The current ripple produces additional losses in the inductor. From (2.15) it seems
tempting to increase the switching frequency fs to reduce the ripple, but this will
increase switching losses (compare Fig. 1.18). Hence, there is a trade-off decision
between switching and conduction losses.
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Current ripple and duty cycle
Rewriting the current ripple expression

∆iL =
D(1−D)Ts

L
U1 = (D −D2)

TsU1

L

and calculating the derivative with respect to the duty cycle D delivers

d∆iL
dD

=
TsU1

L
− 2D

TsU1

L
. (2.18)

Setting the derivative to zero, we find the duty cycle Dmax as

d∆iL
dD

= 0 ⇔ Dmax =
1

2
(2.19)

which is associated with the maximum current ripple since the second derivative

d2∆iL
dD2

= −2TsUon

L
(2.20)

is negative.
Oliver Wallscheid Power electronics 51



Current ripple and duty cycle (cont.)
From (2.19) we can conclude that the maximum current ripple is given by

∆iL,max =
1

4

TsU1

L
⇒ ∆iL = 4D(1−D)∆iL,max. (2.21)

0 0.25 0.5 0.75 1
0

∆iL,max/2

∆iL,max

Dmax

D

∆
i L

Fig. 2.5: Inductor current ripple as a function of the duty cycle
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Step-down converter with output capacitor: overview and assumption

We consider the following assumptions:

▶ The switch is ideal, that is, infinitely fast.

▶ The input voltage is constant: u1(t) = U1.

▶ The output current is constant: i2(t) = I2.

▶ The input voltage is greater than the output voltage: U1 > u2(t).

u2(t)u1(t)

i1(t) iL(t) L

uL(t)

i2(t)

us(t) C

iC(t)

Fig. 2.6: Step-down converter (ideal switch representation) with output capacitor
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Steady-state analysis
From (2.3) we know that the inductor current during the switch-on period is given by

iL(t) = iL(kTs) +
U1 − uC(t)

L
(t− kTs), t ∈ [kTs, kTs + Ton].

Note that the inductor current is now dependent on uC(t):

▶ Formally, we need to consider the impact of the varying output capacitor voltage.

▶ This would lead to a second-order differential equation which is more complex to solve.

▶ We will simplify the analysis by assuming that the impact of the output capacitor voltage
variation on the inductor current is negligible: uC(t) ≈ U2 = uc.

Simplification comment

The above assumption is valid for sufficiently large output capacitors with only small
voltage ripples. Otherwise, the output voltage ripple and the inductor current ripple
will be significantly coupled and require a more thoughtful analysis.
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Steady-state analysis (cont.)

The capacitor’s voltage differential equation is given by

C
duC(t)

dt
= iC(t) = iL(t)− I2. (2.22)

While I2 is considered a known constant, we first need to determine the inductor current iL(t).
Combining (2.3) and (2.13) we obtain

iL(kTs) = I2 −
∆iL
2

= I2 −
U1 − U2

L

Ton

2
(2.23)

and

iL(kTs + Ton) = I2 +
∆iL
2

= I2 +
U1 − U2

L

Ton

2
(2.24)

as the initial conditions for the inductor current in steady state.
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Steady-state analysis (cont.)

The capacitor’s current during the switch-on period is given by

iC(t) = iL(t)− I2 =
U1 − U2

L
(t− Ton

2
− kTs)

= −∆iL
2

+
U1 − U2

L
(t− kTs), t ∈ [kTs, kTs + Ton]

(2.25)

and during the switch-off period we receive

iC(t) = iL(t)− I2 =
U1 − U2

L

Ton

2
− U2

L
(t− kTs − Ton)

=
∆iL
2

− U2

L
(t− kTs − Ton), t ∈ [kTs + Ton, (k + 1)Ts].

(2.26)
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Steady-state analysis (cont.)

0 0.2 0.4 0.6 0.8 1

−∆iL/2

0

∆iL/2

∆iL

t/Ts

i C
(t
)

Current ripples through the capacitor and inductor

Based on the made assumptions, the capacitor’s current is raising and falling linearly
during the switch-on and switch-off periods, that is, it corresponds to the previously
considered inductor current ripple.
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Steady-state analysis (cont.)

Inserting (2.25) in (2.22) and integrating the differential equation delivers the capacitor voltage
during the switch-on period as

uC(t) = uC(kTs) +
1

C

∫ t

kTs

iC(τ)dτ, t ∈ [kTs, kTs + Ton]

= uC(kTs) +
1

C

∫ t

kTs

−∆iL
2

+
U1 − U2

L
(τ − kTs)dτ

= uC(kTs) +
1

C

[
−∆iL

2
τ +

U1 − U2

L
(
1

2
τ2 − kTsτ)

]t
kTs

= uC(kTs)−
∆iL
2C

(t− kTs) +
U1 − U2

LC

[
t(
t

2
− kTs) +

(kTs)
2

2

]
.

(2.27)

Here, uC(kTs) is the initial capacitor voltage at the beginning of the switch-on period.
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Steady-state analysis (cont.)

At the end of the switch-on period, the capacitor voltage is given by

uC(kTs + Ton) = uC(kTs)−
∆iL
2C

(kTs + Ton − kTs)

+
U1 − U2

LC

[
(kTs + Ton)(

kTs + Ton

2
− kTs) +

(kTs)
2

2

]
= uC(kTs)−

∆iL
2C

Ton +
∆iL
2C

Ton

= uC(kTs),

(2.28)

i.e., the capacitor voltage at the end of the switch-on period is equal to the voltage at the
beginning of the switch-on period. Since the capacitor voltage needs to be continuous over
time, this also marks the initial condition for the switch-off period.
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Steady-state analysis (cont.)

Inserting (2.26) in (2.22) and integrating the differential equation delivers the capacitor voltage
during the switch-off period as

uC(t) = uC(kTs + Ton) +
1

C

∫ t

kTs+Ton

iC(τ)dτ, t ∈ [kTs + Ton, (k + 1)Ts]

= uC(kTs) +
1

C

∫ t

kTs+Ton

∆iL
2

− U2

L
(τ − kTs − Ton)dτ

= uC(kTs) +

[
∆iL
2

τ − U2

L
(
1

2
τ2 − kTsτ − Tonτ)

]t
kTs+Ton

= uC(kTs) +
∆iL
2C

(t− kTs − Ton)−
U2

LC

[
t(
t

2
− kTs − Ton) +

(kTs + Ton)
2

2

]
.

(2.29)

Here, uC(kTs + Ton) = uC(kTs) is the initial capacitor voltage at the beginning of both the
switch-on and switch-off period.
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Steady-state time-domain behavior
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Output voltage ripple

Utilizing (2.27) and calculating the derivative with respect to t we obtain

duC(t)

dt
= −∆iL

2C
+

U1 − U2

LC
t

= −U1 − U2

LC

Ton

2
+

U1 − U2

LC
(t− kTs), t ∈ [kTs, kTs + Ton].

(2.30)

Setting the derivative to zero, we find the time tmin at which the minimum voltage occurs as

duC(t)

dt
= 0 ⇒ tmin =

Ton

2
+ kTs (2.31)

since the second derivative is positive. Inserting (2.31) in (2.27) reveals the minimum voltage as

uC(tmin) = uC(kTs)−
U1 − U2

LC

T 2
on

8
= uC(kTs)−∆iL

Ton

8C
. (2.32)
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Output voltage ripple (cont.)

Likewise, calculating the derivative of (2.29) leads to

duC(t)

dt
=

∆iL
2C

− U2

LC
(t− kTs − Ton)

=
U1 − U2

LC

Ton

2
− U2

LC
(t− kTs − Ton), t ∈ [kTs + Ton, (k + 1)Ts].

(2.33)

Setting the derivative to zero, we find the time tmax at which the maximum voltage occurs as

duC(t)

dt
= 0 ⇒ tmax =

Toff

2
+ Ton + kTs (2.34)

since the second derivative is negative. The maximum voltage is then given by

uC(tmax) = uC(kTs) + ∆iL
Toff

8C
. (2.35)
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Output voltage ripple (cont.)
The voltage ripple is then given by

∆uC = uC(tmax)− uC(tmin) = ∆iL
Toff

8C
+∆iL

Ton

8C

= ∆iL
Ts

8C
=

D(1−D)T 2
s U1

8LC
.

(2.36)

The voltage ripple is proportionally depending on the inductor current ripple. Hence, the
maximum voltage ripple occurs at the same characteristic duty cycle Dmax and is given by

Dmax =
1

2
⇒ ∆uC,max =

T 2
s U1

32LC
. (2.37)

Hence, we can rewrite the voltage ripple as

∆uC = 4D(1−D)∆uC,max. (2.38)

The voltage ripple is associated with additional losses in the output capacitor and the load,
that is, an important stress parameter.
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Output voltage ripple: alternative via charge balance
If one is not interested in the specific signal
shape uC(t), the output voltage ripple can be
derived from the charge balance over half a
period (cf. Fig. 2.7):

∆Q =
1

2

∆iL
2

Ts

2
. (2.39)

From

1

C

∫
iC(t)dt = uC(t) + uC(0)

we receive

∆uC =
∆Q

C
=

∆iLTs

8C
. (2.40)

0

U1

∆uC

u
C
(t
)

0 0.2 0.4 0.6 0.8 1

−∆iL/2
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∆iL/2
∆iL

∆Q

Ts/2

t/Ts

i C
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)

Fig. 2.7: Voltage ripple derivation via charge balance

Oliver Wallscheid Power electronics 66



Average and initial capacitor voltage

The initial voltage uC(kTs) at the beginning of a period is still unknown. We can derive it
from the capacitor’s average voltage over one period. For simplicity, we consider k = 0:

uc =
1

Ts

∫ Ts

0
uC(t)dt =

1

Ts

(∫ Ton

0
uC(t)dt+

∫ Ts

Ton

uC(t)dt

)
!
= DU1. (2.41)

Inserting (2.27) we receive for the first part∫ Ton

0
uC(t)dt =

[
uC(0)t+

∆iL
2C

t2

2
+

U1 − U2

LC

t3

6

]Ton

0

= . . .

= uC(0)Ton −
∆iL
C

T 2
on

12
.

(2.42)
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Average and initial capacitor voltage (cont.)
Inserting (2.29) into the second part of (2.41) delivers∫ Ts

Ton

uC(t)dt =

[
uC(0)t+

∆iL
2C

(
t2

2
− Tont)−

U2

LC
(
t3

6
− Ton

t2

2
+

T 2
on

2
t)

]Ts

Ton

= . . .

= uC(0)Toff +
∆iL
C

T 2
off

12
.

(2.43)

Combining both parts results in

uc =
1

Ts

(
uC(0)Ts +

∆iL
C

T 2
off − T 2

on

12

)
= uC(0) +

∆iL
12C

Ts(1− 2D)
!
= DU1.

(2.44)

Solving for uC(0) we receive the initial capacitor voltage as

uC(0) = DU1 −
∆iL
12C

Ts(1− 2D). (2.45)
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Circuit realization

▶ The ideal (mechanical) switch cannot be operated with high frequency in practice.

▶ It must be replaced with semiconductor devices to allow for a practical realization.

▶ In Fig. 2.8 the simplest realization is shown utilizing one transistor and one diode.

▶ However, this configuration can only provide positive voltages and currents.

▶ Hence, the converter can operate in the first quadrant only.

u2(t)u1(t)

i1(t) L

uL(t)

i2(t)

D us(t)T

Fig. 2.8: Step-down converter with real components (single quadrant type)
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Discontinous conduction mode (DCM)
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Switch states DCM
In contrast to the previous continuous conduction mode (CCM), the converter traverses three
states in the discontinuous conduction mode (DCM):

▶ Transistor on-time: Ton = DTs,

▶ Transistor off-time (conducting diode): T ′
off = D′Ts,

▶ Transistor off-time (no conduction): T ′′
off = Ts − Ton − T ′

off .

U2U1

i1(t) = iL(t)
L i2(t)

Us = U1

(a) Switch-on time Ton

U2U1

i1 = 0 iL(t)
L i2(t)

Us = 0

(b) Switch-off time T ′
off

U2U1

i1 = 0 L i2 = 0

Us = U2

(c) Switch-off time T ′′
off

Fig. 2.9: Switch states of the step-down converter including DCM
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DCM operation characteristics

The operation in CCM and DCM can be distinguished by the inductor current ripple

iL = i2

{
≥ ∆iL

2 = 2D(1−D)∆iL,max : CCM,

< ∆iL
2 = 2D(1−D)∆iL,max : DCM

(2.46)

with

∆iL,max =
U1Ts

4L
.

Hence, the operation mode directly depends on the duty cycle D and average load current i2,
that is, it can change during runtime. While we have already discussed the operation in CCM,
we will now focus on the operation in DCM. Here, it must be noted that

U2 ̸= U1D (DCM operation)

applies due to the non-conducting diode during T ′′
off .

Oliver Wallscheid Power electronics 73



DCM operation characteristics (cont.)
To find the input-to-output voltage ratio in DCM, we can utilize the current ripple balance:

∆iL =
U1 − U2

L
Ton = iL =

U1 − U2

L
DTs (rising edge),

∆iL =
U2

L
T ′
off =

U2

L
D′Ts (falling edge).

(2.47)

Solving for D′ results in

D′ =
L∆iL
U2Ts

=
U1 − U2

U2
D =

(
U1

U2
− 1

)
D. (2.48)

The average load current is

i2 = iL =
1

2
∆iL

Ton + T ′
off

Ts
=

1

2
∆iL(D +D′) (2.49)

which is derived from the area under the triangular-shaped current during Ton and T ′
off .
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DCM operation characteristics (cont.)
Inserting (2.48) into (2.49) yields

i2 =
1

2
∆iLD

U1

U2
=

U1 − U2

2L
DTsD

U1

U2

= 2D2

(
U1

U2
− 1

)
∆iL,max.

(2.50)

Solving for the DCM input-to-output voltage ratio results in

U2

U1
=

1

1 + i2
2∆iL,maxD2

. (2.51)

Since ∆iL,max also depends on U1, cf. (2.21), the relation (2.51) only holds for a given U1.
Alternatively, we can utilize (2.50) and solve for U2 to receive

U2 =
D2TsU

2
1

D2TsU1 + 2Li2
. (2.52)
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Step-down converter load curves
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Fig. 2.10: Step-down converter load curves for CCM and DCM
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Boundary conduction mode (BCM)
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BCM operation characteristics

In the boundary conduction mode (BCM), the average inductor current load is exactly half of
the current ripple, that is,

iL = i2 =
∆iL
2

= 2D(1−D)∆iL,max. (2.53)

▶ Diode current becomes zero and then the transistor turns on again.
▶ The diode is not hard turned-off but its current naturally decays to zero.
▶ Also known as zero current switching (ZCS) or generally soft switching.

▶ Requires adaptive switching frequency control if load changes. From (2.13) and (2.53) the
BCM switching frequency results in

fs =
1

Ts
=

D(1− 2)U1

L∆iL
=

D(1− 2)U1

2Li2
. (2.54)

Oliver Wallscheid Power electronics 78



Motivation for BCM: diode reverse recovery
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Fig. 2.11: Qualitative and simplified representation of the reverse recovery effect
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BCM operation characteristics: comments

Advantages of BCM:

▶ Reduces the reverse recovery effect, that is, ZCS of the diode during turn on.

▶ Also allows ZCS transistor turn on.

Limitations of BCM:

▶ Transistor turn off and diode turn on cannot be soft switched due to topology constraints.
▶ Ripple current increases with load current: ∆iL = 2i2.

▶ May negatively affects load.
▶ Increases conduction losses due to higher RMS current – compare (2.17).
▶ High switching frequency required at low loads (switching losses).
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Step-up converter: overview and assumptions

We consider the following assumptions:

▶ The switch is ideal, that is, infinitely fast.

▶ The input voltage is constant: u1(t) = U1.

▶ The output voltage is constant: u2(t) = U2.

▶ The input voltage is lower than the output voltage: U1 < U2.

u2(t)u1(t)

i1(t) L

uL(t)

iL(t) i2(t)

us(t)

Fig. 2.12: Step-up converter (aka boost converter, ideal switch representation)
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Step-up converter: switch states
The voltage at the switch is given by

us(t) =

{
0, t ∈ [kTs, kTs + Ton],

U2, t ∈ [kTs + Ton, (k + 1)Ts].
(2.55)

Note: switch on/off definition is reversed compared to the step-down converter.

U2U1

i1(t) L iL(t) i2 = 0

Us = 0

(a) Switch-on time

U2U1

i1(t) L iL(t) = i2(t)

Us = U2

(b) Switch-off time

Fig. 2.13: Switch states of the step-up converter
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Step-up converter: steady-state time-domain behavior
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Step-up converter: voltage and current transfer ratios during steady state
In steady state, the absolute voltage-time integral over the inductor must be identical for the
switch-on and switch-off interval, that is,∫ Toff

0
|uL(t)|dt

!
=

∫ Toff+Ton

Toff

|uL(t)| dt (2.56)

resulting in
(U2 − U1)Toff = U1Ton ⇔ (U2 − U1)(1−D)Ts = U1DTs (2.57)

and finally delivering the voltage transfer ratio

U2

U1
=

1

1−D
. (2.58)

Assuming a lossless converter (Pin = Pout), the current transfer ratio is

i1

i2
=

1

1−D
. (2.59)
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Step-up converter: current ripple
The inductor current ripple can be found considering the positive slope during Ton with

∆iL =
U1

L
Ton =

U1

L
DTs (2.60)

or alternatively evaluating the negative slope during Toff with

∆iL =
U2 − U1

L
Toff =

U2 − U1

L
(1−D)Ts =

D(1−D)Ts

L
U2. (2.61)

In addition, one can find that the output current and power is changing step-like within the
step-up converter, while this is the case for the input side in the step-down converter:

step-down: i1(t) =

{
iL(t), switch on,

0, switch off,
step-up: i1(t) =

{
iL(t), switch on,

iL(t), switch off,

step-down: i2(t) =

{
iL(t), switch on,

iL(t), switch off,
step-up: i2(t) =

{
0, switch on,

iL(t), switch off.
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Step-up converter: current ripple (cont.)
In contrast to the step-down converter, cf. (2.19), the worst-case current ripple of the step-up
converter occurs for

∆iL =
U1

L
DTs ⇒ Dmax → 1. (2.62)

This corresponds to the case of an infinitely large output voltage U2:

lim
D→1

U2 = lim
D→1

1

1−D
U1 = ∞. (2.63)

The maximum current ripple is then

∆iL,max =
1

L
U1Ts. (2.64)

Consequently, we can express the current ripple as:

∆iL = D∆iL,max. (2.65)
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Step-up converter with output capacitor: overview and assumptions
We consider the following assumptions:

▶ The switch is ideal, that is, infinitely fast.

▶ The input voltage is constant: u1(t) = U1.

▶ The output current is constant: i2(t) = I2.

▶ The inductor current iL(t) is unaffected by the output voltage ripple (remains triangular).

▶ The output voltage is greater than the output voltage: u2(t) > U1.

u2(t)u1(t)

i1(t) L

uL(t)

iL(t) i2(t)

us(t) C

iC(t)

Fig. 2.14: Step-up converter (ideal switch representation) with output capacitor
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Step-up converter: capacitor voltage analysis
In contrast to the step-down converter, the capacitor current is changing step-like during the
switching event:

iC(t) =

{
iL(t)− I2, t ∈ [kTs, kTs + Toff ],

−I2, t ∈ [kTs + Toff , (k + 1)Ts].
(2.66)

The steady-state inductor current during the switch-off interval is

iL(t) = iL +
∆iL
2

− ∆iL
Toff

(t− kTs)

=
1

1−D
I2 +∆iL

Toff − 2(t− kTs)

2Toff
, t ∈ [kTs, kTs + Toff ].

(2.67)

which follows from the triangular signal shape. Inserting into (2.66) yields

iC(t) =

{
D

1−DI2 +∆iL
Toff−2(t−kTs)

2Toff
, t ∈ [kTs, kTs + Toff ],

−I2, t ∈ [kTs + Toff , (k + 1)Ts].
(2.68)
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Step-up converter: capacitor voltage analysis (cont.)
The capacitor voltage during the switch-off period is then

uC(t) = uC(kTs) +
1

C

∫ t

kTs

iC(τ)dτ, t ∈ [kTs, kTs + Toff ]

= uC(kTs) +
1

C

(∫ t

kTs

D

1−D
I2 +∆iL

Toff − 2(τ − kTs)

2Toff
dτ

)
= uC(kTs) +

[
Dτ

(1−D)C
I2 +

∆iL
2ToffC

(
Toffτ − τ2 + 2τkTs

)]t
kTs

= uC(kTs) +
D(t− kTs)

(1−D)C
I2 +

∆iL
2ToffC

(
Toff(t− kTs)− t(t− 2kTs)− (kTs)

2
)
.

