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Course Overview

The course will be in two parts with 3 modules each.

1 Electrical Machines
▶ Module 1: Fundamentals
▶ Module 2: Transformers
▶ Module 3: Rotating machines

2 Power Electronics
▶ Module 1: Fundamentals
▶ Module 2: Power converter topologies
▶ Module 3: Introduction to electrical drives

Pattern of class:
Day: Thursday, every week
Time: 8 am to 10 am (theory) and 10 am to 12 pm (tutorial) (ideally but it can change)
Holidays: 1st May, 29 May, and 19 June 2025. As required classes will be rescheduled.
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The teaching team

Bikash Sah Silas Florian Elter Oliver Wallscheid**

Contact

▶ Email: see chair’s homepage

▶ Offices: H-A building, 4th floor

▶ Individual appointments on request (remote or personally)

▶ Multiple relevant courses are offered by the Chair. Check link!

** The content of the slides for this course is based on 43IAS6000V and 43IAS1101V, prepared and
delivered in past by Prof. Dr.-Ing Oliver Wallscheid.
Bikash Sah Initial overview 6

https://www.eti.uni-siegen.de/ias/
https://www.eti.uni-siegen.de/ias/teaching/
https://www.eti.uni-siegen.de/ias/teaching/
https://www.eti.uni-siegen.de/ias/teaching/


Part I: Electrical Machines
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What is an electrical machine?

Electrical machine

An electrical machine is a device that con-
verts electrical energy into mechanical en-
ergy or vice versa.

▶ Electrical energy is routed via machine’s
external wiring connected to the terminal
box.

▶ Mechanical energy is transferred via the
shaft (if it is a rotatory machine).

▶ Historic timetable of the electrical machine
development: KIT article (by
M. Doppelbauer)

Rotor

Shaft

Stator
(iron) Stator

(winding)

Housing

Nameplate
Terminal 
box

Fan

Fig. 1.1: Example of an electrical machine (source:
derived from Wikimedia Commons, public domain)
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Some exemplary electrical machines

(a) DC machine (source: Wikimedia Commons,
Marrci, CC BY-SA 3.0)

(b) Induction machine (source: Wikimedia Commons,
Zureks, CC BY-SA 4.0)

(c) Permanent magnet machine (source: Wikimedia
Commons, Andrez, CC BY-SA 4.0)

(d) Linear permanent magnet machine (source:
Wikimedia Commons, Zureks, CC BY-SA 4.0)

Some exemplary electrical machinesBikash Sah Initial overview 9

https://commons.wikimedia.org/wiki/File:Universalmotor_3.JPG
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://commons.wikimedia.org/wiki/File:Stator_and_rotor_by_Zureks.JPG
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://commons.wikimedia.org/wiki/File:Wheel_hub_motor_of_an_electric_kick_scooter,_sidepanel_removed_(2022).jpg
https://commons.wikimedia.org/wiki/File:Wheel_hub_motor_of_an_electric_kick_scooter,_sidepanel_removed_(2022).jpg
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://commons.wikimedia.org/wiki/File:Linear_motor_by_Zureks.jpg
https://creativecommons.org/licenses/by-sa/4.0/n


The machine as an electrical-mechanical converter

Load convention
(arrows pointing in 
the same direction)

Generator convention
(arrows pointing in 

the opposite direction)

(a) Rotational converter

Load convention
(arrows pointing in 
the same direction)

Generator convention
(arrows pointing in 

the opposite direction)

(b) Translational converter

Fig. 1.3: Electrically and mechanically free body diagrams of motors as energy converters with variable
notation: time t, voltage u, current i, force F , displacement x, torque T and rational speed ω (adapted

from J. Böcker, Elektrische Antriebstechnik, Paderborn University, 2020)
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Some basic mechanical terms (recap)
Translational converter Rotational converter

Kinematic quantities
Displacement / angle x ε
Velocity v = ẋ ω = ε̇
Acceleration a = v̇ = ẍ α = ω̇ = ε̈
Jerk j = ȧ = v̈ =