(2.69)

The capacitor voltage at the end of the switch-off period is

uC(kTs + Toff) = uC(kTs) +
DI2

(1−D)C
Toff . (2.70)
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Step-up converter: capacitor voltage analysis (cont.)

The capacitor voltage during the switch-on period is then

uC(t) = uC(kTs + Toff) +
1

C

∫ t

kTs+Toff

iC(τ)dτ, t ∈ [kTs + Toff , (k + 1)Ts]

= uC(kTs + Toff) +
1

C

∫ t

kTs+Toff

−I2dτ

= uC(kTs + Toff)−
I2
C
(t− kTs − Toff)

= uC(kTs) +
DI2

(1−D)C
Toff︸ ︷︷ ︸

=uC(kTs+Toff)

−I2
C
(t− kTs − Toff).

(2.71)

Here, uC(kTs) is the (yet unknown) initial capacitor voltage at the beginning of a period,
which will be derived later.
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Step-up converter: capacitor voltage analysis (cont.)

In steady state, the capacitor voltage at the
end of the switch-on period is identical to the
voltage at the beginning of the switch-off
period, that is,

uC(kTs) = uC((k + 1)Ts).

Hence, we can identify the voltage ripple from
(2.71) as

∆uC =
I2
C
Ton =

DI2
(1−D)C

Toff

=
I2
C
DTs =

∆Q

C

(2.72)

with the charge ripple ∆Q = DI2Ts.

0.8

1

1.2

∆uC

u
C
(t
)/
u
C

0 0.2 0.4 0.6 0.8 1
−1

−0.5
0

0.5 ∆iL

∆Q ∆Q

Toff Ton

t/Ts

i C
(t
)/
I 2

Fig. 2.15: Step-up converter voltage ripple
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Step-up converter: capacitor voltage analysis (cont.)
To calculate the initial capacitor voltage uC(kTs), we can utilize

uc =
1

Ts

∫ Ts

0
uC(t)dt

!
= u2 =

U1

1−D
(2.73)

since the average capacitor voltage must be equal to the average output voltage. This yields

uc =
1

Ts

(∫ Toff

0
uC(t)dt+

∫ Ts

Toff

uC(t)dt

)
= . . .

= uC(kTs) +
∆uC
2

+
∆iLTs

12C
(1−D)2

(2.74)

and finally delivers

uC(kTs) =
U1

1−D
− ∆uC

2
− ∆iLTs

12C
(1−D)2

=
U1

1−D
− I2

2C
DTs −

U1T
2
s

12LC
D(1−D)2.

(2.75)
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Circuit realization

▶ In Fig. 2.16 the simplest realization is shown utilizing one transistor and one diode.

▶ This configuration can only provide positive voltages and currents (first quadrant).

▶ The previously made step-up converter’s switch-on definition (cf. Fig. 2.13) results from the
transistor position in the circuit – difference to the step-down converter.

u2(t)u1(t)

i1(t) L

uL(t)

iL(t)
D i2(t)

T us(t)

Fig. 2.16: Step-up converter with real components (single quadrant type)
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Step-up converter: DCM

0

U2

U1

T ′
off T ′′

off
Ton Ts

u
s(
t)

0

U1/L U1−U2/L

i L
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0 0.5 1 1.5 2 2.5 3 3.5 4
0
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Step-up converter: switch states in DCM

The step-up converter in DCM has three different switch states:

▶ Transistor on-time: Ton = DTs,

▶ Transistor off-time (conducting diode): T ′
off = D′Ts,

▶ Transistor off-time (no conduction): T ′′
off = Ts − Ton − T ′

off .

U2U1

i1(t)
L iL(t) i2 = 0

Us = 0

(a) Switch-on time Ton

U2U1

i1(t)
L iL(t) = i2(t)

Us = U2

(b) Switch-off time T ′
off

U2U1

i1 = 0 L i2 = 0

Us = U1

(c) Switch-off time T ′′
off

Fig. 2.17: Switch states of the step-up converter including DCM
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Step-up converter: DCM operation characteristics
In DCM operation

iL = i1 <
∆iL
2

⇒ U2 ̸= U1
1

1−D

applies due to the non-conducting diode during T ′′
off . To find the input-to-output voltage ratio

in DCM, we again utilize the current ripple balance:

∆iL =
U1

L
Ton =

U1

L
DTs (rising edge),

∆iL =
U2 − U1

L
T ′
off =

U2 − U1

L
D′Ts (falling edge).

(2.76)

Solving for D′ yields

D′ =
U1

U2 − U1
D. (2.77)

The average load current is

i2 =
∆iL
2

T ′
off

Ts
=

∆iL,maxD

2
D′ =

∆iL,max

2

U1

U2 − U1
D2. (2.78)
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Step-up converter: DCM operation characteristics (cont.)

Solving (2.78) delivers the step-up converter voltage gain in DCM as

U2

U1
= 1 +

D2

2

∆iL,max

i2
. (2.79)

Since ∆iL,max also depends on U1, cf. (2.64), the relation (2.79) only holds for a given U1.
Hence, we can insert (2.64) in (2.79) and solve for U2 to receive

U2 = U1 +
D2

2

Ts

Li2
. (2.80)

Finally, the step-up converter operates in BCM if

iL = i1 =
∆iL
2

⇔ i2 = (1−D)
∆iL
2

. (2.81)
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Step-up converter load curves
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Fig. 2.18: Step-up converter load curves for CCM and DCM (note: logarithmic ordinate)
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Buck-boost converter: combining step-up and step-down stages

BoostBuck

u0(t) u2(t)

L2 iL2(t) i2(t)

us2(t)

S2,off

S2,onu1(t)

i1(t) iL1(t)
L1

us1(t)

S1,on

S1,off

u2(t)

i2(t)

us2(t)u1(t)

i1(t)

us1(t)

L

uL(t)

iL(t)

S1,on

S1,off

S2,off

S2,on

Fig. 2.19: Buck-boost converter (ideal switch representation)
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Buck-boost converter: switching states
The buck-boost converter switches are operated synchronously, that is, S1 and S2 are either on
or off at the same time. Thus, the converter has only two switch states:

{S1,on, S2,on} → us1(t) = U1, us2(t) = 0,

{S1,off , S2,off} → us1(t) = 0, us2(t) = U2.
(2.82)

U2U1

i1(t) L iL(t) i2 = 0

Us2Us1

(a) Switch-on time

U2U1

i1 = 0 iL(t) L i2(t)

Us1 Us2

(b) Switch-off time

Fig. 2.20: Switch states of the (synchronous) buck-boost converter
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Buck-boost converter: CCM voltage transfer ratio
In CCM, we can derive the voltage transfer ratio directly by the serial connection of the buck
and boost stages from Fig. 2.19

U0

U1
= D,

U2

U0
=

1

1−D
, (2.83)

leading to
U2

U1
=

D

1−D
. (2.84)

Alternatively, we can derive this result from the voltage balance of the inductor L:

uL(t) =

{
U1, t ∈ [kTs, kTs + Ton],

−U2 t ∈ [kTs + Ton, (k + 1)Ts].
(2.85)

In steady state, the average inductor voltage per period must be zero, yielding

U1Ton = U2Toff ⇔ U1DTs = U2(1−D)Ts ⇔ U2

U1
=

D

1−D
. (2.86)
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Buck-boost converter: steady-state time-domain behavior
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Buck-boost converter: current ripple

The peak-to-peak current ripple of the buck-boost converter is given by

∆iL = max{iL(t)} −min{iL(t)} = iL(t = Ton)− iL(t = Ts)

=
U1

L
Ton =

U2

L
Toff

= D
Ts

L
U1 = D∆iL,max.

(2.87)

The buck-boost converter current ripple characteristic matches the previous boost converter
behavior – compare (2.62):

▶ Its minimal for D → 0 since the output voltage becomes zero and the inductor is connected
to the output voltage over the entire switching period.

▶ Its maximal for D → 1 since the inductor is connected to the (non-zero) input voltage over
the entire switching period.
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Buck-boost converter: output capacitor and voltage ripple
With the usual simplifying assumptions (cf. Fig. 2.14), in particular, a constant output current
i2(t) = I2, the capacitor’s current during the switch-on time is given by

iC(t) = −i2(t) = −I2, t ∈ [kTs, kTs + Toff ].

This is identical to the step-up converter, leading to the same voltage ripple

∆uC =
I2
C
Ton =

I2
C
DTs.

u2(t)

i2(t)

us2(t)u1(t)

i1(t)

us1(t)

L

uL(t)

iL(t)

S1,on

S1,off

S2,off

S2,on C

iC(t)

Fig. 2.21: Buck-boost converter with output capacitor
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Buck-boost converter: circuit realization

▶ In Fig. 2.22 the buck-boost converter realization is a direct series circuit combination of
Fig. 2.8 and Fig. 2.16.

▶ This configuration can only provide positive voltages and currents (first quadrant).

▶ It should be noted that this circuit requires two diodes and two transistors.

u2(t)
D2

i2(t)

T2u1(t)

i1(t)

D1T1

L

uL(t)

iL(t)

Fig. 2.22: Buck-boost converter with real components (single quadrant type)
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Buck-boost converter: switch states in DCM

The buck-boost converter in DCM has three different switch states:

▶ Transistor on-time: Ton = DTs,

▶ Transistor off-time (conducting diode): T ′
off = D′Ts,

▶ Transistor off-time (no conduction): T ′′
off = Ts − Ton − T ′

off .

U2U1

i1(t)
L iL(t) i2 = 0

(a) Switch-on time Ton

U2U1

i1 = 0 iL(t)
L i2(t)

(b) Switch-off time T ′
off

U2U1

i1 = 0 L i2 = 0

(c) Switch-off time T ′′
off

Fig. 2.23: Switch states of the (synchronous) buck-boost converter including DCM
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Buck-boost converter: DCM operation characteristics
In DCM operation

iL <
∆iL
2

⇒ U2 ̸= U1
D

1−D

applies due to the non-conducting diode during T ′′
off . To find the input-to-output voltage ratio

in DCM, we again utilize the current ripple balance:

∆iL =
U1

L
Ton =

U1

L
DTs (rising edge),

∆iL =
U2

L
T ′
off =

U2

L
D′Ts (falling edge).

(2.88)

Solving for D′ yields

D′ =
U1

U2
D. (2.89)

The average load current is

i2 =
∆iL
2

T ′
off

Ts
=

∆iL,maxD

2
D′ =

∆iL,max

2

U1

U2
D2. (2.90)
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Buck-boost converter: DCM operation characteristics (cont.)

Solving (2.90) delivers the buck-boost converter voltage gain in DCM as

U2

U1
=

D2

2

∆iL,max

i2
. (2.91)

Since ∆iL,max also depends on U1, the relation (2.91) only holds for a given U1. Hence, we
can insert (2.87) in (2.91) and solve for U2 to receive

U2 = U2
1

D2

2

Ts

Li2
. (2.92)

Finally, the buck-boost converter operates in BCM if

iL =
∆iL
2

⇔ i2 = ∆iL,max
1

2

D

1−D
. (2.93)
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Buck-boost converter load curves
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Fig. 2.24: Buck-boost converter load curves for CCM and DCM (note: logarithmic ordinate)
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Recap: buck-boost converter switching states

Key characteristic of (synchronous) buck-boost converter

The switching scheme of the (synchronous) buck-boost converter from Fig. 2.20 is
realized by two switches and characterized by:

▶ During switch-on: inductor is connected to u1(t),

▶ During switch-off: inductor is connected to u2(t).

U2U1

i1(t) L iL(t) i2 = 0

Us2Us1

(a) Switch-on time

U2U1

i1 = 0 iL(t) L i2(t)

Us1 Us2

(b) Switch-off time
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Inverting buck-boost converter: overview

▶ Voltage change at the inductor can be also achieved by a single switch which input is
connected to the inductor.

▶ Assuming an ideal, infinitely fast switch, the inductor current iL(t) remains well-defined (no
open switch at inductor).

i2(t)

u2(t)

i1(t)

u1(t)

Son Soff

uL(t)

iL(t)

Fig. 2.26: Inverting buck-boost converter (ideal switch representation)
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Polarity change of inverting buck-boost converter

▶ One side of the inductor remains connected to the common connection rail between input
and output side.

▶ The other inductor side switches between the upper input and output rail.

▶ Consequence: voltage and current directions are inverted between the two switch states.

U2U1

i1(t) L

uL(t)

iL(t) i2 = 0

(a) Switch-on time

U2U1

i1 = 0 iL(t) L

uL(t)

i2(t)

(b) Switch-off time

Fig. 2.27: Voltage and current definitions of the inverting buck-boost converter
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Inverting buck-boost converter: voltage transfer ratios
In CCM, the voltage balance of the inductor L delivers:

uL(t) =

{
U1, t ∈ [kTs, kTs + Ton],

U2 t ∈ [kTs + Ton, (k + 1)Ts].
(2.94)

In steady state, the average inductor voltage per period must be zero, yielding

U1Ton = −U2Toff ⇔ U1DTs = −U2(1−D)Ts ⇔ U2

U1
= − D

1−D
. (2.95)

Likewise, the analysis of the DCM mode reveals

U2

U1
= −D2

2

∆iL,max

i2
⇔ U2 = −U2

1

D2

2

Ts

Li2
. (2.96)

Hence, the inverting buck-boost converter has a negative voltage transfer ratio in CCM and
DCM, but the same absolute voltage gain as the synchronous buck-boost converter.
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Inverting buck-boost converter: circuit realization

▶ Energy transfer takes place solely indirect by intermediate storage within inductor.

▶ Further characteristics (current and voltage ripple, operation modes) are analogous to the
synchronous buck-boost converter.

▶ Transistor needs to block up to |u1(t)|+ |u2(t)|, in contrast to step-down/up converter
where only the input or output voltage is blocked by the transistor.

D i2(t)

u2(t)

i1(t)

u1(t) uL(t)

iL(t)

T

Fig. 2.28: Inverting buck-boost converter with real components (single quadrant type)
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Semiconductor utilization

We define the semiconductor utilization as the ratio of the average output power to the
transistor (peak) power:

P2

PT
=

U2I2
max{uT} ·max{iT}

. (2.97)

Background and interpretation:

▶ Transistor needs to withstand the peak voltage and current (rating requirement).

▶ The lower the semiconductor utilization, the more costly / bulky the transistor for a given
converter power (key parameter for the selection of the power stage).

Assumptions for following calculations:

▶ Lossless operation in CCM,

▶ Current and voltage ripple are marginal and can be neglected,

▶ Given a constant P2, the duty cycle D is adjusted to achieve the desired output power.
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Semiconductor utilization: step-down converter

The step-down converter’s transistor peak
voltage and current are (cf. Fig. 2.2)

max{uT} = U1,

max{iT} =
i1
D

=
I1
D
.

(2.98)

The transistor must block the (constant) input
voltage U1 and step-like changing current
i1(t) = iT(t). The semiconductor utilization is

P2

PT
=

U2I2

U1
i1
D

=
U1I1

U1
I1
D

= D.

(2.99)

0

U1

u
T
(t
)

0 0.2 0.4 0.6 0.8 1
0

i1/D

i1 = I1

Ton Toff

t/Ts

i T
(t
)

Fig. 2.29: Voltage and current at the step-down
converter transistor (w/o current ripple)
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Semiconductor utilization: step-up converter

The step-up converter’s transistor peak voltage
and current are (cf. Fig. 2.13)

max{uT} = U2,

max{iT} = max{iL} = I1.
(2.100)

The transistor must block the (constant)
output voltage U2 and (constant) input current
i1(t) = iT(t), which is filtered by the inductor.
The semiconductor utilization is

P2

PT
=

U2I2
U2I1

=
I2
I1

= 1−D.

(2.101)

0

U2

u
T
(t
)

0 0.2 0.4 0.6 0.8 1
0

i1 i1 = I1

Ton Toff

t/Ts

i T
(t
)

Fig. 2.30: Voltage and current at the step-up
converter transistor (w/o current ripple)
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Semiconductor utilization: inverting buck-boost converter
The inv. buck-boost converter’s transistor peak
voltage and current are (cf. Fig. 2.27)

max{uT} = U1 − U2,

max{iT} =
i1
D

=
I1
D
.

(2.102)

The transistor must block the (combined)
input and output voltage and step-like
changing current i1(t) = iT(t). The
semiconductor utilization is

P2

PT
=

U2I2

(U1 − U2)
i1
D

=
U1I1

U1
1

1−D
I1
D

= (1−D)D.

(2.103)

0

U1 − U2

u
T
(t
)

0 0.2 0.4 0.6 0.8 1
0

i1/D

i1 = I1

Ton Toff

t/Ts

i T
(t
)

Fig. 2.31: Voltage and current at the inv.
buck-boost converter transistor (w/o current ripple)
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Semiconductor utilization: summary

▶ The converters’ semiconductor
utilization is generally the highest
if the input and output voltages
are similar:
▶ Step-down: D → 1,
▶ Step-up: D → 0,
▶ Inv. buck-boost: D → 0.5.

▶ Inverting buck-boost has generally
a lower utilization.

▶ Finding indicates that the inv.
buck-boost should be only
considered if an application truly
requires both step-up and
step-down operation.

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

step-down step-up

inv. buck-boost

D
P
2

P
T

Fig. 2.32: Comparison of the semiconductor utilization for the
step-down, step-up, and inv. buck-boost converter
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Filter component requirements: step-down converter
Open question regarding filter dimensioning:

▶ How large do the filter components need to be sized to ensure sufficiently smooth input and
output signals?

To answer this, we consider the following assumptions:

▶ The input and output current are constant: i1(t) = I1, i2(t) = I2.
▶ Additional input capacitor necessary to buffer the pulsating input current.
▶ Voltage and current ripples do not influence each other (simplified superposition).

u2(t)u1(t)

i1(t) iL(t) L

uL(t)

i2(t)

us(t) C2

iC2(t)

C1

iC1(t)

Fig. 2.33: Step-down converter with filter components
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Filter component requirements: step-down converter (cont.)
The input voltage ripple is

∆uC1 =
I1(1−D)Ts

C1
(2.104)

assuming that the input capacitor is loaded with the input current I1 during the off-time
Toff = (1−D)Ts. Assuming that there is an input voltage ripple requirement on ∆uC1 , that is,
an upper limit ripple, the minimum input capacitance is

C1 ≥
I1(1−D)Ts

∆uC1

= C1,min. (2.105)

The stored input capacitor energy yields

EC1 =
1

2
C1,min

(
U1 +

1

2
∆uC1

)2

=
1

2
(1−D)

P2

fs

(
1 +

εuC1
2

)2
εuC1

(2.106)

with the normalized ripple factor εuC1
= ∆uC1/U1.
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Filter component requirements: step-down converter (cont.)
We already know from (2.13) the inductor current ripple being

∆iL =
(1−D)U2Ts

L
.

Assuming that there is an inductor current ripple requirement on ∆iL, that is, an upper limit
ripple, the minimum inductance is

L ≥ (1−D)U2Ts

∆iL
= Lmin. (2.107)

The stored inductor energy is

EL =
1

2
Lmin

(
I2 +

1

2
∆iL

)2

=
1

2
(1−D)

P2

fs

(
1 +

εiL
2

)2
εiL

(2.108)

with the normalized ripple factor εiL = ∆iL/I2.
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Filter component requirements: step-down converter (cont.)
We already know from (2.36) the output capacitor voltage ripple being

∆uC2 =
D(1−D)T 2

s U1

8LC2
=

(1−D)

8LC2

U2

f2
s

.

Inserting the inductor sizing (2.107) delivers

∆uC2 =
1

8C2

∆iL
fs

=
εiL
8C2

I2
fs
. (2.109)

Assuming that there is an output voltage ripple requirement on ∆uC2 , that is, an upper limit
ripple, the minimum output capacitance is

C2 ≥
εiLI2

8fs∆uC2

= C2,min. (2.110)

The stored output capacitor energy yields

EC2 =
1

2
C2,min

(
U2 +

1

2
∆uC2

)2

=
1

16
εiL

P2

fs

(
1 +

εuC2
2

)2
εuC2

. (2.111)
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Filter component requirements: step-down converter interpretation

The stored energy in the filter components is a good proxy for the filter size and weight. All
three step-down converter filter components share the following characteristics:

▶ The stored energy is proportional to the output power P2.