...
x ρ = α̇ = ω̈ =

...
ε

Dynamical quantities
Force / torque F T
Mass / inertia m J

Mechanical power Pme = Fv Pme = Tω

Work W [t0, t] =
∫ t
t0
Pme(τ) dτ W [t0, t] =

∫ t
t0
Pme(τ) dτ

Momentum / rotational momentum p = mv L = ωJ
Kinetic energy Ekin = 1

2mv
2 Ekin = 1

2Jω
2

Tab. 1.1: Basic mechanical terms for translational and rotational converters
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Work vs. energy (recap)

Work

Work is the integral of the power over a
time integral (or force over distance) and is
a measure of the energy transfer.

Energy

Energy is the capacity to do work, that is, a
quantity depending on the state of a system
at a given point of time.

Energy
Work

Heat

Energy

Fig. 1.4: Illustration addressing the work vs. energy terminology (simplified Sankey diagram)
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Power balance of an electrical machine

Electrical
machine

Electrical 
power

Mechanical
power

Dissipated
power (losses)

Change of stored energy

Fig. 1.5: Power balance of an electrical machine (illustrated in motoric operation)

The power balance

Pel(t) = Pme(t) + Pl(t) +
d

dt
Ei(t) (1.1)

must hold for any point in time as energy is conserved, that is, not created or destroyed.
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Four quadrants of machine operation

For the steady state (Ėi(t) = 0), we define the
machine efficiency as the ratio of the converted
energy to the input energy:

ηmot =
Pme

Pel
= 1− Pl

Pel
, (1.2)

ηgen =
Pel

Pme
= 1− Pl

Pme
. (1.3)

Hence, we need to consider in which quadrant
the machine operates as this will influence the
power flow direction.

III
III IV

Driving
(motoric)

Driving
(motoric)

Braking
(generating)

Braking
(generating)

Fig. 1.6: Machine quadrants (derived from
Wikimedia Commons, K. Pitter, CC BY-SA 3.0)
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What is an electrical drive ?

Electrical drive

An electrical drive is a system that
controls the torque, speed or posi-
tion of an electrical machine con-
nected to some mechanical pro-
cess.

▶ Integrates the ’stupid’ electrical
machine into an ’intelligent’
controlled system.

▶ The energy source and mechanical
process (’load’) are not part of the
drive system.

Electrical
energy 
source

Mechanical
process

Higher 
level

control

Converter Machine

Sensors

Reference

Response

Readings

Drive controller

Fig. 1.7: Block diagram of an electrical drive (adapted from
J. Böcker, Elektrische Antriebstechnik, Paderborn University,

2020)
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Examples of electrical machine and drive applications (1)

(a) Electric cars (source: Wikimedia Commons,
M. Movchin and F. Mueller, CC BY-SA 3.0)

(b) Wind turbine generators (source: pxhere.com,
public domain)

(c) Factory robots (source: Wikimedia Commons,
A. Reinhold, CC BY-SA 4.0)

(d) Electric tools (source: flickr.com, M. Verch, CC
BY 2.0)
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Examples of electrical machine and drive applications (2)

(e) High-speed trains (source: Wikimedia Commons,
P. Elektro, CC BY-SA 3.0)

(f) Electric aircraft (source: Wikimedia Commons,
M. Weinold, CC BY-SA 4.0)

(g) Pumps (source: Wikimedia Commons,
Hammelmann, CC BY-SA 3.0)

(h) Cranes (source: Wikimedia Commons, Belfast
Dissenter, CC BY-SA 4.0)
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A broad range of nominal power ratings
100 000 000 W

10 000 000 W

1 000 000 W

100 000 W

10 000 W

1 000 W

100 W

10 W

1 W Toys, mini actuators,...

PC fans, printer drives,...

Appliances, roller blind drives,...

Pumps, mixers, e-bikes,...

Machine tools, kneading machine,...

Electric cars, blowers,...

Train or truck axles,...

Rolling mill, wind power generator,...

Ship generator,...

Fig. 1.9: Power range overview (inspired from A. Binder, Elektrische Maschinen und Antriebe (lecture
slides), Darmstadt University, 2022 with additional figure sources: A. Wolf, Asurnipal, M. Williams, R.