▶ The stored energy is inversely proportional to the switching frequency fs.
▶ The stored energy is minimal at εuC1

= εiL = εuC2
= 1/2 (i.e., large signal ripples).

▶ εiL = 1/2 refers to BCM mode.
▶ Increased input voltage ripple and inductor current ripple also increases the transistor

requirements, see (2.98).

In addition, EL and EC1 also scale with

(1−D),

that is, are small if the converter’s input and output voltage are similar. In the following, we do
not analyze the step-up converter in detail, since the findings are analogous.
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Filter component requirements: inverting buck-boost converter
Again, we assume the following:

▶ The input and output current are constant: i1(t) = I1, i2(t) = I2.

▶ Additional capacitors necessary to buffer the pulsating input / output currents.

▶ Voltage and current ripples do not influence each other (simplified superposition).

C2

iC2(t)

i2(t)

u2(t)C1

iC1(t)

i1(t)

u1(t)

Son Soff

uL(t)

iL(t)

Fig. 2.34: Inverting buck-boost converter with filter components
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Filter component requirements: inverting buck-boost converter (cont.)
We further assume an identical normalized input and output voltage ripple requirement

εuC1
=

∆uC1

U1
= εuC2

=
∆uC2

U2
= εuC .

Following the same derivation as for the step-down converter, the stored filter energies are

EC = EC1 + EC2 =
1

2

P2

fs

(
1 +

εuC
2

)2
εuC

, EL =
1

2

P2

fs

(
1 +

εiL
2

)2
εiL

. (2.112)

Compared to the step-down converter we can find:

▶ Same dependence on P2, fs, and εuC or εiL .

▶ Missing (1−D) scaling factor.

▶ Result: The inverting buck-boost converter’s passive components are generally larger due to
the pulsating input and output current which needs to be filtered.

Oliver Wallscheid Power electronics 130



Table of contents

2 DC-DC converters
Step-down converter
Step-down converter: output capacitor
Step-down converter: circuit realization and operation modes
Step-up converter
Buck-boost converter
Inverting buck-boost converter
Component requirements
Further converter topologies

Oliver Wallscheid Power electronics 131



Recap: (inverting) buck-boost converter switching states

Key characteristic drawback of (inverting) buck-boost converter

The switching scheme of the (inverting) buck-boost converter utilizes an indirect in-
ductive energy transfer resulting in pulsating input and output currents which need to
be filtered. This leads to larger filter components.

U2U1

i1(t) L iL(t) i2 = 0

Us2Us1

(a) Switch-on time

U2U1

i1 = 0 iL(t) L i2(t)

Us1 Us2

(b) Switch-off time
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Ćuk converter: the boost-buck converter with capacative energy transfer

Boost Buck

u1(t)

i1(t) L1 iL1(t)

us1(t)

S1,off

S1,on u2(t)

iL2(t)
L2 i2(t)

us2(t)

S2,on

S2,off

C

uC(t)

L2 i2(t)

u2(t)

L1i1(t)

u1(t)

Son Soff

Fig. 2.36: Ćuk converter (ideal switch representation)
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Ćuk converter: switching states

▶ The Ćuk converter uses the capacitor C to transfer energy between the input and output.

▶ The polarity of C is changed between the two switch states (inverting voltage gain).

▶ In contrast to the previous topologies, there is no pulsating output or input current thanks
to the outer two inductors.

U1

i1(t)

L1 uC(t)

L2 i2(t)

U2

(a) Switch-on time

U1

L1i1(t)

uC(t) L2

i2(t)

U2

(b) Switch-off time

Fig. 2.37: Switch states of the Ćuk converter
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Ćuk converter: voltage gain

In periodic steady-state operation, the voltage balance during a switching period of the two
inductors must be fulfilled:

L1 : DU1 + (1−D)(U1 − UC) = 0, L2 : D(U2 + UC) + (1−D)U2 = 0. (2.113)

Above, U1, U2, and UC are considered constant.From those we can derive:

L1 : UC =
U1

1−D
, L2 : UC = −U2

D
. (2.114)

Combining both equations delivers the voltage gain of the Ćuk converter:

U2

U1
= − D

1−D
. (2.115)

This is the same finding as for the inverting buck-boost converter, which seems quite obvious,
as the Ćuk converter just flips the order of the buck and boost parts.
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Ćuk converter: circuit realization

▶ Like the inverting buck-boost, the Ćuk converter only requires one diode and transistor.

▶ Transistor T needs to block uC(t) during the off-time, while it covers both the input and
output current during the on-time: semiconductor utilization is also P2/PT = (1−D)D as
for the inverting buck-boost (cf. Fig. 2.32).

C

uC(t) D

L2 i2(t)

u2(t)

L1i1(t)

u1(t) T

Fig. 2.38: Ćuk converter with real components (single quadrant type)
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Single ended primary inductance converter (SEPIC)

▶ Output inductor and diode change places compared to the Ćuk converter.

▶ Output current becomes pulsating (compared to Ćuk).

▶ Input to output gain becomes non-inverting (cf. next slides).

C

uC(t)
L2

iL2(t)

D i2(t)

u2(t)

L1i1(t)

u1(t) T

Fig. 2.39: SEPIC with real components (single quadrant type)
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SEPIC: switching states

▶ During switch on-time, the transistor is conducting and the diode is blocking (causing the
output current pulsation).

▶ During switch off-time, the diode is conducting and the transistor is blocking.

U1

i1(t)

L1 uC(t) L2

iL2(t)

i2(t)

U2

(a) Switch-on time

U1

L1i1(t)

uC(t)
L2

iL2(t)

i2(t)

U2

(b) Switch-off time

Fig. 2.40: Switch states of the SEPIC
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SEPIC: voltage gain
In periodic steady-state operation, the voltage balance during a switching period of the two
inductors must be fulfilled:

L1 : DU1 + (1−D)(U1 − U2 − UC) = 0, L2 : −DUC + (1−D)U2 = 0. (2.116)

Above, U1, U2, and UC are considered constant.From those we can derive:

L1 : UC =
U1

1−D
− U2, L2 : UC =

(
1

D
− 1

)
U2. (2.117)

Combining both equations delivers the voltage gain of the SEPIC:

U2

U1
=

D

1−D
. (2.118)

Similar to the synchronous buck-boost, the SEPIC comes with a positive voltage gain, but with
the advantages of a single transistor and diode as well as non-pulsating input currents (at the
cost of more filter components).
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Buck/boost converter for both current polarities

▶ Previous buck/boost realizations
allowed only unidirectional current flow
(cf. Fig. 2.8 and Fig. 2.16).

▶ Right realization with two transistors
and body diodes enables both current
polarities (two quadrant type).

▶ No discontinuous current flow (no
DCM mode).

▶ Transistors must be switched
complementary to prevent a DC-link
short-circuit:
▶ T1: on, T2: off,
▶ T1: off, T2: on.

u1(t)

i1(t)

i2(t)

u2(t)

T1

T2

Fig. 2.41: DC-DC converter realization for both
current polarities (w/o filter components, aka

half-bridge)
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Buck/boost converter for both voltage polarities

▶ Required constraints are:
▶ u1 > 0: otherwise DC link short-circuit,
▶ i2 > 0: to meet semiconductor

capabilities.

▶ Possible switching states:

T1 T2 u2 i1

on off +u1 +i2
off on −u1 −i2
on on 0 0
off off 0 0

u1(t)

i1(t)

i2(t)

u2(t)

T1

T2

T3

T4

Fig. 2.42: DC-DC converter realization for both voltage
polarities (w/o filter components, aka asymmetrical

half-bridge)
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Buck/boost converter for both current and voltage polarities

▶ For achieving full four quadrant
operation (4Q), we combine the
previous half-bridge variants.

▶ Also requires complementary switching
of {T1, T2} and {T3, T4} to prevent a
DC-link short-circuit.

▶ Possible (allowed) switching states:

T1 T2 T3 T4 u2 i1

on off off on +u1 +i2
off on on off −u1 −i2
on off on off 0 0
off on off on 0 0

u1(t)

i1(t)

i2(t)

u2(t)

T1

T2

T3

T4

Fig. 2.43: DC-DC converter realization for both current
and voltage polarities (w/o filter components, aka

full-bridge)
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Buck/boost converter for both current and voltage polarities (cont.)
Define duty cycle as relative on-times

D =
Ton

Ts
, for T1, T4,

and conversely

D′ =
Ton

Ts
= (1−D), for T2, T3.

This leads to the average output voltage of

U2 = (2D − 1)U1. (2.119)

▶ Also holds 2Q converter from Fig. 2.42.

▶ Boost mode follows analogously.

0 0.25 0.5 0.75 1
−1

−0.5

0

0.5

1

D

U
2

U
1

Fig. 2.44: Voltage gain for a buck converter with
two voltage polarities
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Section summary
This section introduced non-isolated DC-DC converters. The key takeaways are:

▶ Buck converter: step-down voltage conversion, voltage gain 0 ≤ D ≤ 1,

▶ Boost converter: step-up voltage conversion, voltage gain 1 ≤ 1
(1−D) .

From those basic topologies, we could derive all others:

▶ (Inverting) buck-boost converter: voltage gain (−) D
(1−D) ,

▶ (Inverting) boost-buck / Ćuk converter and SEPIC: voltage gain (−) D
(1−D) .

Finally, we discussed the realization of converters for both current and voltage polarities by
using bridge-type switch realizations. Also, we have emphasized the trade-off decisions between

▶ semiconductor utilization

▶ filter requirements / sizing,

▶ applied voltage gain as well as voltage and current signal quality.
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Galvanic isolation

A definition

Galvanic isolation is a principle of decou-
pling functional sections of electrical cir-
cuits to prevent a direct current flow from
input to output, that is, enabling different
ground potentials for the circuit sections.

Typical reasons for requiring galvanic isolation
are:

▶ Safety (prevention of electric shock),

▶ Noise reduction,

▶ contact corrosion reduction.

u1 u2

current through ground

(a) Lack of galvanic isolation

u1 u2

output u2 can ’float’

(b) Galvanic isolation via inductive separation

Fig. 3.1: Why galvanic isolation can be useful
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Galvanic isolation: technical realization

Capacative Optical Inductive

source: Wikimedia Commons,

H. Grobe, CC BY 3.0

source: Wikimedia Commons,

R. Spekking, CC BY-SA 4.0

source: Wikimedia Commons,

S. Riepl, public domain
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Galvanic isolation via transformer

▶ In power electronics, transformers
are mostly used to provide galvanic
isolation.

▶ Reason: the power density per
volume and weight is typically
higher than for capacitive or
optical isolation.

▶ Assumptions for the following
model:
▶ Ideal coupling

(no leakage flux),
▶ no losses,
▶ no saturation.

i1(t)

u1(t)

i2(t)

u2(t)

Fig. 3.2: Simple transformer with primary and secondary
winding
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Simplistic transformer model

N1 : N2i1(t) i2(t)

u1 u2

Transformer

(a) Schematic symbol representation

N1 : N2i′1(t)

Lm

im(t)

i1(t) i2(t)

u1 u2

Transformer

Ideal
transformer

(b) Equivalent circuit model

Fig. 3.3: Transformer model
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Simplistic transformer model (cont.)

Based on Fig. 3.3 we consider the transformer as a combination of an ideal transformer with
the conversion ratios

u1(t)

u2(t)
=

N1

N2
and

i′1(t)

i2(t)
=

N2

N1
(3.1)

and an inductor with the magnetizing inductance Lm:

u1(t) = Lm
dim(t)

dt
and i1(t) = i′1(t) + im(t). (3.2)

▶ Lm models the magnetic energy stored in the transformer.

▶ Above model is a significant simplification (very first principle approach).

▶ More details on the transformer model can be found in the Electrical Machines and Drives
course material.
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Topology derivation based on the inverting buck-boost converter

D i2(t)

u2(t)

i1(t)

u1(t) T

D i2(t)

u2(t)

i1(t)

u1(t) T N1 N2
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Topology derivation based on the inverting buck-boost converter (cont.)

D i2(t)

u2(t)

i1(t)

u1(t) T N1 N2

D i2(t)

u2(t)

i1(t)

u1(t) T N1 N2
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Flyback converter: topology

▶ Flyback converter = non-inverting,
galvanically isolated buck-boost converter.

▶ Polarity change of primary and secondary
transformer windings compensate for the
inverting buck-boost characteristic.

▶ Transistor T is placed below the transformer
to enable a fixed emitter / source potential
(beneficial for driver).

▶ Transformer’s magnetizing inductance serves
as the converter’s energy buffer.

D i2(t)

u2(t)

i1(t)

u1(t)

T

N1 N2

Fig. 3.4: Flyback converter topology
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Flyback converter: switching states in CCM
▶ Switch-on time: rising primary current induces a negative voltage at the transformer’s

secondary winding leading to blocking diode. Energy is stored in Lm.
▶ Switch-off time: primary current is blocked by transistor and an equivalent current is

induced in the secondary winding. Energy is taken from Lm.

i2(t) = 0

u2(t)

i1(t)

u1(t)

Lm

im(t)

N1 N2

(a) Switch-on time

i2(t)

u2(t)

i1(t) = 0

u1(t)

Lm

im(t)

N1 N2

(b) Switch-off time

Fig. 3.5: Switch states of the flyback converter
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Flyback converter: steady-state time-domain behavior in CCM

−U1

0

U1

−U2
N1
N2

Ton Toff

Ts

u
L
m
(t
)

0

im

max{im}

min{im}

U1/Lm
−U2

N1
N2/Lm

i m
(t
)

0 0.5 1 1.5 2 2.5 3 3.5 4
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i1

i1(t)

t/Ts

i 1
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Flyback converter: impact of the transformer turns ratio
The transformer scales the peak input and
output current according to the turns ratio
N2/N1 (with ε being a small time period)

i2(t = Ton + ε) =
N1

N2
i1(t = Ton − ε),

i.e., the output side may carry significantly
different peak currents than the input. Also,
when the transistor blocks it must withstand
the voltage

uT(t) = u1(t) +
N1

N2
u2(t), t ∈ [Ton, Ts].

Hence, the turn ratio has a significant impact
on components’ stress factors.

0 Ton Ts

max{i1}

N1
N2

max{i1}

i2(t)

i1(t)

t

Fig. 3.6: Example of the ratio of the input and
output current for N2/N1 = 0.6
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Flyback converter: voltage transfer ratio in CCM

In CCM, the voltage balance of the magnetizing inductor Lm delivers:

uLm(t) =

{
U1, t ∈ [kTs, kTs + Ton],

−N1
N2

U2 t ∈ [kTs + Ton, (k + 1)Ts].
(3.3)

In steady state, the average inductor voltage per period must be zero, yielding

U1Ton =
N1

N2
U2Toff ⇔ U1DTs =

N1

N2
U2(1−D)Ts ⇔ U2

U1
=

N2

N1

D

1−D
. (3.4)

▶ Structurally similar result to the (inverting/synchronous) buck-boost converter.

▶ The voltage transfer ratio is additionally scaled by the turns ratio N2/N1.

▶ The flyback’s tranformer enables additional degrees of freedom to achieve a certain voltage
transfer ratio via D and N2/N1.
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Flyback converter: switch states in DCM
The flyback converter in DCM has three different switch states:

▶ Transistor on-time: Ton = DTs,

▶ Transistor off-time (conducting diode): T ′
off = D′Ts,

▶ Transistor off-time (no conduction): T ′′
off = Ts − Ton − T ′

off .

i2 = 0

u2

i1

u1

Lm

im

N1 N2

(a) Switch-on time Ton

i2

u2

i1 = 0

u1

Lm

im

N1 N2

(b) Switch-off time T ′
off

i2 = 0

u2

i1 = 0

u1

Lm

im

N1 N2

(c) Switch-off time T ′′
off

Fig. 3.7: Switch states of the flyback converter including DCM
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Flyback converter: steady-state time-domain behavior in DCM

−U1

0

U1

−U2
N1
N2
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off
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Flyback converter: DCM operation characteristics
In DCM operation

im <
∆im
2

⇒ U2 ̸= U1
N2

N1

D

1−D

applies due to the non-conducting diode during T ′′
off . To find the input-to-output voltage ratio

in DCM, we again utilize the current ripple balance:

∆im =
U1

Lm
Ton =

U1

Lm
DTs (rising edge),

∆im =
N1

N2

U2

Lm
T ′
off =

N1

N2

U2

Lm
D′Ts (falling edge).

(3.5)

Solving for D′ yields

D′ =
N2

N1

U1

U2
D. (3.6)

The average load current is

i2 =
N1

N2

∆im
2

T ′
off

Ts
=

N1

N2

∆im,maxD

2
D′ =

N1

N2

∆im,max

2

U1

U2
D2N2

N1
=

∆im,max

2

U1

U2
D2. (3.7)
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Flyback converter: DCM operation characteristics (cont.)
Solving (3.7) delivers the flyback converter voltage gain in DCM as

U2

U1
=

D2

2

∆im,max

i2
. (3.8)

Since ∆im,max also depends on U1, the relation (3.8) only holds for a given U1. Hence, we can
insert ∆im,max = Ts·U1/L in (3.7) and solve for U2 to receive

U2 = U2
1

D2

2

Ts

Lmi2
. (3.9)

▶ Interestingly, the voltage gain in DCM seems independent of the turns ratio N2/N1.

▶ Reason: output voltage U2 depends on the (average) output current i2 which is inversely
scaled by the turns ratio – cf. cancelation of N2/N1 in (3.7).

▶ However, the transformer’s magnetizing inductance is actually a function of the turns ratio
Lm(N1, N2) (compare Electrical Machines and Drives course material).
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Outlook: multi-port (flyback) converter

i1(t)

u1

i2(t)

u2

i3(t)

u3

N1 N2

N3

(a) Schematic symbol representation

i′1(t)

Lm

im(t)

i1(t)

u1

i2(t)

u2

i3(t)

u3

N1 N2

N3

(b) Equivalent circuit model

Fig. 3.8: Multi-port (flyback) transformer: add multiple secondary windings to a common core to enable
different input-to-output voltage ratios
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Topology derivation based on the buck converter

i1(t) L i2(t)

u2(t)u1(t) DT

Buck filterTransformed input stage

i1(t)

u1(t) D2us

L i2(t)

u2(t)

D1

up
T N1 N2
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Forward converter: topology

▶ Forward converter = galvanically
isolated buck converter.

▶ Main energy buffer: inductor L.

▶ Transformer: galvanic isolation
plus voltage scaling:

us(t) =
N2

N1
up(t)

with up(t) = u1(t), t ∈ [0, Ton].

▶ Different to flyback, where the
transformer’s purpose is to provide
both energy storage and galvanic
isolation.

i1(t)

u1(t)

D2us

L i2(t)

u2(t)

D1

up

T

N1 N2

Fig. 3.9: Forward converter topology
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Forward converter: steady-state time-domain behavior (ideal transformer)

0

N2
N1

U1
U2

Ton Toff

Ts

u
s(
t)

0

iL

max{iL}

min{iL}

(
N2
N1

U1−U2)/L −U2/L

i L
(t
)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

i1

t/Ts

i 1
(t
)
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Forward converter: idealized steady-state operation

Assumption:

▶ The transformer is ideal and does not exhibit a magnetizing inductance.

Consequence:

▶ The transformer’s secondary output voltage us(t) is a N2/N1 scaled version of the standard
buck converter’s switch voltage (compare Fig. 2.8).

▶ The (idealized) forward converter characteristics are analogous to the buck converter.

Hence, the voltage input-to-output voltage ratios for the (idealized) forward converter are:

CCM:
U2

U1
=

N2

N1
D, DCM: U2 =

N2
2

N2
1

D2TsU
2
1

D2Ts
N2
N1

U1 + 2Li2
. (3.10)
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Forward converter: magnetizing inductance issue

Magnetizing inductance

With every switching cycle the pri-
mary magnetizing current im(t) in-
creases (i.e., transformer saturates
and takes damage).