Spekking, Foxcorner, A. Tredz and J. Halicki under varying CC licenses)
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Why is knowledge about electric machines and drives important?

Electric machines and drives are an essential pillar of the modern society

Without electric machines and drives, our todays society would not be possible. Starting
from providing electricity via electrical generators to powering electric vehicles, tools
and entire factory production lines, electric machines and drives are everywhere, that
is, they enable our today’s living standard.

Energy efficiency and sustainability is key

Electric machines and drives utilize approx. 50% of the global electricity with about 8
billion electric motors in use in the EU (source: European Commission and International
Energy Agency). Therefore, improving their efficiency is an essential factor to reduce
the global energy consumption and the associated CO2 emissions.
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Learning objectives

▶ Understand the basics of electrical and magnetics to build foundation of electrical machines.

▶ Understand the generation of magnetic fields, force formation and voltage induction in
electrical machines.

▶ Differentiate the main types of electrical machines:
▶ DC machines.
▶ Induction machines.
▶ Synchronous machines.
▶ And their plentiful variants . . .

▶ Understand their basic design and operation principles.

▶ Basic analysis on the operation of electrical machines

▶ Have fun learning about electrical machines and drives.
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Necessary prior knowledge for this course

You should have a basic understanding of the following topics:

▶ Linear differential equations (modeling, solution techniques)

▶ Linear algebra basics (e.g., vector and matrix operations)

▶ Phasor algebra and complex numbers

▶ Basic signal theory knowledge (e.g., Fourier series, Laplace transform)

▶ Basic knowledge of electrical circuit theory

▶ Basic knowledge of basic physics (mechanics)

What we will not cover, but you do not need to know (covered in separate courses):

▶ Control engineering for electrical drive applications.

▶ Power electronics in depth involving analysis and controller design.
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Recommended reading

▶ S. Chapman, Electric Machinery Fundamentals, Vol. 5, McGraw-Hill, 2011

▶ I. Boldea and S. Nasar, Electric Drives, Vol. 3, CRC Press, 2022

▶ A. Binder, Elektrische Maschinen und Antriebe (in German), Vol. 2, Springer, 2017

▶ D. Schröder and R. Kennel, Elektrische Antriebe: Grundlagen (in German), Vol. 7, Springer
Vieweg, 2021

▶ PC Sen, Principles of Electric Machines and Power Electronics, International Adaptation.
John Wiley & Sons, 2021.
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Basic Electrical Concepts
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Phasors

▶ A phasor is a complex number representing a
sinusoidal function.

▶ Sinusoid:

v(t) = Vm cos(ωt+ ϕ) → V⃗ = Vme
jϕ → Vm∠ϕ

where, Vm is the peak amplitude, ω = 2πft, the
phase in radians, t is seconds, and f is the frequency
in cycles per second, and ϕ is the phase angle
(angular difference or shift between the voltage and
current waveforms in an AC circuit).

▶ Simplifies AC analysis using algebra.

▶ Addition/Subtraction: Vector
addition.

▶ Multiplication/Division:
Magnitudes multiply/divide, angles
add/subtract.

▶ Example:

V⃗1 = 10∠30◦, V⃗2 = 5∠− 10◦

V⃗1 + V⃗2 =?

(Hint: convert to rectangular form)
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Single-phase and three-phase systems

▶ Single Phase

▶ Consists of one alternating voltage source.

▶ Voltage expressed as:

v(t) = Vm cos(ωt+ ϕ)

▶ Used in residential and light commercial
loads.

v(t)=VmCosωt

VI
For resistive load, both in 
phase and for others, it will
vary depedning on the type
of load

i(t)=ImCosωt

Fig. 2.1: Illustration of a single phase waveform

▶ Three Phase
▶ Composed of three sinusoidal voltages of

equal magnitude and frequency, 120◦ apart.
▶ Line voltages:

va(t) = Vm cos(ωt)

vb(t) = Vm cos(ωt− 120◦)

vc(t) = Vm cos(ωt+ 120◦)

Fig. 2.2: Illustration of a three phase waveform
(source: Wikimedia Commons, J JMesserly, CC BY

3.0)
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Star/Wye Connection Basics

Fig. 2.3: ∆ and Y circuits (source: Wikimedia Commons, CC BY-SA 3.0)
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Star/Wye Connection Basics

▶ Star (Y) connection
▶ Each phase connected to a common

neutral point.
▶ Line and phase voltages:

VL =
√
3Vph, ∠30◦

where VL is the line voltage and Vph is
the phase voltage.

▶ Line and phase currents: IL = Iph where
IL is the line current, and Iph is the phase
current.

▶ ∆ connection
▶ Line and phase voltages: VL = Vph
▶ Line and phase currents:

IL =
√
3Iph, ∠30◦

where IL is the line current and Iph is the
phase current.

▶ Power in both configurations (balanced
load):

P =
√
3VLIL cosϕ

where ϕ is the angle between voltage and
current and P is the active power.

▶ Both configurations deliver the same power
if balanced and same load impedance.
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Phasors

▶ Active (Real) Power:

P = V I cosϕ (Watts)

▶ Reactive Power:

Q = V I sinϕ (VAR)

▶ Apparent Power:

S = V I (VA)

▶ Relationship:

S2 = P 2 +Q2

▶ Power factor:

pf = cosϕ =
P

S

▶ Graphical representation using a power
triangle.

Fig. 2.4: Power triangle
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Basic Magnetic Concepts
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Ampère’s circuital law: magnetic field strength
Relates the circulation of a magnetic field around a
closed loop to the electric current passing through
the loop:

Integral form:

∮
∂S
H · ds = If , (2.1)

Differential form: ∇×H = Jf . (2.2)

Here, H is the magnetic field strength, Jf is the
free current density, and If is the free current
enclosed by the loop ∂S.

▶ Free current: current that is not bound to a
material (i.e., without polarization and
magnetization currents).

▶ SI-units: [H] = A
m , [J ] = A

m2

Fig. 2.5: Illustration of the magnetic field
strength H around a simple conductor
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Ampère’s circuital law: free current example

What is the free current If enclosed by the loop
∂S?

▶ The current I1 flows in the direction of the loop
∂S (according to right-hand rule).

▶ The current I1 must be counted N times due to
the N turns of wire around the loop ∂S.

▶ The current I2 flows in the opposite direction of
the loop ∂S (according to right-hand rule).

▶ Result:

If = N · I1 − I2.

turns

Fig. 2.6: Arrangement with two electrical
conductors
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Ampère’s circuital law: simple solenoid example
Ampere’s law for magnetic flux density B in vacuum:

Integral form:

∮
∂S
B · ds = µ0I, (2.3)

Differential form: ∇×B = µ0J . (2.4)

Here, µ0 is the permeability of free space, J is the
total current density and I is the total current
enclosed by the loop ∂S.

▶ SI-unit: [B] = T = Vs
m2 = N

Am

▶ Example contour ∂S on the right covering N turns
and length l (flux density within solenoid):∮

∂S
B · ds = Nµ0I ⇔ B =

Nµ0I

l

Fig. 2.7: Magnetic flux density evaluated at
the contour ∂S (adapted from: Wikimedia

Commons, Goodphy, CC BY-SA 4.0)
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Shortcomings of the Ampère’s circuital law
Applying Ampère’s circuital law to a capacitor with
a changing electric field E leads to a contradiction:

▶ Applying (2.2) to S1 yields:∮
∂S1

H · ds = I.

▶ In the case of S2 we receive:∮
∂S2

H · ds = 0.

▶ However, both surfaces share the same bounding
contour ∂S.

▶ Issue: The magnetic field strength H is not able
to describe the displacement current.

Fig. 2.8: Surfaces S1 and S2 share the same
bounding contour ∂S. However, S1 is pierced
by conduction current, while S2 is pierced by

displacement current (adapted from:
Wikimedia Commons, public domain).
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Lorentz force

The force F acting on a particle of electric charge q with
instantaneous velocity v, due to an external electric field
E and magnetic field B, is given by

F = q (E + v ×B) . (2.5)

▶ The term qE is called the electric force.