0 1 2
0

1 U1
Lm

Ton

2 U1
Lm

Ton

im(t)

t/Ts

i1(t)

u1(t)

D2

L i2(t)

u2(t)

D1

Lm

im(t)

T

N1 N2

Fig. 3.10: Forward converter topology with primary
magnetizing inductance
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Forward converter: demagnetization via negative input voltage

u1(t)

i1(t)

D3

D4

up(t)

T1

T2

D2us(t)

L i2(t)

u2(t)

D1

Lm

im(t)

N1 N2

Fig. 3.11: Forward converter topology with an asymmetrical half-bridge
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Forward converter: steady-state time-domain behavior (asym. half-bridge)

−U1

0

U1

DTs DTs

Ts

u
p
(t
)

0

N2
N1

U1

U2

Ton Toff

u
s(
t)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

t/Ts

i m
(t
)
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Forward converter with asym. half-bridge input stage
To demagnetize the transformer, the input voltage up(t) is modulated as follows:

up(t) =


U1, t ∈ [kTs, kTs +DTs], T1 = T2 = on,

−U1, t ∈ [kTs +DTs, kTs + 2DTs], T1 = T2 = off,

0, t ∈ [kTs + 2DTs, kTs + Ts], T1 = on, T2 = off.

(3.11)

Consequently, we have

uLm =
1

Ts

∫ Ts

0
up(t)dt = 0 (3.12)

and, therefore, the transformer’s magnetizing current im(t) does not increase during a pulse
period.However, this also limits the applicable duty cycle to

D ≤ 1

2

since otherwise (3.12) cannot be fulfilled.
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Forward converter: demagnetization via negative input voltage (cont.)

u1(t)

i1(t)

up(t)

T1

T2

T3

T4

D2us(t)

L i2(t)

u2(t)

D1

Lm

im(t)

N1 N2

Fig. 3.12: Forward converter topology with a full-bridge
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Forward converter: steady-state time-domain behavior (full-bridge)

−U1

0

U1

DTs

DTs

Ts

u
p
(t
)

0

N2
N1

U1

U2

Ton Toff

u
s(
t)

0 0.5 1 1.5 2 2.5 3 3.5 4

0

t/Ts

i m
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Forward converter: hysteresis curves of the transformer

H

B

(a) Asym. half-bridge: utilizes only the upper half
of the hysteresis curve due to non-negative

magnetizing currents

H

B

(b) Full-bridge: utilizes both positive and negative
hysteresis curve parts due the four-quadrant input

stage

Fig. 3.13: Hysteresis curves of the forward converter’s transformer with different input stages
(qualitative and simplified representation)
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Forward converter with full-bridge input stage
The average input voltage up of the full-bridge forward converter is conceptually identical to
the asym. half-bridge variant and with the constraint

uLm =
1

Ts

∫ Ts

0
up(t)dt = 0

the duty cycle also remains limited to

D ≤ 1

2
.

However, the full-bridge realization comes with distinct differences compared to the asym.
half-bridge:

▶ Utilizes magnetic core more efficiently, i.e., core can be made smaller or less winding turns
are required.

▶ Effective switching frequency is doubled allowing for smaller filter components.

▶ Obvious disadvantage: more complex input stage (costs).
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Forward converter with additional demagnetization winding
Alternative: transfer the idea of the flyback converter and add another winding N3 to the
transformer with reversed polarity. When T blocks, the energy stored in the transformer’s
magnetic field is inherited by N3 and transferred back to the input.

i1(t)

u1(t)

D2us

L i2(t)

u2(t)

D1

i3(t)

D3

up

T

N3

N1 N2

Fig. 3.14: Forward converter with demagnetization winding (aka single-ended forward converter)
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Forward converter: steady-state time-domain behavior (demag. winding)

−U1

0

U1
DTs Tm

Ts

−U1
N1
N3

u
p
(t
)

0

N2
N1

U1

U2

Ton Toff

u
s(
t)

0 0.5 1 1.5 2 2.5 3 3.5 4

0

im(t) −i3(t)

t/Ts

i 1
(t
)
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Forward converter with additional demagnetization winding (cont.)
The maximum magnetizing current is

max{im(t)} = im(t = (k +D)Ts) =
U1

Lm
DTs (3.13)

which is reached at the end of the turn-on time Ton.After switching off the transistor, the
winding N3 takes over the magnetizing current leading to

max{|i3(t)|} = |i3(t = (k +D)Ts)| =
N1

N3
max{im(t)} =

N1

N3

U1

Lm
DTs. (3.14)

To ensure that im(t = kTs) = 0 holds at the next switch-on event, the voltage balance
regarding the magnetizing inductance must be zero:

uLm =
1

Ts

∫ Ts

0
up(t)dt = U1DTs −

N1

N3
U1Tm = 0. (3.15)

Here, Tm denotes the demagnetization time interval which results in

Tm =
N3

N1
DTs. (3.16)
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Forward converter with additional demagnetization winding (cont.)

Since the transistor switch-on time already covers DTs, the demagnetization time interval Tm

is limited to
Tm ≤ (1−D)Ts. (3.17)

Combining (3.16) and (3.17) yields

N3

N1
≤ 1−D

D
⇔ D ≤ N1

N1 +N3
(3.18)

as a threshold for the turns ratio to enable certain switch-on times.Also, it should be noted
that the turns ratio directly influences the maximum blocking voltage of the transistor:

max{uT(t)} = U1 + U1
N1

N3
= U1

(
1 +

N1

N3

)
. (3.19)

Hence, to allow relatively high duty cycles by a high N1 to N3 ratio, cf. (3.18), the blocking
voltage of the transistor increases.
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Section summary

This section provided a (very) limited introduction to isolated DC-DC converters with the
forward and flyback converters as examples.The key takeaways are:

▶ The forward converter is a buck-derived topology while the flyback converter is a
buck-boost-derived topology.

▶ A transformer is used to provide galvanic isolation between input and output.

▶ Limiting the magnetiziation of the transformer is a key aspect in the operation of these
converters to prevent saturation (nonlinear behavior, extra losses).

In addition, there are many other isolated topologies that are used in practice, e.g.,

▶ Push-pull converter,

▶ Isolated Ćuk / SEPIC variants,

▶ Boost-derived topologies with full-/half bridge input stages,

▶ ...
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High-level view of the rectification task

Assuming that the input voltage is an ideal sinusoidal signal

u1(t) = û1 sin(ωt)

with the angular frequency ω = 2πf and the amplitude û1, the task of a rectifier is to convert
this input into a unidirectional, ideally constant, voltage u2(t) ≈ u2, as shown in Figure 4.1. A
typical application is the grid voltage rectification in power supplies.

π 2π
−û1

û1

ωt

u1(ωt)

u1 u2
π 2π

−û2

û2

ωt

u2(ωt)

Fig. 4.1: Simplified representation of a single-phase rectifier
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Frequency analysis: Fourier series
Often the rectification introduces non-fundamental frequency components, e.g., due to the
output voltage rectification or by a load current feedback towards the input side. To analyze
the frequency spectrum of a periodic signal x(t), the Fourier series is used:

x(t) =
a(0)

2
+

∞∑
k=1

(
a(k) cos(kωt) + b(k) sin(kωt)

)
, k ∈ N,

a(k) =
1

π

∫ 2π

0
u(t) cos(kωt)dωt, k ≥ 0, b(k) =

1

π

∫ 2π

0
u(t) sin(kωt)dωt, k ≥ 1.

(4.1)

π 2π
−û1

û1

ωt

u1(ωt)

u1 u2
π 2π

−û2

û2

ωt

u2(ωt)

Fig. 4.2: Rectification under distorted conditions
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Frequency analysis: Fourier series (cont.)

π 2π 3π 4π 5π 6π

−1

−0.5

0.5

1

k ≤ 1

k ≤ 5

k ≤ 7 k ≤ 13

ωt

u(ωt)

Fig. 4.3: Fourier series example: representation of a square wave signal
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M1U uncontrolled rectifier circuit

Based on Fig. 4.4, the output voltage u2(t) of the M1U rectifier is

u2(t) =

{
u1(t) = û1 sin(ωt), 0 ≤ ωt < π,

0, π ≤ ωt < 2π.
(4.2)

π 2π
−û

û

ωt

u1(ωt)

u1(t)

D i2(t)

R u2(t)
π 2π

−û

û

ωt

u2(ωt)

Fig. 4.4: M1U topology (aka single-pulse rectifier) with typical input and output voltage signals feeding
a resistive load
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M1U uncontrolled rectifier circuit (cont.)

From (4.2), the average output voltage of the M1U rectifier is

u2 =
1

T

∫ T

0
u2(t)dt =

1

2π

∫ 2π

0
u2(ωt)dωt =

1

2π

∫ π

0
û1 sin(ωt)dωt

=
û1
2π

[− cos(ωt)]π0 =
û1
2π

(1 + 1) =
û1
π

=

√
2U1

π

(4.3)

with U1 being the RMS value of the input voltage u1(t). The RMS value of the output voltage
u2(t) results in

U2 =

√
1

2π

∫ π

0
û21 sin

2(ωt)dωt = û1

√
1

2π

[
1

2
ωt− sin(2ωt)

4

]π
0

=
û1
2

=
U1√
2
.

(4.4)
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M1U uncontrolled rectifier circuit (cont.)
The Fourier coefficients of the output voltage u2(t) from (4.2) are

a(0) =
1

π

∫ 2π

0
u2(t)dωt = 2u2 = 2

û1
π
,

a(k) =
1

π

∫ 2π

0
u2(t) cos(kωt)dωt =

1

π

∫ π

0
û1 sin(ωt) cos(kωt)dωt

=
û1
2π

∫ π

0
sin(ωt(1− k)) + sin(ωt(1 + k))dωt = . . . =

{
û1
π

2
1−k2

, k = 2, 4, 6, . . .

0, otherwise.

b(k) =
1

π

∫ 2π

0
u2(t) sin(kωt)dωt =

1

π

∫ π

0
û1 sin(ωt) sin(kωt)dωt

=
û1
2π

∫ π

0
cos(ωt(1− k))− cos(ωt(k + 1))dωt = . . . =

{
û1
2 , k = 1,

0, k ≥ 2.

(4.5)

Above, a(0) represents a DC component, while the a(k) ̸= 0 coefficients indicate harmonics.
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M1U uncontrolled rectifier circuit (cont.)

From (4.5) the Fourier series of u2(t) results in

u2(t) = û1

 1

π
+

1

2
sin(ωt) +

∑
k=2,4,6,...

2

π(1− k2)
cos(kωt)

 . (4.6)

For a resistive load, the output current has the same harmonic spectrum:

i2(t) =
û1
R

 1

π
+

1

2
sin(ωt) +

∑
k=2,4,6,...

2

π(1− k2)
cos(kωt)

 . (4.7)

Resulting observations are:

▶ Non-fundamental current frequency components can distort the input side.

▶ Higher frequency harmonics decrease with ∼ 1/(1− k2).
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Transformer input filtering
To reduce the input side distortion, a transformer can be used to filter out the harmonics:

▶ Impedance of magnetizing inductance Lm is zero for DC components, i.e., the transformer
blocks the DC current from the input (cf. dotted red line for i2 below).

▶ With higher frequency harmonics, the impedance of Lm increases, i.e., filtering out the
harmonics less effectively.

N1 : N2i′1(t)

Lm

im(t)

i1(t) is(t)

u1(t) us(t)

D i2(t)

R u2(t)

i2

Fig. 4.5: M1U topology with input transformer and DC current path (red dotted line)
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Transformer input filtering (cont.)
While the transformer can help out filter unwanted harmonics, the output DC current also
introduces an offset magnetization to the transformer’s core. Issues related with this are:

▶ Core utilization: To prevent core saturation, the transformer must be oversized.
▶ Core losses: The magnetization offset can increase the core losses.

∼ i2

H

B

Fig. 4.6: Shift of the hysteresis curve due to the DC magnetization
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Capacitive output filtering
To smooth the output voltage u2(t), a capacitor C is added. The initial charging voltage is

u2(t) =

{
u1(t) = û1 sin(ωt), 0 ≤ ωt < π/2,

û1, ωt > π/2
(4.8)

with the capacitor current i2(t) being

i2(t) =

{
Cdu2(t)/dt = î2 cos(ωt) = Cωû1 cos(ωt), 0 ≤ ωt < π/2,

0, ωt > π/2.
(4.9)

u1(t)

D i2(t)

C u2(t) π 2π
−x̂

x̂

u1(t)

u2(t)

i2(t)
ωt

Fig. 4.7: M1U topology with output capacitor (unloaded and idealized charging curve)
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Capacitive output filtering (cont.)

If the rectified output is loaded, the capacitor voltage ripples:

▶ If u2(t) ≤ u1(t): diode conducts, capacitor charges (follows input voltage).

▶ If u2(t) > u1(t): diode blocks, capacitor discharges via I0.

u1(t)

i1(t)
D i2(t)

Cu2(t)

iC(t)

I0 π 2π

−x̂

x̂
u2 ≥ u1

u1(t)

u2(t)

iC(t)

i1(t)

ωt

Fig. 4.8: M1U topology with output capacitor and constant load current
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M2U uncontrolled rectifier circuit
The previous M1U topology only rectified half of a cycle resulting in a reduced output voltage
utilization and increased voltage ripple. By adding another diode and utilizing a center-tapped
transformer, the circuit can be extended towards a full-cycle rectifier.

N1 : N2

i1(t)

u1(t)

D1

D2

i2(t)

R u2(t)us,1(t)

us,2(t)

π 2π

−û1

− û1
2

N2
N1

û1
2

N2
N1

û1

u1(t)

u2(t)

ωt

Fig. 4.9: M2U topology (aka two-pulse mid-point rectifier) with center-tapped transformer
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M2U uncontrolled rectifier circuit (cont.)

From Fig. 4.9 we can conclude the following:

▶ During the positive half-cycle of u1(t): D1 conducts, D2 blocks, and u2(t) = us,1(t).

▶ During the negative half-cycle of u1(t): D2 conducts, D1 blocks, and u2(t) = us,2(t).

The output voltages of the center-tapped transformer are

us,1(t) =
1

2

N2

N1
û1 sin(ωt) and us,2(t) = −1

2

N2

N1
û1 sin(ωt). (4.10)

Here, it should be noted that both us,1(t) and us,2(t) are utilizing only half of the secondary
winding turns due to the central tapping.The output voltage results in

u2(t) =
1

2

N2

N1
|u1(t)| =

1

2

N2

N1
û1 |sin(ωt)| . (4.11)
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M2U uncontrolled rectifier circuit (cont.)
From (4.11), the average output voltage of the M2U rectifier is

u2 =
1

T

∫ T

0
u2(t)dt =

1

2π

∫ 2π

0

1

2

N2

N1
û1 |sin(ωt)|dωt =

1

π

∫ π

0

1

2

N2

N1
û1 sin(ωt)dωt

=
1

2π

N2

N1
û1 [− cos(ωt)]π0 =

1

2π

N2

N1
û1 (1 + 1) =

1

π

N2

N1
û1.

(4.12)

Not considering the transformer conversion via N2/N1, this is twice as much as in the M1U
case, compare (4.3). The RMS value of the output voltage u2(t) results in

U2 =

√
1

2π

1

22
N2

2

N2
1

û21

∫ 2π

0
sin2(ωt)dωt =

1

2

N2

N1
û1

√
1

π

∫ π

0
sin2(ωt)dωt

=
1

2

N2

N1
û1

√
1

2π

[
1

2
ωt− sin(2ωt)

4

]π
0

=
N2

N1

û1√
2
=

N2

N1
U1.

(4.13)
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M2U uncontrolled rectifier circuit (cont.)
The Fourier coefficients of the output voltage u2(t) from (4.11) are

a(0) =
1

π

∫ 2π

0
u2(t)dωt = 2u2 =

2

π

N2

N1
û1,

a(k) =
1

π

∫ 2π

0
u2(t) cos(kωt)dωt =

1

2π

N2

N1

(∫ π

0
û1 sin(ωt) cos(kωt)dωt

+

∫ 2π

π
(−1)û1 sin(ωt) cos(kωt)dωt

)
= . . . =

{
û1
π

N2
N1

2
1−k2

, k = 2, 4, 6, . . .

0, otherwise.

b(k) =
1

π

∫ 2π

0
u2(t) sin(kωt)dωt =

1

2π

N2

N1

(∫ π

0
û1 sin(ωt) sin(kωt)dωt

+

∫ 2π

π
(−1)û1 sin(ωt) sin(kωt)dωt

)
= . . . = 0.

(4.14)

These coefficients also indicate significant harmonics, which are in particular scaled by the
transformer turns ratio.
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B2U uncontrolled rectifier circuit
The B2U circuit also allows full-cycle rectification but without the need for a center-tapped
transformer, that is, fully utilizes the input voltage without halving it on the output side.

u1(t)

i1(t)
D1 D3

D2D4

i2(t)

Ru2(t) π 2π

−û1

û1

u1(t)

u2(t)

ωt

Fig. 4.10: B2U topology (aka two-pulse bridge rectifier) with resistive load
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B2U uncontrolled rectifier circuit (cont.)

For a purely resistive load as in Fig. 4.10 the output voltage u2(t) is

u2(t) = |u1(t)| = û1 |sin(ωt)| . (4.15)

Here, following diodes are conducting:

▶ Positive half-cycle: D1 and D2,

▶ Negative half-cycle: D3 and D4.

The average output voltage u2 is

u2 =
1

T

∫ T

0
u2(t)dt =

1

2π

∫ 2π

0
û1 |sin(ωt)|dωt = . . . =

2

π
û1. (4.16)

The Fourier coefficients of the output voltage u2(t) are analogous to the M2U case, compare
(4.14) with appropriate scaling considering the lack of the center-tapped transformer.
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B2U uncontrolled rectifier circuit with capacitive output filtering

u1(t)

i1(t)
D1 D3

D2D4

i2(t)

Cu2(t)

iC(t)

I0

Fig. 4.11: B2U topology with output capacitor and constant load
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B2U uncontrolled rectifier circuit with capacitive output filtering (cont.)

ωt1 π ωt2 2π

−x̂

x̂

α

β

u1(t)

|u1(t)|u2(t)

iC(t)

i2(t)

ωt

Fig. 4.12: Typical signal curves for B2U topology with output capacitor and constant load
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B2U uncontrolled rectifier circuit with capacitive output filtering (cont.)

The filter capacitor current iC(t) is

iC(t) =

{
−I0, i2(t) = 0,

C d
dtu2(t), i2(t) > 0,

(4.17)

that is, if the output current i2(t) is zero, the diode bridge blocks and the capacitor discharges
via the load. Contrary, if the output current is positive, the diodes conduct and the capacitor
voltage is determined by the rectified input voltage.The output current is given by

i2(t) = iC(t) + I0. (4.18)

Inserting (4.17) in (4.18) delivers the output current during the conduction phase:

i2(t) = Cωû1 cos(ωt) + I0, 0 ≤ ωt < ωt1. (4.19)

Oliver Wallscheid Power electronics 204



B2U uncontrolled rectifier circuit with capacitive output filtering (cont.)
The conduction phase lasts until ωt1 = α which can be determined from (4.19):

α = arccos

(
− I0
Cωû1

)
. (4.20)

For α < ωt < ωt2 the capacitor discharges via the load:

u2(t) = u2(ωt1) +

∫ t

t1

−I0
C
dτ = u2(α) +

∫ ωt

α
− I0
ωC

dωτ

= u2(α)−
I0
ωC

(ωt− α), ωt1 ≤ ωt < ωt2.

(4.21)

The blocking phase lasts until ωt2 = α+ β, that is, the rectified input voltage is equal to the
capacitor voltage (note: not solvable for ωt2 in closed-form, requires numerical methods):

u2(ωt2) = u2(α)−
I0
ωC

(ωt2 − α)
!
= û1| sin(ωt2)| = |u1(ωt2)|. (4.22)
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B2U rectifier with capacitive output filtering and grid impedance

u1(t)

L

uL(t)

i1(t)
D1 D3

D2D4

i2(t)

Cu2(t)

iC(t)

I0

Fig. 4.13: B2U topology considering an output capacitor, constant load, and grid impedance
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B2U rectifier with capacitive output filtering and grid impedance (cont.)

For the modified scenario form (4.13) we assume an infinite capacitance capacitor, i.e.,

u2(t) ≈ U2

to keep the analysis simple. Like before, the diode bridge conduction is determined by the
output current i2(t):

▶ i2(t) > 0: diode bridge conducts, uL(t) = |u1(t)| − U2,

▶ i2(t) = 0: diode bridge blocks, uL(t) = max{0, |u1(t)| − U2}.

Hence, the B2U rectifier behavior is driven by the grid impedance current and the dynamics
introduced by L. Similar to the previous analysis on DC-DC converters, the discontinuous
conduction mode (DCM) and the boundary conduction mode (BCM) will be differentiated in
the following.
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B2U rectifier with capacitive output filtering and grid impedance (cont.)