▶ The term q (v ×B) is called the magnetic force.

▶ In Cartesian coordinates, the Lorentz force is given by:

Fx = q (Ex + vyBz − vzBy) ,

Fy = q (Ey + vzBx − vxBz) ,

Fz = q (Ez + vxBy − vyBx) .

(2.6)

   

  

Fig. 2.9: Lorentz force F on a particle (of
charge q) in motion (instantaneous

velocity v) with given E and B fields
(adapted from: Wikimedia Commons,

Maschen, CC0)
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Hand rule of the magnetic Lorentz force

Technical current 
direction

Physical current 
direction

Fig. 2.10: Right and left hand rule for the magnetic Lorentz force q (v ×B) (adapted from: Wikimedia
Commons, M. Run, CC BY-SA 3.0)
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Lorentz force density for a continuous charge distribution

For a continuous charge distribution in motion,
the Lorentz force density (force per unit
volume) becomes:

f = ρE + J ×B. (2.7)

▶ ρ is the charge density (charge per unit
volume).

▶ J = ρv is the current density.

  

Fig. 2.11: Lorentz force density f on a continuous
charge distribution (charge density ρ) in motion
(adapted from: Wikimedia Commons, Maschen,

CC0)

Bikash Sah Fundamentals 38

https://commons.wikimedia.org/wiki/File:Lorentz_force_continuum.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en


The Ampère – Maxwell equation
The charge of capacitor is:

Q =

∮
S2

D · dS.

If the electric field (D = ε0εrE) changes, a
displacement current results:

Id =
d

dt

∮
S2

D · dS

▶ Is not a classical electric current (moving charges) but
a term to describe the changing electric field.

▶ Above, ε0 is the vacuum permittivity and εr is the
relative permittivity of a material.

current 
Displacement

Fig. 2.12: Illustration for calculating the
displacement current (adapted from:
Wikimedia Commons, public domain).
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The Ampère – Maxwell equation (cont.)

Adding the displacement current to (2.2) we receive the Ampère – Maxwell equation:

Integral form:

∫
∂S
H · ds =

∫∫
S

(
Jf +

d

dt
D

)
· dS, (2.8)

Differential form: ∇×H = Jf +
∂D

∂t
. (2.9)

Above, D is the electric displacement field.

▶ SI-unit: [D] = C
m2

▶ SI-unit: [E] = V
m

▶ ε0 ≈ 8.854 · 10−12 F
m
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Magnetic flux and flux linkage
The magnetic flux ϕ is the surface integral of the
normal component of B over that surface:

ϕ =

∫∫
S
B · dS. (2.10)

As there are no magnetic monopoles, the magnetic
flux through a closed surface (which is covering a
volume without holes) is always zero:∮

S
B · dS = 0. (2.11)

The flux linkage ψ is the product of the magnetic flux
ϕ and the number of turns N of a coil:

ψ = Nϕ. (2.12)

Fig. 2.13: Magnetic flux ϕ evaluated at the
surface S (adapted from: Wikimedia
Commons, Goodphy, CC BY-SA 4.0)
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Magnetic leakage flux

▶ In the scenarios with multiple coils, the
magnetic flux generated by one coil will
influence also the other coils.

▶ Exception: two coils are perfectly
perpendicular to each other.

▶ However, the magnetic flux typically does
not fully couple with the other coils

▶ The difference is the leakage flux ϕσ.

Coil #1

Coil #2

Fig. 2.14: The magnetic flux ϕ1 generated by the
current I does only partly couple with the second
coil, while the difference ϕ1 − ϕ2 is the leakage
flux (adapted from: Wikimedia Commons, M.

Wacenovsky, public domain)
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Inductance
The inductance L describes the ratio between the magnetic flux linkage ψ(t) to the current
i(t):

ψ(t) = Li(t). (2.13)

Example: From the solenoid in Fig. 2.13 we know that the magnetic flux linkage ψ is:

ψ = N

∫∫
S
B · dS =

1

l
N2µ0Iπr

2

with r being the radius of the solenoid. Hence, the inductance L is:

L =
ψ

I
=
N2µ0πr

2

l
.

▶ SI-unit: [L] = H = Vs
A

▶ The inductance is an important parameter describing inductive systems.
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Self and mutual inductance
Based on the inductive coupling between
the two coils from Fig. 2.15, we can define
the magnetic flux matrix:

ϕ =

[
ϕ11 ϕ12
ϕ21 ϕ22

]
. (2.14)

▶ ϕ11: magnetic flux component of coil 1
due to its own current i1

▶ ϕ12: magnetic flux component of coil 1
due to the current i2 in coil 2

▶ ϕ21: magnetic flux component of coil 2
due to the current i1 in coil 1

▶ ϕ22: magnetic flux component of coil 2
due to its own current i2

Primary
winding

turns
 
 turns

 
 

 

Secondary
winding

Fig. 2.15: Two coils coupled via a common core
(adapted from: Wikimedia Commons, Bill C.,

CC BY-SA 3.0)
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Self and mutual inductance (cont.)

Utilizing the permeance definition (“magnetic conductance”)

Λ =
ϕ

Ni
, (2.15)

we can represent (2.14) as:

ϕ11 = Λ11N1i1, ϕ12 = Λ12N2i2, ϕ21 = Λ21N1i1, ϕ22 = Λ22N2i2. (2.16)

The resulting flux linkage per coil is then:

ψ1 = N1 (ϕ11 + ϕ21 + ϕ12) , ψ2 = N2 (ϕ22 + ϕ12 + ϕ21) ,

=
(
Λ11N

2
1 + Λ21N

2
1

)︸ ︷︷ ︸
L1

i1 + Λ12N1N2︸ ︷︷ ︸
M12

i2, =
(
Λ22N

2
2 + Λ12N

2
1

)︸ ︷︷ ︸
L2

i2 + Λ21N1N2︸ ︷︷ ︸
M21

i1.

(2.17)
Above, L1 and L2 are the self-inductances, M12 and M21 are the mutual inductances.
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Self and mutual inductance (cont.)
Hence, we can define the flux linkages of both coils using the following inductance matrix:

ψ =

[
ψ1

ψ2

]
=

[
L1 M12

M21 L2

] [
i1
i2

]
= Li. (2.18)

Due to the symmetry of the inductive coupling, the mutual inductances are identical:

M12 =M21 =M. (2.19)

Based on (2.17), we can also split the self-inductance Li of the i-th coil into the sum of the
leakage inductance Li,σ and the magnetizing inductance Li,m:

Li = Li,σ + Li,m = ΛiiN
2
i + ΛjiN

2
i with i ̸= j. (2.20)

Finally, we can define the coupling coefficient k as:

k =
M√
L1L2

, 0 ≤ k ≤ 1, (2.21)

which indicates how strong or week the inductive coupling between the coils is.
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Boosting the magnet field with ferromagnetic materials

While H depends on the currents applied to an
object, B depends on the material properties of the
object. In free space (vacuum), the relation is linear
and represented by the magnetic constant µ0:

B = µ0H with µ0 ≈ 4π · 10−7 N
A2 . (2.22)

To boost B for a given H, ferromagnetic materials
are typically used. These materials have a high relative
magnetic permeability µr:

B = µH = µ0µrH. (2.23)

Note that µr is a dimensionless quantity and that
(2.23) assumes linear and isotropic material behavior.

Air gap

Leakage flux

Leakage flux

Fig. 2.16: Simplified magnetic field lines of
an iron yoke with a coil (adapted from:
Wikimedia Commons, public domain)
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Relative permeability and magnetic saturation

Material µr (range)

Air / copper / aluminum (≈)1
Iron (99.8% pure) 5000
Electrical steel 2000 - 35000
Ferrite 200 - 20000

Tab. 2.1: Typical relative permeabilities of materials

Linear magnetic behavior (µr = const.) is only a local
approximation. When considering larger H ranges, the
(differential) permeability becomes nonlinear:

µr(H) =
dB

dH
. (2.24)

 
Linear 
behavior

Nonlinear 
behavior

Fig. 2.17: Illustrative magnetization curves
for ferromagnets (and ferrimagnets) and

corresponding permeabilities (adapted from:
Wikimedia Commons, public domain)
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Magnetic domains (1)

▶ Magnetic domains are regions within a
material where the magnetic moments of
atoms are aligned (“mini magnets”).