ωt1 π
2

ωt2 ωt3 π 3
2π

2π

−x̂

x̂

α
β

u1(t)

|u1(t)|

i2(t) i2

U2

ωt

Fig. 4.14: Typical signal curves for B2U topology feeding a constant load from the grid and an infinite
output capacitance in DCM
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B2U rectifier with capacitive output filtering and grid impedance (cont.)
In steady-state DCM the output current is zero for

i2(ωt) = 0, 0 ≤ ωt < ωt1. (4.23)

Until then the diode bridge is in blocking mode and disconnects the input from the output. At
ωt1 = α the diodes start conducting since the input voltage exceeds the output voltage:

u1(ωt1 = α) = û1 sin(α)
!
= U2 ⇔ α = arcsin

(
U2

û1

)
. (4.24)

At this point, the output current is rising due to the positive inductor voltage:

i2(ωt) =
1

L

∫ t

t1

u1(t)− U2dτ =
1

ωL

∫ ωt

ωt1

u1(ωτ)− U2dωτ =
1

ωL

∫ ωt

ωt1

û1 sin(ωτ)− U2dωτ

=
û1
ωL

(
cos(α)− cos(ωt)− U2

û1
(ωt− α)

)
, ωt1 ≤ ωt < ωt3. (4.25)
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B2U rectifier with capacitive output filtering and grid impedance (cont.)
At ωt2 = α+ β the current reaches zero again and the diode bridge blocks again:

i2(ωt2) =
û1
ωL

(
cos(α)− cos(ωt2)−

U2

û1
(ωt2 − α)

)
!
= 0

⇔ cos(α)− cos(α+ β)− β sin(α) = 0.

(4.26)

For a given α, this equation is not solvable in closed-form w.r.t. β and requires numerical
methods. However, if β is known, α can be determined leading to

α = arctan

(
1− cos(β)

β − sin(β)

)
. (4.27)

The average output current in DCM is

i2 =
1

T

∫ T

0
i2(t)dt =

1

π

∫ α+β

α
i2(ωt)dωt = . . . =

û1
πωL

(
û1
U2

(1− cos(β))− U2

û1

β2

2

)
. (4.28)
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B2U rectifier with capacitive output filtering and grid impedance (cont.)

For a better representation in the following, the average current is normalized:

i
′
2 =

i2
2
π

û1
ωL

=
1

2

(
û1
U2

(1− cos(β))− U2

û1

β2

2

)
. (4.29)

Here, the denominator 2/π · û1/ωL is the absolute average value of the inductor current in case
of a grid short circuit.

Based on the correlations found, the operating characteristics in DCM of the rectifier can be
visualized, which has been implemented in Fig. 4.16 (left part):

▶ In DCM, β ∈ [0, π[ holds, i.e., the diode bridge is conducting for 0 . . . 100% per half cycle.

▶ At β = π the diode bridge is conducting for the full half cycle (i.e., entering BCM).

▶ In order to achieve a commutation of the current between the diode pairs D1/D4 and
D2/D3, the current gets zero (for a short time) so that the rectifier operates in BCM.
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B2U rectifier with capacitive output filtering and grid impedance (cont.)

ωt1 π
2

ωt2 π 3
2π

2π

−x̂

x̂

α′

α′ + π

u1(t)

|u1(t)|

i2(t) i2

U2

ωt

Fig. 4.15: Typical signal curves for B2U topology feeding a constant load from the grid and an infinite
output capacitance in BCM

Oliver Wallscheid Power electronics 212



B2U rectifier with capacitive output filtering and grid impedance (cont.)

In steady-state BCM, the output current is analogous to the DCM as from (4.25) leading to

i2(ωt) =
û1
ωL

(
cos(α′)− cos(ωt)− U2

û1
(ωt− α′)

)
, α′ ≤ ωt < α′ + π (4.30)

with α′ being the phase angle at which the diodes start conducting in BCM – cf. Fig. 4.15.
After a half cycle, the current reaches zero for a short moment enabling the diode bridge to
commutate the current between the diode pairs:

i2(ωt = α′ + π) = 0 ⇔ cos(α′)− cos(α′ + π)− U2

û1
π = 0 (4.31)

from which
U2

û1
=

2

π
cos(α′) (4.32)

follows after some intermediate calculation steps.
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B2U rectifier with capacitive output filtering and grid impedance (cont.)
The average output current in BCM follows as

i2 =
1

T

∫ T

0
i2(t)dt =

1

π

∫ α′+π

α′
i2(ωt)dωt = . . .

=
2

π

û1
ωL

sin(α′).

(4.33)

Applying the same normalization as (4.29) leads to

i
′
2 =

i2
2
π

û1
ωL

= sin(α′). (4.34)

Combining (4.32) and (4.34) reveals

U2

û1
=

2

π
cos(arcsin(i

′
2)). (4.35)

The resulting load curve for the BCM is also depicted in Fig. 4.16 (right part).
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B2U rectifier with capacitive output filtering and grid impedance (cont.)

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8
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α
π

α′

π

β
π

U2
û1

BCM limit

i
′
2

Fig. 4.16: Load curve of the B2U rectifier with capacitive output filtering and grid impedance
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B2U rectifier with capacitive output filtering and grid impedance (cont.)
Assuming DCM, the input current of the B2U rectifier is

i1(t) =

{
i2(t), α ≤ ωt < α+ β,

−i2(t), π + α ≤ ωt < π + α+ β.
(4.36)

The minus sign during the second half-cycle results from the conducting diodes D3/D4
reversing the current direction in the inductor – cf. Fig. 4.13. The input current can be
decomposed into its fundamental and harmonic components:

i1(t) = a1 cos(ωt) + b1 sin(ωt)︸ ︷︷ ︸
=i

(1)
1 (t)

+

∞∑
k=2

(
a(k) cos(kωt) + b(k) sin(kωt)

)
︸ ︷︷ ︸

i
(h)
1 (t)

, k ∈ N. (4.37)

As will be discussed in the following, the harmonic components i
(h)
1 (t) are considered

distortions negatively impacting the grid quality.
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B2U rectifier with capacitive output filtering and grid impedance (cont.)

π
2

π 3
2π

2π

−î

−û

û

î
i1(t)

i
(1)
1 (t)

i
(h)
1 (t)

u1(t)

ωt

Fig. 4.17: Input current decomposition of the B2U rectifier with i
(1)
1 (t) being the fundamental and

i
(h)
1 (t) harmonic components
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Recap: active, reactive, and apparent power in sinusoidal steady-state

The complex power is defined as

S = U · I∗ = P + jQ = Sejφ, (4.38)

with the active power P , the reactive power Q, and the apparent power S as well as U and I
being the complex voltage and current phasors.From (4.38) directly follows:

S = |S| =
√
P 2 +Q2. (4.39)

The power factor λ is defined as

λ = cos(φ) =
P

S
. (4.40)

Typically, one tries to operate power converters with a unity power factor λ ≈ 1 to avoid
reactive power transfer (i.e., additional reactive currents leading to more losses in the grid).
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Active power transfer considering harmonics
The active power can be alternatively expressed as the average of the instantaneous power:

P =
1

T

∫ T

0
p(t)dt =

1

2π

∫ 2π

0
u(ωt)i(ωt)dωt. (4.41)

To generalize the analysis for arbitrary voltage and current harmonics, we consider both Fourier
decompositions

u(ωt) = u+

∞∑
k=1

û(k) cos(kωt− φ(k)
u ), i(ωt) = i+

∞∑
k=1

î(k) cos(kωt− φ
(k)
i ) (4.42)

with u and i being the DC components, û(k) and î(k) the amplitudes of the k-th harmonic and

φ
(k)
u and φ

(k)
i the phase angles of the voltage and current harmonics.This amplitude-phase

representation is analogous to (4.1) with the relations:

x̂(k) =
√
(a(k))2 + (b(k))2, φ(k)

x = − arccos

(
a(k)

x̂(k)

)
· sign

(
b(k)
)
. (4.43)
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Active power transfer considering harmonics (cont.)
Substituting the Fourier series of u1(ωt) and i1(ωt) into the instantaneous power expression
delivers:

p(t) = u(ωt)i(ωt)

=

(
u+

∞∑
k=1

û(k) cos(kωt− φ(k)
u )

)(
i+

∞∑
m=1

î(m) cos(mωt− φ
(m)
i )

)
.

Expanding this product yields:

p(t) = ui+ u

∞∑
m=1

î(m) cos(mωt− φ
(m)
i ) + i

∞∑
k=1

û(k) cos(kωt− φ(k)
u )

+

∞∑
k=1

∞∑
m=1

û(k)î(m) cos(kωt− φ(k)
u ) cos(mωt− φ

(m)
i ).
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Active power transfer considering harmonics (cont.)
Using the trigonometric identities the last term becomes:

∞∑
k=1

∞∑
m=1

û(k)î(m) cos(kωt− φ(k)
u ) cos(mωt− φ

(m)
i )

=

∞∑
k=1

∞∑
m=1

û(k)î(m) 1

2

[
cos((k −m)ωt+ φ

(k)
i − φ(m)

u ) + cos((k +m)ωt− φ(k)
u − φ

(m)
i )

]
.

Hence, we receive integral terms of the form∫ 2π

0
cos(nωt+ φ)dωt =

{
2π cos(φ), n = 0,

0 n ̸= 0

with n = k −m ∈ Z or n = k +m ∈ Z, respectively. Due to the periodicity and symmetry of
the cosine function, the integral over a full period is zero for n ̸= 0.

Conclusion: Cross-frequency terms (k ̸= m) cancel due to their oscillatory nature, leaving only
contributions from voltage and current harmonics of the same order (k = m).
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Active power transfer considering harmonics (cont.)
Summarizing the previous considerations, the active power can be expressed as:

P =
1

T

∫ T

0
p(t) dt =

∞∑
k=1

û(k)î(k)

2
cos(φ

(k)
i − φ(k)

u ). (4.44)

Inserting the B2U ideal input voltage assumption u(t) = u1(t) = û1 sin(ωt), this boils down to:

P =
û1î

(1)
1

2
cos(φ

(1)
i − φ(1)

u ) = U1I
(1)
1 cos(φ

(1)
i − φ(1)

u ) (4.45)

with U1 and I
(1)
1 being the RMS values of the fundamental voltage and current component and

φ
(1)
i the phase angle between the fundamental voltage and current component. The power

factor results in

λ =
P

S
=

U1I
(1)
1

U1I1
cos(φ

(1)
i − φ(1)

u ) =
I
(1)
1

I1
cos(φ

(1)
i − φ(1)

u ). (4.46)

i.e., the harmonics increase the apparent power S but do not contribute to the active power P .
Consequently, the B2U’s power factor is typically limited to 70% or lower.
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Total harmonic distortion (THD)
Another important measure for the quality of the input current is the total harmonic distortion
(THD):

THD(i1) =

√∑∞
k=2

(
I
(k)
1

)2
I
(1)
1

=
I
(h)
1

I
(1)
1

. (4.47)

The THD quantifies the ratio of the RMS value of the harmonic components to the RMS value
of the fundamental component.Rewriting the decomposition (4.37) in the RMS form

I21 =
(
I
(1)
1

)2
+
(
I
(h)
1

)2
, (4.48)

and inserting (4.47) in the power factor expression (4.46) leads to

λ =
1√

1 + THD2(i1)
cos(φ

(1)
i − φ(1)

u ). (4.49)

Hence, the larger the THD, the more the power factor deviates from unity.
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B2U rectifier: THD and power factor
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Fig. 4.18: THD and power factor of the B2U rectifier with capacitive output filtering and grid impedance
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B2U rectifier impact on the grid voltage

u1(t)

Li1(t) PCC LA i1A(t)
D1 D3

D2D4

i2(t)

Cu2(t)

iC(t)

I0

LB i1B(t)
Load B

u1B(t)u1PCC(t)

u1A(t)

Fig. 4.19: B2U rectifier and a second load connected to the grid
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B2U rectifier impact on the grid voltage (cont.)

In Fig. 4.19 the B2U rectifier and a second load are connected to the grid u1(t) with

▶ L being the grid inductance (at the point of common coupling – PCC),

▶ LA being the inductance of the cable connecting the B2U rectifier to the PCC,

▶ LB being the inductance of the cable connecting the second load to the PCC.

Assuming i1B(t) = 0 for the sake of simplicity, the inductive voltage divider rule yields

u1(t)− u1PCC(t)

u1(t)− u1A(t)
=

L

L+ LA
(4.50)

and, therefore, the voltage at the second load’s PCC u1PCC(t) is

u1PCC(t) = u1(t)−
L

L+ LA
(u1(t)− u1A(t)). (4.51)
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B2U rectifier impact on the grid voltage (cont.)

Assuming again a constant output voltage u2(t) = U2 (due to an infinite filter capacitance),
the B2U’s input voltage is

u1A(t) =

{
u1(t), i1A(t) = 0

sign(i2(t)) · U2, i1A(t) ̸= 0.
(4.52)

Hence, the voltage at the second load’s PCC is

u1PCC(t) =

{
u1(t), i1A(t) = 0

u1(t)
(
1− L

L+LA

)
+ L

L+LA
sign(i2(t)) · U2, i1A(t) ̸= 0.

(4.53)

As on can see on the next slide, the B2U rectifier operation leads to a distorted grid voltage
u1PCC(t) which might impair the operation of the second load. Increasing the input inductance
LA by an explicit filter inductor can mitigate this issue, however, at the expense of volume,
weight and cost as well as voltage drop associated with the input filter inductor.
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B2U rectifier impact on the grid voltage (cont.)

ωt1 π
2

ωt2 ωt3 π 3
2π

2π

−x̂

x̂

α
β

u1(t)

i1(t)

U2

u1PCC(t)

u1a(t)

ωt

Fig. 4.20: Relevant signals of the scenario from (4.19) with B2U in DCM
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B2U rectifier impact on the neutral line in three-phase grid

u1a
i1a(t)

u1b

i1b(t)

u1c

i1c(t)

iN(t) N

B2U

B2U

B2U

Fig. 4.21: Three-phase grid with single-phase rectifiers connected to neutral
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B2U rectifier impact on the neutral line in three-phase grid (cont.)

π
2

π 3
2π

2π

u1a(t) u1b(t) u1c(t)

i1a(t) i1b(t) i1c(t)

U2

ωt

Fig. 4.22: Relevant signals of the scenario from (4.21) assuming identical operation conditions for all
single-phase rectifiers
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B2U rectifier impact on the neutral line in three-phase grid (cont.)
The neutral conductor current is the sum of the phase currents:

iN(t) = i1a(t) + i1b(t) + i1c(t). (4.54)

In the example from Fig. 4.22 the neutral conductor current corresponds to the enveloping
curve over the phase currents shown in the figure:

▶ The B2U rectifier represents a nonlinear load such that the three-phase currents do not
cancel each other out.

▶ The neutral conductor current leads to power losses in the neutral conductor and can cause
overheating.

Need for grid-friendly rectification

The shown analysis of the B2U rectifier highlights its negative impact on the grid,
especially if multiple B2U rectifiers are connected to the same grid. Therefore, grid-
friendly rectification alternatives are essential to ensure the stable operation of the grid
and the connected loads.
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General PFC circuit structure

u1(t)

i1(t)
D1 D3

D2D4

u2
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= m(d(t))
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i′(t)
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Fig. 4.23: Rectifier with power factor correction (PFC) realized as a combination of a single-phase diode
bridge and a cascaded DC/DC converter with voltage / current transfer ratio m(t)
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Idealized PFC rectifier signals in the time domain (steady state)
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u
1
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Operation concept and assumptions for the PFC rectifier
Main idea: utilize a DC/DC converter to control the input current i1(t) such that it follows the
input voltage u1(t) in phase:

i1(t) = î1 sin(ωt) ∼ û1 sin(ωt) = u1(t). (4.55)

Assumptions for the following PFC rectifier analysis:

▶ The input voltage u1(t) is an ideal sinusoidal signal with amplitude û1 and frequency ω.

▶ The output voltage is considered constant: u2(t) ≈ U2.
▶ The grid impedance is neglected for the sake of simplicity.

▶ The grid impedance as in Fig. 4.13 would (mainly) introduce a phase shift between |u1(t)| and
u′(t) which can be compensated by the control setup.

Based on these assumptions and the objective (4.55), the voltages and currents in front of the
DC/DC converter must be proportional to each other (to achieve unity power factor):

u1(t)

i1(t)
=

u′(t)

i′(t)
. (4.56)
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Voltage transfer ratio
Considering an ideal DC/DC converter with a voltage transfer ratio m(t), the converter must
deliver a rectified-sinusoidal u′(t) given some constant U2:

u′(t) =
U2

m(t)
⇔ û1| sin(ωt)| =

U2

m(t)
. (4.57)

Hence, the voltage transfer ratio m(t) is given by

m(t) =
U2

u′(t)
=

U2

û1| sin(ωt)|
(4.58)

which varies between

max
u′

{m(t)} = ∞, argmax
u′

{m(t)} = 0,

min
u′

{m(t)} =
U2

û1
= M, argmin

u′
{m(t)} = û1.

(4.59)

One can conclude that the DC/DC converter must be able to deliver a voltage transfer ratio of

m(t) ∈ [M, . . . ,∞].
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Voltage transfer ratio (cont.)
The above voltage transfer ratio range restricts the possible topologies accordingly, e.g.:

▶ Standard boost converter: m(t) = 1/(1−d(t)),
▶ Buck-boost converter or SEPIC: m(t) = d(t)/(1−d(t)).

Due to its simplicity and low component count, the boost converter is the most common
choice for PFC applications leading to the reference duty cycle (assuming CCM operation):

d(t) =
U2 − û1| sin(ωt)|

U2
= 1− 1

M
| sin(ωt)|. (4.60)

Remark on nomenclature and steady state

In contrast to the previous DC/DC converter section, the duty cycle d(t) is now a
function of time and not a constant (small d instead of capital D). However, the
voltage transfer to duty cycle ratio was derived in steady state, i.e., (4.60) only holds
approximately for fs >> f = ω/2π (so-called quasi steady state).
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PFC rectifier with boost converter

u1(t)

i1(t)
D1 D3

D2D4
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L D5

T

i2(t)

Cu2(t)

iC(t)

I0
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i′(t)

u′(t)

u2(t)

Fig. 4.24: PFC rectifier realized as a combination of a single-phase diode bridge and a cascaded DC/DC
boost converter
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PFC rectifier with boost converter (cont.)
The duty cycle from (4.60) does not consider the inner voltage demand of the boost converter,
in particular of its filter inductor L:

uL(t) = L
d

dt
i′(t) = L

d

dt

(
î1| sin(ωt)|

)
= î1ωL cos(ωt)sgn(sin(ωt)).

(4.61)

Within one switching period of the boost converter the voltage balance must hold:

u′(t) = uL(t) + U2(1− d(t))

⇔ û1| sin(ωt)| = î1ωL cos(ωt)sgn(sin(ωt)) +Mû1(1− d(t)).
(4.62)

Rearranging towards the duty cycle d(t) yields

d(t) = 1− 1

M
| sin(ωt)|+ î1ωL

Mû1
cos(ωt)sgn(sin(ωt)). (4.63)
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PFC rectifier with boost converter (cont.)

Evaluating (4.63) for ωt = ε with ε ∈ R > 0 being an infinitesimally small value, one obtains

d(ε/ω) = 1− sin(ε) +
î1ωL

Mû1
cos(ε)sgn(sin(ε)) ≈ 1 +

î1ωL

Mû1
> 1.

Hence, the additional voltage demand of the boost converter inductor L leads to a duty cycle
exceeding unity, that is, exceeding the feasible range and, therefore, the boost converter is not
able to deliver the required voltage transfer ratio m(t):

▶ The boost converter is not able to exactly track the input current reference
i1(t) = î1 sin(ωt) (especially at the beginning and end of a half period).

▶ The lower L the less the negative impact of the inductor voltage demand.