▶ The magnetization within each domain
points in a uniform direction, but the
magnetization of different domains may
point in different directions.

Fig. 2.18: Animation of moving domain walls (source:
Wikimedia Commons, Zureks, CC BY-SA 3.0)

Fig. 2.19: Change of magnetic
domains due to an external
magnetic field (adapted from:
Wikimedia Commons, M. Run, CC
BY-SA 4.0)
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Magnetic domains (2)
▶ A large region of material with a constant magnetization throughout creates a large

magnetic field (diagram a) below). This requires a lot of magnetostatic energy stored in the
field.

▶ To reduce this energy, the sample can “split” into two domains, with the magnetization in
opposite directions in each domain which reduces the overall field (diagram b) below).

▶ To reduce the field energy further, each of these domains can split also, resulting in smaller
parallel domains with magnetization in alternating directions, with smaller amounts of field
outside the material (diagram c) below).

Fig. 2.20: Simplified representation of the
formation of magnetic domains on the
basis of energy minimization (source:
Wikimedia Commons, public domain)
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Hysteresis

▶ Material defects lead to small, random jumps in
magnetization called Barkhausen jumps.

▶ Domain walls move irregularly.

▶ Process also depends on the history of the
magnetization process (dynamic system).

Fig. 2.21: Animation of the Barkhausen jump (source:
Wikimedia Commons, public domain)

Barkhausen 
jumps

Elementary magnets
rotate in domains

Saturation

Domain walls
shift

Fig. 2.22: Simplified hysteresis curve in first
quadrant with magnetic domains illustration

(adapted from: Wikimedia Commons,
Fralama, CC BY-SA 3.0)
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Hysteresis curve and losses

▶ With an external and varying field H, a
closed hysteresis curve is obtained.

▶ Traversing through the curve requires to
move the domain walls and rotate the
elementary magnets within the domains.

▶ This process requires work and leads to heat
dissipation (losses).

▶ The area enclosed by the hysteresis curve is
identical to the relative remagnetization
work (per volume, that is, [wh] =

J
m3 ):

wh =

∮
H · dB. (2.25)

Fig. 2.23: Exemplary hysteresis curve with Br

being the remanence field density and Hc the
coercivity field strength
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How can we model the hysteresis losses?
1 Data look-up table: Measure the

hysteresis curve and its losses directly on a
test bench (cf. MagNet project data hub).

2 Loss-fitted models: Use empirical models
to fit the hysteresis losses (e.g., Steinmetz
model):

Ph = khf
amax{B}b.

3 Curve-fitted models: Use empirical models
to describe the hysteresis curve and derive
the losses (e.g., ODE as in the
Jiles-Atherton model):

dB

dH
= f(B,H).

Fig. 2.24: Measured B-H loops for sinusoidal
excitation at different frequencies (source: IEEE

TPEL, Serrano et al., CC BY 4.0)
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Alternative to boost the magnet field: permanent magnets (PMs)

▶ Create own persistent magnetic fields.

▶ Consist of hard ferromagnetic (or
ferrimagnetic) materials.

▶ Nearly constant magnetiziation offset
BPM in the usual operating range:

B = µ0µrH ≈ µ0H +BPM. (2.26) Fig. 2.25: PMs on a rotor (source:
flickr.com, AIDG, CC BY-NC-SA 2.0)

S N

Fig. 2.26: Permanent magnets as
alternatives to current-based
excitation (source: Wikimedia
Commons, M. Run, CC BY-SA 3.0)
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Hysteresis curve of permanent magnets

▶ PM’s magnetization is nearly
completely saturated and constant in
common operation area.