▶ Consequently, one wants to keep the inductance L as low as possible which on the other
hand requires a high switching frequency fs to keep the current ripple within acceptable
bounds.
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Pulse width modulation (PWM)
As seen on the previous slides, the duty cycle d(t) is a function of time. To generate a
switching signal s(t) for the boost converter, a pulse width modulation (PWM) scheme is used:

s(t) =

{
1 (transistor T on), if d(t) > c(t),

0 (transistor T off), otherwise
(4.64)

with a (high frequency) carrier signal c(t), e.g., a triangular or sawtooth signal.

d(t)

c(t)

−

1 s(t)
T

Fig. 4.25: Pulse width modulation with triangular carrier to actuate a transistor
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PWM-based switching signals
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Fig. 4.26: Qualitative illustration of a PWM-based switching signal with a triangular carrier signal
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PWM-based switching signals (cont.)
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Fig. 4.27: Qualitative illustration of a PWM-based switching signal with a sawtooth carrier signal
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PWM-based open-loop control of the boost converter PFC rectifier
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PWM-based PFC rectifier current ripple
Due to the switching behavior of the boost converter, the input current i1(t) exhibits a current
ripple. The boost inductor voltage during a switching period is:

uL(t) =

{
û1 sin(ωt), 0 < t ≤ dTs

û1 sin(ωt)− U2, dTs < t ≤ Ts.
(4.65)

We assume that
Ts << 2π/ω

such that the input voltage and duty cycle are approximately constant within one switching
period.The ripple current envelope ∆i1(t) is then defined as the moving difference between the

actual input current i1(t) and its fundamental component i
(1)
1 (t):

∆i1(t) = ±1

2
max

τ∈[t±Ts
2
]
|i1(τ)− i

(1)
1 (τ)|. (4.66)

One should note that this ripple definition is different from the one used in the previous
DC/DC converter section.
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PWM-based PFC rectifier current ripple (cont.)

Assuming CCM operation and a sufficiently small switching time interval Ts, the ripple current
can be approximated by the current rise during the on-time of the boost converter:

∆i1(t) = ± 1

2L

∫ dTs

0
uL(τ)dτ = ± 1

2L

∫ dTs

0
û1 sin(ωt)dτ

≈ ± û1 sin(ωt)

2L

∫ dTs

0
1dτ = ± û1 sin(ωt)

2L
dTs.

(4.67)

Inserting d(t) from (4.63) in a quasi steady-state fashion yields

∆i1(t) = ± û1Ts sin(ωt)

2L

(
1− 1

M
| sin(ωt)|+ î1ωL

Mû1
cos(ωt)sgn(sin(ωt))

)
. (4.68)

Due to the varying input voltage and duty cycle, the ripple current is not constant but also
varies with time (cf. next slide).
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PWM-based PFC rectifier current ripple (cont.)

i 1
(t
) i1(t) i
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PFC rectifier with boost converter: closed-loop control structure

u1(t)

i1(t)
D1 D3

D2D4

DC/DC

i′(t)

u′(t)

L D5

T

i2(t)
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−
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u2 ctrl
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i′ ctrl

d(t)

s(t)i′

i
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∆i′

u′

i′∗

p2∗G∗
u2∗2/û2

1

Fig. 4.28: Control structure of PFC rectifier with boost DC/DC converter
Oliver Wallscheid Power electronics 248



PFC rectifier with boost converter: closed-loop control structure (cont.)
Reasons for closed-loop control:

▶ Mismatches between the actual system and the plant model behavior result in
(steady-state) control errors.

▶ Faster transient response to load changes.

▶ Robustness against further disturbances (e.g., input voltage variations).

Central idea of the closed-loop control: given some required load power

p2(t) = u2(t)i2(t) = u2(t) (I0 + iC(t))

operate the boost converter such that the load power is represented by a (virtual) conductance
at the input of the boost converter:

g(t) =
p1(t)

û21
=

p2(t)

û21
=

U2 (I0 + iC(t))

û21
.
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PFC rectifier with boost converter: closed-loop control structure (cont.)
The required conductance g(t) is calculated by the outer voltage controller:

▶ If u2(t) < U∗
2 : increase p2(t) by increasing the conductance g(t).

▶ If u2(t) > U∗
2 : decrease p2(t) by decreasing the conductance g(t).

With
î′(t) = û1g(t)

the required reference input current for the inner current controller can be calculated.

i1(t)

g(t)u1(t)

i2(t)

U2

p1 = p2

Fig. 4.29: Interpretation of the closed-loop control of a PFC rectifier as a variable conductance tuning
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PFC rectifier with boost converter: capacitor sizing
Based on the previous assumption u2(t) ≈ U2 the question is raised how the output capacitor
C of the boost converter must be sized to keep the output voltage ripple within acceptable
bounds justifying the assumption. For a lossless converter, the instantaneous power is:

p2(t) = p1(t) = u1(t)i1(t).

Assuming that the input voltage and current are both ideally sinusoidal and in phase (i.e., the
PFC rectifier operates perfectly), the instantaneous power is:

p2(t) = û1î1 sin(ωt) sin(ωt) =
û1î1
2

(1− cos(2ωt)) . (4.69)

Hence, we can decompose the instantaneous power into a constant term and a harmonic term
with twice the frequency of the input voltage/current:

p2(t) =
û1î1
2︸︷︷︸
p2

− û1î1
2

cos(2ωt)︸ ︷︷ ︸
p
(h)
2 (t)

. (4.70)
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PFC rectifier with boost converter: capacitor sizing (cont.)
The resulting harmonic output current component is (approximately)

i
(h)
2 (t) ≈ p

(h)
2 (t)

u2
= − û1î1

2u2
cos(2ωt) = −p2

u2
cos(2ωt). (4.71)

If the load current I0 is (approximately) constant, the harmonic current is entirely flowing into

the output capacitor i
(h)
2 (t) = iC(t) leading to the voltage ripple:

∆u2(t) =
1

C

∫
iC(t)dt = − p2

u2

1

2ωC︸ ︷︷ ︸
∆û2

sin(2ωt). (4.72)

To limit the output voltage ripple to a certain amplitude value ∆û2, the output capacitor C
must exhibit a minimal capacitance value:

C >
p2
u2

1

2ω∆û2
. (4.73)

Oliver Wallscheid Power electronics 252



PFC rectifier with boost converter: capacitor sizing (cont.)
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Fig. 4.30: Power and voltage oscillations in the PFC rectifier in quasi steady-state operation
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M3U uncontrolled rectifier circuit
The M3U rectifier addresses three-phase systems and typically utilizes an input transformer to
mitigate offset phase currents and further harmonics (compare Fig. 4.5). To simplify things, we
assume that the input transformer delivers an ideal three-phase voltage source:

u1a(t) = û1 sin(ωt), u1b(t) = û1 sin(ωt− 2π/3), u1c(t) = û1 sin(ωt+ 2π/3).

u1a(t)
i1a(t)

u1b(t)
i1b(t)

u1c(t)
i1c(t)

D1

D2

D3

i2(t)

Ru2(t)

Fig. 4.31: M3U topology (aka three-pulse mid-point rectifier) with an input three-phase transformer and
a resistive load
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M3U rectifier resistive load operation

−û1
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û1
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)
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ωt

i(
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Fig. 4.32: M3U characteristic voltage and current curves for a resistive load
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M3U rectifier resistive load operation: average output voltage
With a resistive load, the M3U rectifier’s output is always determined by the transformer phase
with the highest voltage:

u2(t) = max {u1a(t), u1b(t), u1c(t)} . (4.74)

▶ Assume u1a(t) has the highest voltage for some time t.

▶ Hence, there is a negative voltage difference between the phases b-a and c-a.

▶ These can be only compensated by the diodes D2 and D3, which are in blocking mode
while D1 is conducting.

The average output voltage can be found by evaluating the conduction interval of one phase,
e.g., u1a(t):

ū2 =
3

2π

∫ 5
6
π

1
6
π

û1 sin(ωt)dωt =
3

2π
[−û1 cos(ωt)]

5
6
π

1
6
π
=

3

2π
û12

√
3

2
=

3
√
3

2π
û1. (4.75)
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M3U rectifier with output filter
To filter both the output voltage and current, an output filter can be added to the M3U
rectifier circuit (Fig. 4.33). The filter consists of a series inductor L and a capacitor C in
parallel. In steady state

uC = u2 =
3
√
3

2π
û1 (4.76)

holds as the average inductor voltage must be zero to prevent a current run away.

u1a(t)
i1a(t)

u1b(t)
i1b(t)

u1c(t)
i1c(t)

D1

D2

D3

i2(t) L iR(t)

Ru2(t) CuC(t)

iC(t)

Fig. 4.33: M3U topology with an input three-phase transformer, a resistive load and output filter
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M3U rectifier with output filter (cont.)
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R
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Fig. 4.34: M3U characteristic voltage and current curves considering an idealized output filter with
uC(t) = u2 = const.

Oliver Wallscheid Power electronics 259



M3U rectifier with output filter (cont.)
From Fig. 4.34 one can observe that

u2(t) = u1a(t) = û1 sin(ωt), ωt ∈
[
1

6
π,

5

6
π

]
(4.77)

holds. At ωt = ωt1 the phase voltage u1a(t) is equal to the average output voltage u2:

u2 =
3
√
3

2π
û1 = û1 sin(ωt1) ⇔ ωt1 = arcsin

(
3
√
3

2π

)
. (4.78)

Based on this, the current i2(t) can be calculated as

i2(t) = i2(ωt1) +
1

ωL

∫ ωt

ωt1

(u2(ωτ)− u2) dωτ

= i2(ωt1) +
1

ωL

∫ ωt

ωt1

(û1 sin(ωτ)− û1 sin(ωt1)) dωτ, ωt ∈
[
1

6
π,

5

6
π

] (4.79)

with i2(ωt1) being the initial (yet unknown) current at ωt1.
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M3U rectifier with output filter (cont.)

Solving the integral in (4.79) yields

i2(t) = i2(ωt1) +
û1
ωL

[− cos(ωτ)− ωτ sin(ωt1)]
ωt
ωt1

= i2(ωt1) +
û1
ωL

[− cos(ωt) + cos(ωt1)− sin(ωt1) (ωt− ωt1)] .

(4.80)

To determine the initial current i2(ωt1), one can utilize the fact that the average inductor
current must be identical to the average load current since otherwise the output capacitor
would be charged or discharged indefinitely:

i2
!
= iR =

u2
R

=
û1 sin(ωt1)

R
. (4.81)
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M3U rectifier with output filter (cont.)
The average inductor current can be calculated as

i2 =
3

2π

∫ 5
6
π

1
6
π

i2(ωτ)dωτ =
3

2π

∫ 5
6
π

1
6
π

i2(ωt1)dωτ

+
3

2π

∫ 5
6
π

1
6
π

û1
ωL

[− cos(ωτ) + cos(ωt1)− sin(ωt1) (ωτ − ωt1)] dωτ

= . . .

= i2(ωt1) +
û1
ωL

[
cos(ωt1) + sin(ωt1)(ωt1 −

π

2
)
]
.

(4.82)

Inserting into (4.81) and solving for i2(ωt1) yields

i2(ωt1) =
û1
R

sin(ωt1)−
û1
ωL

[
cos(ωt1) + sin(ωt1)(ωt1 −

π

2
)
]
. (4.83)

With this result, the current i2(t) can be calculated using (4.80).
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M3U rectifier with output filter: CCM vs. DCM
The previous analysis only holds for CCM as otherwise all diodes would be blocking
simultaneously. From (4.80) one can find that the minimum current i2(t) is reached when
ωt = ωt1, i.e.,

min{i2(t)} = i2(ωt1) =
û1
R

sin(ωt1)−
û1
ωL

[
cos(ωt1) + sin(ωt1)(ωt1 −

π

2
)
]
. (4.84)

The boundary between CCM and DCM can be found by setting min{i2(t)} = 0 leading to
i2(ωt1) = 0. In this boundary case, the average output current is

i2 =
û1
ωL

[
cos(ωt1) + sin(ωt1)(ωt1 −

π

2
)
]

=
u2
ωL

[
tan(ωt1) + ωt1 −

π

2

]
.

(4.85)

One can also reinterpret this result for designing the filter inductor L to ensure CCM operation:

L ≥ u2

ωi2

[
tan(ωt1) + ωt1 −

π

2

]
. (4.86)
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B6U uncontrolled rectifier circuit

u1a
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Fig. 4.35: B6U topology (aka six-pulse bridge rectifier) with resistive load
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B6U rectifier resistive load operation
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Fig. 4.36: B6U characteristic voltage and current curves for a resistive load

Oliver Wallscheid Power electronics 266



B6U rectifier resistive load operation (cont.)

In the B6U bridge with a resistive load the upper output potential is determined by the highest
phase voltage while the lower output potential is determined by the lowest phase voltage. The
output voltage u2(t) is given by

u2(t) = max {u1a(t), u1b(t), u1c(t)} −min {u1a(t), u1b(t), u1c(t)} . (4.87)

Alternatively, we can evaluate the line-to-line voltages

u1ab(t) = u1a(t)− u1b(t) u1bc(t) = u1b(t)− u1c(t) u1ca(t) = u1c(t)− u1a(t)

=
√
3û1 sin(ωt+

1

6
π), =

√
3û1 sin(ωt−

1

2
π), =

√
3û1 sin(ωt+

5

6
π)

and find that the B6U output voltage is given by

u2(t) = max {u1ab(t), u1bc(t), u1ca(t)} . (4.88)
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B6U rectifier resistive load operation (cont.)
The average output voltage u2 is given by

u2 =
3

π

∫ 1
2
π

1
6
π

u1ab(ωt)dωt =
3

π

∫ 1
2
π

1
6
π

√
3û1 sin(ωt+

1

6
π)dωt

=
3
√
3

π
û1

[
− cos(ωt+

1

6
π)

] 1
2
π

1
6
π

=
3
√
3

π
û1.

(4.89)

Compared to the M3U rectifier average voltage from (4.75), the B6U average output voltage is
doubled – this is an analogous finding to the single phase case where the B2U rectifier has a
doubled average output voltage compared to the M2U rectifier.

Impact of further filter elements

The impact of filters elements, e.g., the line impedance from Fig. 4.13 or an LC output
filter as in Fig. 4.33, can be analyzed in a similar manner for the B6U rectifier. While
such filter elements are common in practice, they are not explicitly treated for the B6U
rectifier in the following due to time constraints.
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12-pulse rectifier: B6U-2S topology

u1a(t)
i1a(t)
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Fig. 4.37: 12-pulse recitifier with B6U-2S topology: two B6U rectifiers connected in series
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12-pulse rectifier: B6U-2S topology (cont.)
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Fig. 4.38: B6U-2S output voltage characteristic: voltage output ripple is reduced by shifting the phase
of the second rectifier by 1/6 · π utilizing different transformer winding schemes at the input

Oliver Wallscheid Power electronics 271



12-pulse rectifier: B6U-2P topology

u1a(t)
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Fig. 4.39: 12-pulse recitifier with B6U-2P topology: two B6U rectifiers connected in parallel
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12-pulse rectifier: B6U-2P topology (cont.)
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Fig. 4.40: B6U-2P output voltage characteristic: simplified representation as displacement currents
between the transformers are not taken into account
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Comparison of output voltage ripple characteristics
From the previous analyses of the considered three-phase rectifiers one can find

∆u2 = max{u2(t)} −min{u2(t)} =

(
1− cos

(
π

p

))
û2 (4.90)

with p being the number of pulses. For the considered rectifiers, the output voltage is given by

û2 =

{
û1, for M3U,√
3û1, for B6U and B6U-2P,

and u2 =

{
3
√
3

2π û1, for M3U,
3
√
3

π û1, for B6U and B6U-2P

leading to the normalized output voltage ripple being defined as

∆u2
u2

=


2π
3
√
3

(
1− cos

(
π
3

))
= 60.46%, for M3U,

π
3

(
1− cos

(
π
6

))
= 14.03%, for B6U,

π
3

(
1− cos

(
π
12

))
= 3.57%, for B6U-2P.

(4.91)

Takeaway: the higher the recitifier’s pulse number, the lower the output voltage ripple, that is,
there is a trade-off between the number of semiconductors and the filter effort.
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Section summary
This section provided an introduction to diode-based rectifiers. Not considering the active PFC
extension, those are also coined passive rectifiers. The key takeaways are:

▶ All considered rectifiers operate exclusively unidirectional.

▶ There is a complex interaction between semiconductor effort and filter effort to provide a
DC voltage with a certain signal quality.

▶ Without active PFC, any diode-based rectifier will introduce significant distortions at the
primary side due to harmonics and phase shifts between input voltage and current.

▶ Active PFC can be used to provide a near-unity power factor, which is required in many
applications due to industrial / legal regulations.

In addition, there are further topologies that are not covered in this course, such as

▶ M6U rectifier,

▶ very high pulse number rectifiers (e.g., 18 or 24-pulse rectifiers) requiring more complex
transformer winding schemes to achieve the desired phase shift on the secondary side,

▶ three-phase rectifiers with an integrated PFC stage (e.g., Vienna rectifier).
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Thyristor: an externally switchable power electronic component

▶ Can block voltage in both directions (when off)
▶ Different to diode (only blocks reverse voltage)

▶ Can conduct current in only one direction (when on)
▶ Identical to diode

▶ Turn-on: via gate signal

▶ Turn off: via current drop below holding current
(i.e., depends on load characteristics and input voltage)

Application area

While transistors are used for high-frequency converters
due to their favorable turn-on/off characteristics and have
replaced thyristors in many cases, the latter are still used
in low switching frequency applications (mostly energy
grid) due to their favorable high voltage / current ratings.

u

i

Gate

Anode Cathode

active
gate

no turn
off

disabled
gate

u

i

Fig. 5.1: Idealized thyristor
characteristics and circuit symbol
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Thyristor examples

(a) Top left: 1000V/200A (diode); bottom left:
1500V/20A; right: 1500V/120A; 1N4007

(diode) (source: Wikimedia Commons, CC0 1.0)

(b) Left: 800V/100A; right: 800V/13A (source:
Wikimedia Commons, Julo, CC0 BY-SA 3.0)

Fig. 5.2: Thyristor examples with different voltage and current ratings
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M1 rectifier comparison
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M1C rectifier

The average output voltage of the M1C circuit, i.e., the M1 rectifier with a thyristor, for a
resistive load is given by

u2 =
1

2π

∫ π

α
û1 sin(ωt)dωt =

û1
2π

[− cos(ωt)]πα =
û1
2π

(1 + cos(α)) . (5.1)

Here, α denotes the phase angle at which the thyristor is triggered (aka firing angle). In the
M1C case, the feasible range for α is [0, π] as the thyristor requires a positive forward voltage
to start conducting, that is, if uT < 0 a firing impulse would not change its conduction state.
The RMS value of the output voltage is given by

U2 =

√
1

2π

∫ π

α
û21 sin

2(ωt)dωt = . . . =
û1
2

√
π − α+ sin(α) cos(α)

π
. (5.2)

In contrast to the M1U rectifier from (4.3), the M1C rectifier allows for controlling the output
voltage by adjusting the firing angle α.
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M1C rectifier: Fourier series
The Fourier coefficients of the output voltage u2(t) for the M1C converter are

a(0) =
1

π

∫ 2π

0
u2(t)dωt =

1

π

∫ π

α
û1 sin(ωt)dωt = 2u2 =

û1
π
(1 + cos(α)),

a(k) =
1

π

∫ 2π

0
u2(t) cos(kωt)dωt =

1

π

∫ π

α
û1 sin(ωt) cos(kωt)dωt = . . .

=

{
û1
π

2
1−k2

, k = 1
1
2π

(
cos(α(k−1))+cos(kπ)

k−1 − cos(α(k+1))+cos(kπ)
k+1

)
, k ≥ 2.

b(k) =
1

π

∫ 2π

0
u2(t) sin(kωt)dωt =

1

π

∫ π

α
û1 sin(ωt) sin(kωt)dωt = . . .

=

{−α+π+cos(α) sin(α)
2π , k = 1,

1
2π

(
sin(α(k−1))+sin(kπ)

k−1 − sin(α(k+1))+sin(kπ)
k+1

)
, k ≥ 2.

(5.3)

In contrast to the M1U rectifier, one can observe additional harmonic components due to
additional distortion of the output voltage caused by the thyristor switching.
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M2C converter

N1 : N2

i1(t)

u1(t)

i2(t)

R u2(t)us,1(t)

us,2(t)

T1

T2

−ûs

0

ûs

u2

α α

us,2 us,1u
2
(ω

t)

0 π 2π 3π 4π
−2ûs

−ûs

0

ûs
uT1 uT2

ωt

u
T
(ω

t)

Fig. 5.3: M2C topology (aka two-pulse mid-point converter) with center-tapped transformer and a
resistive load
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M2C converter: resistive load
The average output voltage of the M2C converter for a resistive load is given by

u2 =
1

π

∫ π

α
ûs sin(ωt)dωt =

ûs
π

[− cos(ωt)]πα =
ûs
π

(1 + cos(α)) . (5.4)

The RMS value of the output voltage results in

U2 =

√
1

π

∫ π

α
û2s sin

2(ωt)dωt = . . . =
ûs√
2

√
π − α+ sin(α) cos(α)

π
. (5.5)

The primary to secondary voltage ratio of the center-tapped transformer yields

ûs
û1

=
1

2

N2

N1
.

It should be noted that in the case of a resistive load, the M2C’s output voltage is always
positive for the feasible firing angle range α ∈ [0, π].
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M2C converter with an output filter

N1 : N2

i1(t)

u1(t)

L i2(t)

u2(t)Cus(t)us,1(t)

us,2(t)

T1

T2

Fig. 5.4: M2C converter with an output filter assuming u2(t) = U2 = const.
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M2C converter with an output filter (cont.)
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0 1
2π

π 3
2π

2π

β = π

ωt

0 1
2π

π 3
2π

2π

β < π

ωt

Fig. 5.5: M2C topology with an output filter and different average load currents
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M2C converter with an output filter (cont.)
Due to the output filter, the secondary voltage us(t) can become negative since the current
flow is maintained by the inductor and, therefore, a thyristor is remaining in the conducting
state (until the next thyristor is triggered). The average output voltage in CCM (and BCM) is
given by

u2 =
1

π

∫ α+π

α
ûs sin(ωt)dωt =

ûs
π

[− cos(ωt)]α+π
α =

ûs
π

(− cos(α+ π) + cos(α))

= ûs
2

π
cos(α).

(5.6)

In DCM the conduction interval β is less than π and the average output voltage is given by

u2 =
1

π

∫ α+β

α
ûs sin(ωt)dωt =

ûs
π

[− cos(ωt)]α+β
α =

ûs
π

(cos(α)− cos(α+ β))

= ûs
2

π
sin

(
β

2

)
sin

(
α+

β

2

)
.

(5.7)
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M2C converter with an active load
Analyzing (5.6) for the feasible firing angle range α ∈ [0, π] reveals

u2

{
≥ 0, α ∈ [0, π/2],

< 0, α ∈ (π/2, π],
(5.8)

that is, the output voltage can become negative for α > π/2 in CCM and BCM (analogous
observation can be also made for DCM). Assuming an average output current i2 > 0, which
can be only positive due to the thyristor unipolar current capability, the average output power
is in the range of (for CCM and BCM)

p2

{
≥ 0, α ∈ [0, π/2],

< 0, α ∈ (π/2, π].
(5.9)

Hence, the M2C can transfer energy from the load to the source which requires an active load
(e.g., battery or generator) to maintain this reversed energy flow. Consequently, the M2C can
be used as a bidirectional energy transfer system operating both as a rectifier and an inverter.
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M2C converter with an active load (cont.)

−ûs
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Fig. 5.6: M2C topology with a negative output voltage delivering energy to the source side
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M2C output voltage overview
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Fig. 5.7: M2C output voltage overview
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M2C: complex power analysis
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−û1

0

û1
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Fig. 5.8: Input voltage and current of the M2C converter with idealized filtered, constant output current
(represented by a current source) and an idealized transformer
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M2C: complex power analysis (cont.)
Based on the setup form Fig. 5.8 one can observe that the phase angle φ(1) between the input

voltage u1(t) and the fundamental input current i
(1)
1 (t) is given by the firing angle α:

φ(1) = α.

Considering the center-tapped transformer, the input current fundamental amplitude is

i
(1)
1 =

4

π

1

2

N2

N1
I2 =

2

π

N2

N1
I2, (5.10)

where I2 is constant output current and 4/π represents the first Fourier coefficient of the
square-shaped input current i1(t). The latter is formed by the thyristors applying the positive
and negative output current to the transformer’s secondary side. The RMS value of the

fundamental component I
(1)
1 and the RMS value of the input current I1 are

I
(1)
1 =

√
2

π

N2

N1
I2, I1 =

1

2

N2

N1
I2. (5.11)

The latter can be found by considering that the RMS value of a symmetrical block-shaped
signal is its amplitude.
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M2C: complex power analysis (cont.)
Assuming an ideal sinusoidal input voltage, the active power is only transferred based on its
fundamental component

P1 = P
(1)
1 = I

(1)
1 U1 cos(φ

(1)) (5.12)

with U1 being the RMS value of the input voltage – compare (4.45). Assuming idealized,
lossless components the active input power must be equal to the average output power

P1 = p2 = I2u2 = I2ûs
2

π
cos(α) = I2ûs0 cos(α) (5.13)

with ûs0 = ûs · 2/π being the maximum reachable output voltage (for α = 0). From (5.12) the
fundamental reactive power can be determined as

Q
(1)
1 = I

(1)
1 U1 sin(φ

(1)) = I2ûs0 sin(α) (5.14)

and the fundamental apparent power is given by

S
(1)
1 = I

(1)
1 U1 = I2ûs0 = const. (5.15)
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M2C: reactive power diagram

Rewriting the fundamental apparent power in terms of the active and reactive power yields:

(
S
(1)
1

)2
=
(
P1

)2
+
(
Q

(1)
1

)2
= I22 û

2
s0 ⇔

(
Q

(1)
1

I2ûs0

)2

+

(
P 2
1

I2ûs0

)2

= 1. (5.16)

Inserting P1 = I2ûs0 cos(α) from (5.13) finally yields the following circular equation(
Q

(1)
1

I2ûs0

)2

+

(
cos(α)

)2

= 1 ⇔

(
Q

(1)
1

S
(1)
1

)2

+

(
u2
ûs0

)2

= 1 (5.17)

which can be visualized as a reactive power diagram of the M2C converter – compare the
upcoming Fig. 5.9.
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M2C: reactive power diagram (cont.)
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Fig. 5.9: Fundamental reactive power demand at some constant output current
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M2C: complex power analysis incl. harmonics
Extending the previous analysis of the complex power fundamental components to the total
complex power, one can determine the total apparent power as

S1 = I1U1 =
1

2

N2

N1
I2U1 =

π

2
√
2
S
(1)
1 ≈ 1.11 · S(1)

1 . (5.18)

Interestingly, the apparent power is independent of the firing angle α. The total reactive power
is given by

Q1 =
√
S2
1 − P 2

1 = S
(1)
1

√
π2

8
− cos2(α) =

√
2

π

N2

N1
I2U1

√
π2

8
− cos2(α). (5.19)

Alternatively, one could also determine the harmonic reactive power

Q
(h)
1 =

√(
S1

)2
−
(
S
(1)
1

)2
= S

(1)
1

√
π2 − 8

8
=

√
2

π

N2

N1
I2U1

√
π2 − 8

8
. (5.20)

first and then determine the total reactive power as

Q1 =

√(
Q

(1)
1

)2
+
(
Q

(h)
1

)2
= S

(1)
1

√
sin2(α) +

π2 − 8

8
=

√
2

π

N2

N1
I2U1

√
sin2(α) +

π2 − 8

8
.
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Commutation
Idealized, instantaneous commutation
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Commutation (cont.)

So far we have considered an idealized, instantaneous commutation of the thyristors. In
practice, the commutation process is not instantaneous and the thyristors overlap for a certain
period due to the commutation inductance Lc, which can originate from:

▶ Stray inductance of the feeding transformer,

▶ Parasitic inductance of the thyristor package,

▶ Parasitic inductance of the circuit layout.

Kirchhoff’s voltage law for the commutation loop yields

uc(t) = us,1(t)− us,2(t) = 2Lc
d

dt
iT2(t) = −2Lc

d

dt
iT1(t) (5.21)

with the commutation voltage uc(t) and the thyristor currents iT1(t) and iT2(t).
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Commutation (cont.)

From (5.21) the thyristor currents can be expressed as

iT1(t) = iT1(kπ + α)− 1

2Lcω

∫ ωt

kπ+α
uc(τ)dτ = iT1(kπ + α) +

us
Lcω

(cos(kπ + α)− cos(ωt)) ,

iT2(t) = iT2(kπ + α) +
1

2Lcω

∫ ωt

kπ+α
uc(τ)dτ = iT2(kπ + α)− us

Lcω
(cos(kπ + α)− cos(ωt)) .

Here, iT1(kπ + α) and iT2(kπ + α) are the thyristor currents at the beginning of the
commutation process during the k-th half cycle. One can distinguish two cases:

iT1(kπ + α) = 0, iT2(kπ + α) = i2, commutation from T2 to T1,

iT1(kπ + α) = i2, iT2(kπ + α) = 0, commutation from T1 to T2.

The commutation process ends when the thyristor currents reach i2 and zero, respectively.
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Commutation: overlap angle and feasible firing angle range
To determine the commutation overlap angle κ, we consider k = 0 and the commutation from
T2 to T1, that is, iT1(α) = 0. The commutation ends when iT1(α+ κ) = i2, which yields

iT1(α+ κ) = i2
!
=

us
Lcω

(cos(α)− cos(α+ κ)) . (5.22)

Solving for the overlap angle κ results in

κ = arccos

(
cos(α)− i2Lcω

us

)
− α. (5.23)

To ensure a successful commutation α+ κ < π must hold: Otherwise the commutation voltage
changes its sign and the commutation fails. Hence, the achievable firing angle is determined by

α+ κ < π ⇔ arccos

(
cos(α)− i2Lcω

us

)
< π (5.24)

leading to

α < arccos

(
i2Lcω

us
− 1

)
. (5.25)
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Commutation: successful and unsuccessful examples
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Fig. 5.10: Commutation process for different firing angles α
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Commutation: output voltage deviation
As seen in Fig. 5.10, the output voltage of the thyristor stage is zero during the commutation
process as the transformer’s secondary side is temporarily short-circuited during the overlap
period (since both thyristors are conducting):

us(ωt) = 0, ωt ∈ [kπ + α, kπ + α+ κ]. (5.26)

The output voltage loss due to commutation corresponds to

∆u =
1

π

∫ α+κ

α
ûs sin(ωt)d(ωt) =

ûs
π

[− cos(ωt)]α+κ
α =

ûs
π

[cos(α)− cos(α+ κ)] . (5.27)

Inserting (5.23) for κ yields

∆u =
ûs
π

[
cos(α)− cos

(
α+ arccos

(
cos(α)− i2Lcω

ûs

)
− α

)]
=

i2Lcω

π
.

(5.28)

Hence, the average output voltage is deviating by ∆u due to the commutation process.
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M3C converter

The previous diode-based rectifiers with higher-pulse numbers can be directly transferred to
their controlled counterparts using thyristors, such as the 3-pulse converter shown in Fig. 5.11.

u1a(t)
i1a(t)

u1b(t)
i1b(t)

u1c(t)
i1c(t)

i2(t) L iR(t)

Ru2(t) CuC(t)

iC(t)

Fig. 5.11: M3C topology with an input three-phase transformer, a resistive load and output filter
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M3C converter (cont.)

The M3C converter’s firing angle α starts at
the crossing of two adjacent input voltages,
that is, where the voltage over the next
thyristor becomes positive. For CCM and
neglecting commutation and other parasitic
effects, the M3C’s average output voltage is

u2 =
3

2π

∫ 5
6
π+α

1
6
π+α

û1 sin(ωt)dωt

=
3

2π
û1 [− cos(ωt)]

5
6
π+α

1
6
π+α

= . . .

=
3
√
3

2π
û1 cos(α).

(5.29)
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Fig. 5.12: Examplary firing angle for the M3C
converter
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B6C converter

u1a
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Fig. 5.13: B6C topology with line chokes and a resistive load
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Output voltage of a thyristor bridge converter with p pulses
The average output voltage (under idealized
CCM operation) of a thyristor bridge converter
with p pulses is given by

u2 =
p

2π

∫ α+π
p

α−π
p

û cos(ωt)dωt

= û
p

2π

[
sin

(
α+

π

p

)
− sin

(
α− π

p

)]
= û

p

π
sin

(
π

p

)
cos(α). (5.30)

Here, the maximum achievable voltage

max
α

u2 = û
p

π
sin (π/p) (5.31)

increases with the number of pulses p.

0 2π
p

4π
p

6π
p

8π
p

10π
p

12π
p

−û

0

û

u2

u2(t)α 2π/p

ωt

u
(t
)

Fig. 5.14: Generalized firing angle representation for
a thyristor bridge converter with p pulses and û

being the line-to-line voltage amplitude
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Section summary
This section provided an introduction to thyristor-based converters. The key takeaways are:

▶ In contrast to diode-based rectifiers:
▶ Are controllable by varying the firing angle α (within its feasible range).
▶ Can transfer power in both directions (rectifier and inverter operation).

▶ Likewise diode-based rectifiers:
▶ Introduce harmonics in the output voltage and input current (i.e., require filters).
▶ Typically, do not operate at unity power factor (require reactive power).
▶ Are line-commutated, as the external grid voltage is required to achieve the commutation.

Previous analyses based on diodes or thyristor-based converters were dealt with in varying
detail level, but as they can be transferred analogously they are not explicitly shown due to
time constraints. In addition, there are further interesting thyristor-based applications such as

▶ four quadrant thyristor converters (e.g., cycloconverters) covering both voltage and current
polarities,

▶ specialized stacked topologies for high-voltage DC transmission.
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Transistor-based AC/DC converters: self-commutated converters

Up to now:

▶ Diode-based converters
▶ Rectification only
▶ No control

▶ Thyristor-based converters
▶ Rectification and inversion
▶ Limited control / line commutation

Extension in this section:

▶ Transistor-based converters
▶ Rectification and inversion
▶ Fully controllable / self-commutated

i1

u1

I
P ≥ 0

(recitifier)

II
P ≤ 0

(inverter)

III
P ≥ 0

(recitifier)

IV
P ≤ 0

(inverter)

Thyristors

Diodes

i1

DC u1

i2

u2 AC
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Idealized switch representation of a single-phase AC/DC bridge converter
Define switching function:

si(t) =

{
+1 upper position,

−1 lower position.

(6.1)
Output voltage considering a voltage
source at the input is:

u2(t) =
1

2
(s1(t)− s2(t))︸ ︷︷ ︸

s(t)

u1(t).

(6.2)
Input current assuming a current
source at the output results in:

i1(t) = s(t)i2(t). (6.3)

i2(t)

u2(t)

i1(t)

u1(t)

s1(t)

s2(t)

Fig. 6.1: Idealized switch representation of a single-phase
AC/DC bridge converter
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Circuit realization

▶ Remember: complementary switching
of {T1, T2} and {T3, T4} to prevent a
DC-link short-circuit.

▶ Possible (allowed) switching states:

T1 T2 T3 T4 s1 s2 s

on off off on +1 −1 +1
off on on off −1 +1 −1
on off on off +1 +1 0
off on off on −1 −1 0

u1(t)

i1(t)

i2(t)

u2(t)

T1

T2

T3

T4

Fig. 6.2: Full-bridge single-phase AC/DC converter
(identical to the one used in the DC/DC section in

Fig. 2.43)
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Pulse width modulation (PWM) options

s∗(t)

c(t)

−

1

−1

-1 s2(t)

s1(t)

Fig. 6.3: PWM with complementary switching

s∗(t)

−

−
c(t) −

1

−1

1

−1

s1(t)

s2(t)

Fig. 6.4: PWM with interleaved switching
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PWM example with complementary switching
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1
s∗
(t
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t)

s∗(t) c(t)
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PWM example with interleaved switching
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PWM approximation error analysis

−1

0

1
s∗

Ts(1−s∗)
2

Ts(1+s∗)
4
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t
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t

s 1
(t
)
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0
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s 2
(t
)

0 Ts
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Ts
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0

1
u2

e(t)

t1 t2

t

u
2
(t
)/
U
1

Fig. 6.5: Pulse pattern for complementary PWM
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2

Ts(1+|s∗|)
4
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t
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t)

−1
0
1

t

s 1
(t
)

−1
0
1

t

s 2
(t
)
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2
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0

1
u2

t1 t2 e(t)
t

u
2
(t
)/
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Fig. 6.6: Pulse pattern for interleaved PWM
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PWM approximation error analysis (cont.)
To evaluate the error between the reference s∗(t) and the switched output voltage u2(t), we
introduce the following normalized integral difference:

e(t) =
1

Ts

∫ t

t0

(s∗(τ)− s(τ)) dτ. (6.4)

This error can be interpreted as the resulting current ripple assuming a pure inductive load L
at a constant input voltage u1(t) = U1:

∆i2(t) =
TsU1

2L
|e(t)| . (6.5)

For a constant reference s∗(t) = s∗, the biggest error corresponds to the integral over the time
interval [t1, t2] as can be seen in Fig. 6.5 and Fig. 6.6:

complimentary switching (cs): max
t

ecs(t) =
1

Ts
(s∗ + 1) (t2 − t1) =

1

2
(s∗ + 1) (1− s∗) ,

interleaved switching (is): max
t

eis(t) =
1

Ts
|s∗| (t2 − t1) =

1

2
|s∗| (1− |s∗|) .

(6.6)
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PWM approximation error analysis (cont.)
Further, analyzing (6.6)

d

ds∗

(
max

t
ecs(t)

)
= −2s∗,

d

ds∗

(
max

t
eis(t)

)
= sgn(s∗)− 2s∗ (6.7)

reveals the worst case deviation at a switching reference of:

argmax
s∗

{
max

t
ecs(t)

}
= 0, argmax

s∗

{
max

t
eis(t)

}
= ±1

2
. (6.8)

Inserting this finding into (6.5) delivers

∆i2,cs = (1− s∗)(1 + s∗)∆i2,cs,max with ∆i2,cs,max =
TsU1

2L
,

∆i2,is = 4 |s∗| (1− |s∗|)∆i2,is,max with ∆i2,is,max =
TsU1

8L
.

(6.9)

Hence, the current ripple of the interleaved PWM is only 1/4 of the complementary PWM.
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PWM approximation error analysis (cont.)

Reasons for current ripple reduction of
interleaved vs. complimentary PWM:

▶ Effective pulse number doubled:
▶ CS: fp = fs
▶ IS: fp = 2fs

▶ Output voltage steps halved:
▶ CS: ∆u2 = ±2U1

▶ IS: ∆u2 = ±U1

Note on applicability

This analysis only holds for s∗ = const.
and can be transferred only approxi-
mately for s∗(t) = f(ω) if Ts << 2π

ω .

−1 −0.5 0 0.5 1
0

0.25

0.5

0.75

1

s∗

∆
i 2
/∆

i 2
,c
s,
m
a
x

cs
is

Fig. 6.7: Current ripple as a function of the single-phase
AC/DC normalized reference output voltage s∗
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Overmodulation
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1

s∗
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s∗(t) c(t)

−1
0

1

s 1
(t
)

−1
0

1

s 2
(t
)

−1
0

1

s(
t)

0 1/2π π 3/2π 2π
−0.15

0
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Overmodulation (cont.)
Considering a normalized input reference

s∗(t) = m sin(ωt) =
û∗2
U1

sin(ωt)

with the modulation ratio m one can
distinguish two PWM operation areas:

▶ m ≤ 1: linear modulation,

▶ m > 1: overmodulation.

Harmonics

While the normalized output voltage
fundamental can be increased beyond
unity via overmodulation, increased
voltage harmonics must be accepted.

0 0.5 1 1.5 2 2.5 3
0

0.25

0.5

0.75

1

4/π

linear mod. overmodulation

Fundamental freq. mod. (fs = ω/2π)

m

û
(1
)

2
/U

1

Fig. 6.8: Reference amplitude to output voltage
fundamental amplitude
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Overmodulation (cont.)
Due to the converter’s constraints, the
reference voltage is limited to

s∗lim(t) =


1 if s∗(t) > 1,

s∗(t) if − 1 ≤ s∗(t) ≤ 1,

−1 if s∗(t) < −1.

Hence, from ωt0 to ωt1 the converter’s
output voltage is clipped for m > 1. With

m sin(ωt0)
!
= 1

one can find

ωt0 = arcsin

(
1

m

)
. (6.10)

0 1
2π

π0

0.25

0.5

0.75

1

1.25
s∗(t)

s∗lim(t)

ωt0 ωt1

ωt

s∗
(t
)

Fig. 6.9: Exemplary time series between average
reference and actual voltage in the overmodulation range
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Overmodulation (cont.)
To calculate the resulting fundamental output voltage during overmodulation, a Fourier
analysis is performed while utilizing the quarter-wave symmetry of the output voltage signal:

u
(1)
2

U1
=

1

π

∫ 2π

0
s∗lim(ωτ) sin(ωτ)dωτ

=
4

π

(∫ ωt0

0
m sin2(ωτ)dωτ +

∫ π
2

ωt0

1 sin(ωτ)dωτ

)

=
4

π

[
m

2

(
ωt0 −

1

2
sin(2ωt0)

)
+ cos(ωt0)

]
.

(6.11)

Inserting ωt0 from (6.10) and applying trigonometric identities yields:

u
(1)
2

U1
=

2

π

[
m arcsin

(
1

m

)
+

√
1− 1

m2

]
∈
[
1,

4

π

]
for m ≥ 1. (6.12)
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Fundamental frequency modulation (aka square wave modulation)
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s 1
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Fundamental frequency modulation (cont.)
The fundamental frequency modulation leads to a pulse pattern synchronized with the

fundamental output voltage û
(1)
2 (t), i.e., the switching frequency matches the fundamental

voltage frequency

fs =
ω

2π
.

The fundamental output voltage amplitude can be derived from the corresponding Fourier
coefficient

u
(k)
2

U1
=

1

π

∫ α+π

α

u2(t)

U1
sin(k(ωt− α))dωt =

2

π

∫ π/2

0
sin(kωt)dωt

=
2

π

[
−1

k
cos(kωt)

]π/2
0

=
2

π

[
1

k

(
cos(0)− cos(k

π

2
)
)]

=
4

π

1

k
, k = 1, 3, 5, 7, . . .

(6.13)

The fundamental output voltage amplitude is thus given by û
(1)
2 = 4/π · U1 which is fixed due

to fundamental frequency modulation while only the phase angle α can be adjusted.
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Blanking / interlocking time

When the i-th half bridge is actuated, i.e.,
changes it switching state, an interlocking
/ blanking time t0 is introduced to avoid
short-circuiting the DC link:

▶ First: turn off conducting transistor,

▶ Second: wait t0
(ensure safe turn off),

▶ Third: turn on the other transistor.

Background

Signal delays or component tolerances
lead to varying switch on/off times,
which is why the interlock ensures an
orderly switching process.

i2(t)

si,1(t)

si,2(t)

T1

T2

Driver
si(t)

i1(t)

u1(t)

u2(t)

Fig. 6.10: Actuation of one half-bridge branch
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Current paths depending on the switching state and current flow direction

i > 0

si,1 = 1

si,2 = 0

i < 0

si,1 = 1

si,2 = 0

(a) Upper transistor on

i > 0

si,1 = 0

si,2 = 1

i < 0

si,1 = 0

si,2 = 1

(b) Lower transistor on

i > 0

si,1 = 0

si,2 = 0

i < 0

si,1 = 0

si,2 = 0

(c) Both transistors off
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Blanking / interlocking time: positive load current
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Blanking / interlocking time: negative load current
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Blanking / interlocking time: discontinuous conduction
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Blanking / interlocking time (cont.)

For the continuous conduction case, the voltage error ∆u due to the interlocking time t0 is
given by

∆u = u2 − U1s
∗ = −sgn(i2)

t0
Ts

U1 = −sgn(i2)t0fsU1. (6.14)

Hence, the error depends on the relative duration of the interlocking time t0 compared to the
switching period Ts which is a device-specific parameter (cf. below).

Device type t0 fs

GTO 10 µs – 30 µs 200Hz – 500Hz
IGBT 2 µs – 4 µs 5 kHz – 20 kHz

MOSFET ≤1 µs 20 kHz – 1000 kHz

Tab. 6.1: Typical interlocking times and switching frequencies for different power semiconductor devices
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Outlook: multi-level converters

Udc
2

Udc
2

u2(t)

−Udc
2

Udc
2

t

u2

(a) 2-level half bridge

Udc
2

Udc
2

u2(t)

−Udc
2

Udc
2

t

u2

(b) 3-level half bridge

Udc
3

Udc
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Udc
6

Udc
3

u2(t)

−Udc
2

Udc
2

t

u2

(c) 4-level half bridge
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Rectifier application setup

i2(t)

u2(t)

i1(t) I0

u1(t)

s1(t)

s2(t)

C

iC(t)

L

uL(t)

ug(t)

Fig. 6.13: Single-phase grid rectification: full bidirectional operation possible (e.g., for electrical rail
vehicles with a 15 kV, 16 2

3 Hz grid). Note: converter topology is flipped to align u2 with the AC grid
side while u1 is the DC output. Also known as active front end (AFE) rectifier.
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Steady-state operation
Assuming steady state, the grid side input loop
from Fig. 6.13 can be described with complex
phasors:

û2 = ûg − jωLî2. (6.15)

The converter’s input voltage amplitude is

û2 =

√
û2g +

(
ωLî2

)2
. (6.16)

As the converter boosts the grid voltage
towards the DC-link, the following condition
must apply:

u1(t) ≈ Udc ≥ û2 =

√
û2g +

(
ωLî2

)2
. (6.17)

Re

Im

ûgîg

ûL

û2

φ2

Fig. 6.14: Steady-state phasor diagram assuming
cos(φ) = 1 operation (enforced via some

supervisory control)
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Steady-state operation (cont.)

With the assumption of cos(φ) = 1 operation and a lossless converter, the following relations
hold:

P = P1 = P2 = Pg = UgIg =
1

2
ûg îg. (6.18)

While there is no reactive power exchange with the grid, the converter needs to supply the
reactive power Q2 to compensate for the line inductance demand:

Q2 = ωLI2g . (6.19)

The resulting apparent power S2 is

S2 =
√
P 2 +Q2

2 =

√
P 2 +

(
ωLI2g

)2
=

√
P 2 +

(
ωL

U2
g

P 2

)2

= P

√
1 +

(
ωL

U2
g

P

)2

. (6.20)
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Steady-state operation (cont.)

Neglecting the switching-induced current and voltage ripples, the instantaneous grid power is

pg(t) = ug(t)ig(t) = ûg îg cos
2(ωt) = P + P cos(2ωt). (6.21)

The instantaneous converter power at its AC input is

p2(t) = u2(t)i2(t) = (ug(t) + uL(t)) ig(t) =

(
ug(t) + L

d

dt
ig(t)

)
ig(t)

= ûg îg cos
2(ωt) + ωLî2g sin(ωt) cos(ωt)

= P (1 + cos(2ωt)) +Q2 sin(2ωt) = P + S2 cos(2ωt− 2φ2)

(6.22)

with φ2 being the phase angle between i2(t) and u2(t). Hence, the converter power oscillates
at twice the grid frequency with an amplitude of S2. As S2 > P applies, the instantaneous
output power gets temporarily negative as a result of the reactive power compensation on the
grid input side.
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Steady-state operation (cont.)
Assuming a nearly constant DC-link voltage u1(t) ≈ Udc, the converter DC-side current i1(t)
oscillates as well:

i1(t) =
p1(t)

Udc
=

p2(t)

Udc
=

P

Udc
+

S2

Udc
cos(2ωt− 2φ2). (6.23)

For a constant load current

I0 =
P

Udc
,

the converter’s output current can be rewritten as

i1(t) = I0

(
1 +

√
1 +

(
ωLUdc

U2
g

)2

cos(2ωt− 2φ2)

)
. (6.24)

Consequently, the DC-link capacitor carries the harmonic current content:

iC(t) = i1(t)− I0 = I0

√
1 +

(
ωLUdc

U2
g

)2

cos(2ωt− 2φ2). (6.25)
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Steady-state operation (cont.)

Assuming that the voltage ripple of the DC-link capacitor does not significantly affect the
output current, the voltage oscillation amplitude can be approximated as:

ûC = û1 ≈
î1

2ωC
=

I0
2C

√
1 +

(
ωLUdc

U2
g

I0

)2

. (6.26)

This relation results from the complex phasor analysis of the capacitor’s impedance given the
current ripple (6.25). From (6.26) one can

▶ derive the required DC-link capacitance for a given voltage ripple,

▶ estimate the voltage ripple for a given DC-link capacitance.
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Steady-state operation (cont.)

0
φ2

x
(t
)

ug(t) ig(t) u2(t)

0 1/2π π 3/2π 2π
0

1

2

S2

S2

ωt

p
(t
)/
P pg(t) p2(t)

Fig. 6.15: Steady-state operation of the single-phase four-quadrant rectifier: (top) individual signals and
(bottom) power oscillations at twice the grid frequency
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Idealized switch representation of a three-phase AC/DC bridge converter

i2c(t)

i2b(t)

i2a(t)

u2ab(t)

u2bc(t)

u2ca(t)

i1(t)

u1(t)

s1(t)

s2(t)

s3(t)

Fig. 6.16: Idealized switch representation of a three-phase two-level AC/DC bridge converter
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Circuit realization

u1(t)
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u1(t)
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Fig. 6.17: Three-phase two-level AC/DC converter
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Switching states and load-independent output voltages
Reutilizing the switching function definition (6.1), the line-to-line voltages can be expressed as

u2ab(t) =
1

2
(sa(t)− sb(t))u1(t),

u2bc(t) =
1

2
(sb(t)− sc(t))u1(t),

u2ca(t) =
1

2
(sc(t)− sa(t))u1(t).

(6.27)

The line-to-ground voltages are given by

u2a0(t) =
1

2
sa(t)u1(t),

u2b0(t) =
1

2
sb(t)u1(t),

u2c0(t) =
1

2
sc(t)u1(t).

(6.28)
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Three-phase converter with symmetric load in star connection

u1(t)
2

u1(t)
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u1(t)
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T6
u2i0(t) un0(t)

Fig. 6.18: Three-phase two-level AC/DC converter with symmetric load in star connection

Oliver Wallscheid Power electronics 347



Three-phase converter with symmetric load in star connection (cont.)
Assuming a star-connected load, the three-phase currents sum up to zero:

i2a(t) + i2b(t) + i2c(t) = 0. (6.29)

If the star point is not connected to ground, un0(t) ̸= 0 may occur leading to a load voltage of

u2a(t) = u2a0(t)− un0(t), u2b(t) = u2b0(t)− un0(t), u2c(t) = u2c0(t)− un0(t). (6.30)

To calculate un0(t) one can utilize the load equation (assuming an inductive load):

u2i(t) = L
d

dt
i2i(t) + un0(t) (6.31)

summing up to

3un0(t) + L
d

dt
(i2a(t) + i2b(t) + i2c(t)) = u2a0(t) + u2b0(t) + u2c0(t) (6.32)

and finally delivering the star-to-ground voltage as

un0(t) =
1

3
(u2a0(t) + u2b0(t) + u2c0(t)) . (6.33)
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Three-phase converter with symmetric load in star connection (cont.)

No. sa sb sc
u2a0
u1

u2b0
u1

u2c0
u1

u2a
u1

u2b
u1

u2c
u1

uab
u1

ubc
u1

uca
u1

un0
u1

0 −1 −1 −1 −1
2 −1

2 −1
2 0 0 0 0 0 0 −1

2

1 +1 −1 −1 +1
2 −1

2 −1
2 +2

3 −1
3 −1

3 +1 0 −1 −1
6

2 +1 +1 −1 +1
2 +1

2 −1
2 +1

3 +1
3 −2

3 0 +1 −1 +1
6

3 −1 +1 −1 −1
2 +1

2 −1
2 −1

3 +2
3 −1

3 −1 +1 0 −1
6

4 −1 +1 +1 −1
2 +1

2 +1
2 −2

3 +1
3 +1

3 −1 0 +1 +1
6

5 −1 −1 +1 −1
2 −1

2 +1
2 −1

3 −1
3 +2

3 0 −1 1 −1
6

6 +1 −1 +1 +1
2 −1

2 +1
2 +1

3 −2
3 +1

3 1 −1 0 +1
6

7 +1 +1 +1 +1
2 +1

2 +1
2 0 0 0 0 0 0 +1

2

Tab. 6.2: Switching states and resulting voltages of the three-phase two-level AC/DC converter with
symmetric load in star connection (with 23 = 8 possible switching states)
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Three-phase fundamental frequency modulation (aka six-step mode)

−1/2

1/2
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ωt
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Three-phase fundamental frequency modulation (cont.)
From the previous figure and voltage equations, we can summarize the following observations:

▶ Due to the fundamental frequency modulation, the switching frequency of the inverter is
identical to the fundamental frequency: fs = ω/2π.

▶ The star-to-ground voltage un0(t) shows a rectangular signal pattern with triple
fundamental frequency.

▶ Consequently, it does not influence the fundamental output voltage, that is, the
fundamental components of the line-to-ground voltage u2i0(t) as well as the load voltage

u2i(t) are identical: û
(1)
2i0 = û

(1)
2i .

Note on the star point

The previous analysis assumed a non-connected star point, which comes with certain
advantages, e.g., on the rejection of current harmonics. If, however, the star point
would be connected, the three-phase converter can be interpreted and analyzed as
three independent single-phase converters (each driven by a half bridge).
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Three-phase pulse width modulation (PWM)

s∗1(t)

c(t)

−

s∗3(t)

s∗2(t)

−

−

1

−1

1

−1

1

−1

s1(t)

s2(t)

s3(t)

Fig. 6.19: Three-phase PWM (note: a distinction between interleaved and complementary PWM is not
relevant here, as the three-phase converter operates on a half-bridge basis while the previously

considered single-phase converter was based on a full bridge. While independent and phase-shifted
carriers per phase could be also used in the three-phase converter, this is typically not utilized due to

increasing current harmonics.)
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Three-phase PWM example (with ref. modulation index m = 0.5)
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Three-phase PWM example (with ref. modulation index m = 1)
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Three-phase PWM example (with ref. modulation index m = 1.18)
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Section summary
This section provided an introduction to transistor-based AC/DC converters. The key
takeaways are:

▶ They render themselves (half/full) bridge topologies as already known from the DC/DC
converter context.

▶ Can transfer power in both directions and handle all four quadrants on the AC side.
▶ Require modulation strategies to generate the desired output voltage:

▶ High switching frequency PWM (low harmonics, below maximum conv. utilization) or
▶ Low switching frequency fundamental modulation (max. utilization, but high harmonics).

▶ The output voltage amplitude and phase angle can be adjusted to achieve arbitrary power
factors for grid operation or to supply various loads such as DC or AC motors.

While this section only covered a very brief overview about these self-commutated converters,
the following aspects are, among other, important for practical applications:

▶ closed-loop control,
▶ Further modulation strategies (e.g., space vector modulation or optimized pulse pattern),
▶ converters with a current source (instead of voltage source) within the DC link.
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English-German dictionary I

active power . . . . . . . . . . . . . . . . . . . Wirkleistung

angle . . . . . . . . . . . . . . . . . . . . . . . Winkel

apparent power . . . . . . . . . . . . . . . . . . Scheinleistung

average . . . . . . . . . . . . . . . . . . . . . . Mittelwert

boundary conduction mode (BCM) . . . . . . . . Lückgrenzbetrieb

bridge . . . . . . . . . . . . . . . . . . . . . . Brücke / Brückenschaltung

capacitance . . . . . . . . . . . . . . . . . . . . Kapazität [Größe]

capacitor . . . . . . . . . . . . . . . . . . . . . Kondensator [Bauelement]

choke . . . . . . . . . . . . . . . . . . . . . . . Drossel / Spule

circuit . . . . . . . . . . . . . . . . . . . . . . Schaltkreis

commutation . . . . . . . . . . . . . . . . . . . Kommutierung
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English-German dictionary II
continuous conduction mode (CCM) . . . . . . . Nicht-lückender Betrieb

converter . . . . . . . . . . . . . . . . . . . . . Umrichter

copper . . . . . . . . . . . . . . . . . . . . . . Kupfer

current . . . . . . . . . . . . . . . . . . . . . . Strom

derivative . . . . . . . . . . . . . . . . . . . . . Ableitung

differential equation . . . . . . . . . . . . . . . Differentialgleichung

discontinuous conduction mode (DCM) . . . . . . Lückbetrieb

duty cycle . . . . . . . . . . . . . . . . . . . . Tastgrad

efficiency . . . . . . . . . . . . . . . . . . . . . Wirkungsgrad

energy . . . . . . . . . . . . . . . . . . . . . . Energie

fan . . . . . . . . . . . . . . . . . . . . . . . . Lüfter

firing angle . . . . . . . . . . . . . . . . . . . . Zünd- / Steuerwinkel
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English-German dictionary III
flyback converter . . . . . . . . . . . . . . . . . Sperrwandler

forward converter . . . . . . . . . . . . . . . . . Durchflusswandler

frequency . . . . . . . . . . . . . . . . . . . . . Frequenz

fundamental frequency modulation . . . . . . . . Grundfrequenz-/Blocktaktung

galvanic isolation . . . . . . . . . . . . . . . . . Galvanische Trennung

hard switching . . . . . . . . . . . . . . . . . . Hartes Schalten (unter Last)

heat . . . . . . . . . . . . . . . . . . . . . . . Wärme

inductance . . . . . . . . . . . . . . . . . . . . Induktivität [Größe]

inductor . . . . . . . . . . . . . . . . . . . . . Spule [Bauelement]

interlocking time . . . . . . . . . . . . . . . . . Wechselrichtersperrzeit

inverter . . . . . . . . . . . . . . . . . . . . . . Wechselrichter

line choke . . . . . . . . . . . . . . . . . . . . Netzdrossel
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English-German dictionary IV

load . . . . . . . . . . . . . . . . . . . . . . . Last / Belastung

losses . . . . . . . . . . . . . . . . . . . . . . . Verluste

modulation ratio . . . . . . . . . . . . . . . . . Aussteuergrad

nameplate . . . . . . . . . . . . . . . . . . . . Typenschild

overmodulation . . . . . . . . . . . . . . . . . . Übermodulation

point of common coupling . . . . . . . . . . . . Ankopplungs-/Verknüpfungspunkt

power . . . . . . . . . . . . . . . . . . . . . . . Leistung

power electronics . . . . . . . . . . . . . . . . . Leistungselektronik

power factor . . . . . . . . . . . . . . . . . . . Leistungsfaktor

power factor correction (PFC) . . . . . . . . . . Leistungsfaktorkorrekturfilter

reactive power . . . . . . . . . . . . . . . . . . Blindleistung
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English-German dictionary V
rectifier . . . . . . . . . . . . . . . . . . . . . . Gleichrichter

resistance . . . . . . . . . . . . . . . . . . . . . Widerstand [Größe]

resistor . . . . . . . . . . . . . . . . . . . . . . Widerstand [Bauelement]

ripple . . . . . . . . . . . . . . . . . . . . . . . Schwankung

root mean square (RMS) . . . . . . . . . . . . . Effektivwert

semiconductor . . . . . . . . . . . . . . . . . . Halbleiter

soft switching . . . . . . . . . . . . . . . . . . . Weiches Schalten (lastlos)

steady state . . . . . . . . . . . . . . . . . . . Stationärer Zustand

step-down / buck converter . . . . . . . . . . . . Tiefsetzsteller

step-up / boost converter . . . . . . . . . . . . Hochsetzsteller

switch . . . . . . . . . . . . . . . . . . . . . . Schalter

terminal . . . . . . . . . . . . . . . . . . . . . Anschlussfeld
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English-German dictionary VI

total harmonic distortion (THD) . . . . . . . . . Oberschwingungsgesamtverzerrung

transformer . . . . . . . . . . . . . . . . . . . . Transformator

transient . . . . . . . . . . . . . . . . . . . . . Transienter Zustand

unit . . . . . . . . . . . . . . . . . . . . . . . . Maßeinheit

voltage . . . . . . . . . . . . . . . . . . . . . . Spannung

work . . . . . . . . . . . . . . . . . . . . . . . Arbeit

zero current switching . . . . . . . . . . . . . . Nullstromschalten

zero voltage switching . . . . . . . . . . . . . . Nullspannungsschalten
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Nomenclature I

x(t) . . . . . . . . . . time-dependent, scalar quantity

x̂ . . . . . . . . . . . . (fundamental) amplitude of a signal x(t)

x̂(k) . . . . . . . . . . k-th harmonic amplitude of a signal x(t)

x(t) . . . . . . . . . . time-dependent, vectorial quantity

X . . . . . . . . . . . constant, scalar quantity (e.g., root mean square value)

X . . . . . . . . . . . matrix

x . . . . . . . . . . . . average

x(t) . . . . . . . . . . dynamic average (t ∈ [−Ts/2,+Ts/2])

X . . . . . . . . . . . complex quantity

X∗ . . . . . . . . . . . complex conjugate

d
dtx(t) . . . . . . . . . derivative (first derivative w.r.t. time)
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