▶ The greater the coercivity Hc, the
greater the resistance of the PM to
demagnetization by external fields.

▶ Beyond the so-called knee point, PMs
are (partially) demagnetized.

▶ Important figure of merit is the
so-called energy product:

(BH)max = max {−BH} . (2.27)

▶ The higher (BH)max the less PM
material is needed for an application.

reversible area
(common operation area)

irreversible 
demagnetization

knee 
point

Fig. 2.27: Exemplary hysteresis curve of a
permanent magnet
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Hysteresis curve of permanent magnets (temperature dependence)

▶ Besides pressure and vibrations,
PMs are also sensitive to
temperature.

▶ The coercivity Hc and the
remanence Br decrease with
increasing temperature.

▶ Hence, with higher temperatures,
a PM gets more susceptible to
demagnetization.

Increasing temperature

knee 
points

Fig. 2.28: Qualitative representation of
the temperature dependence of

permanent magnets
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Energy product overview of permanent magnets

NdFeB400

320

240

160

80

0
1920 1930 1940 1950 1960 1970 1980 1990 2000

in
 k

J/
m

3

KS steel MK steel

Alnico

Ferrites

SmCo5

Sm2(CoFeCuZr)17

Fig. 2.29: Historic development of PM materials and their energy product (adapted from: Wikimedia
Commons, Kopiersperre, CC BY-SA 4.0)
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Manufacturing process of NdFeB permanent magnets

Fig. 2.30: Basic process steps for the NdFeB-based magnets (source: Springer JOM, J. Cui et al., CC
BY 4.0)
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Electromagnetic induction (Maxwell – Faraday equation)

A changing magnetic field induces an electric field
according to the Maxwell – Faraday equation:

Integral form:

∮
∂S
E · ds = − d

dt

∫∫
S
B · dS,

(2.28)

Differential form: ∇×E = −∂B
∂t

. (2.29)

Here, E is the electric field strength and S is the surface
enclosed by the loop ∂S.
▶ Lentz’s law: The induced electric field opposes the

change in magnetic field (negative sign above).

Fig. 2.31: Representation of the
magnetic and electric field relation

(adapted from: Wikimedia Commons,
Qniemiec, CC BY-SA 3.0)
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Electromotive force (EMF) and electromagnetic induction

If the integration path ∂S is identical to a
conductor loop, the changing magnetic field induces
a voltage ui (electromotive force, EMF) according
to Faraday’s law:

ui =

∮
∂S
E · ds = − d

dt

∫∫
S
B · dS. (2.30)

▶ Despite its name, the term EMF does not
describe a force in the physical sense (as ui is
obviously a voltage).

▶ The term remains a historical artifact from the
early days of electrical engineering, but is still
frequently used in today’s literature.

Rotating conductor
loop

Fig. 2.32: Induced voltage / EMF in a rotating
conductor loop (adapted from: Wikimedia

Commons, M. Lenz, CC0 1.0)
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Intermediate wrap up: electromagnetic principles and magnetic materials

Induction law

Material property

Ampere's law (simple version)

Fig. 2.33: Illustration of the connections between the phenomena discussed previously (derived from:
Wikimedia Commons, M. Lenz, CC0 1.0)
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Magnetic networks

▶ Motivation: Model magnetic systems with a
simplified lumped-parameter approach and apply
analysis techniques analogous to electric networks.

▶ Assumption: magnetic field is homogenous within
a lumped element (cf. Fig. 2.34).

▶ The magnetic flux per element is:

ϕk = AkBk. (2.31)

▶ The magnetic voltage (magnetomotive force –
MMF) per element is:

θk = lkHk. (2.32)

Fig. 2.34: Magnetic element with
homogenous magnetic field (adapted from
J. Böcker, Mechatronics and Electrical

Drives, CC BY-NC-ND)
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Magnetic networks (cont.)

▶ The magnetic reluctance per element is:

Rk =
θk
ϕk

=
lk

µ0µrkAk
. (2.33)

▶ The magnetic conductivity (or permeance) per
element is:

Λk =
1

Rk
=
µ0µrkAk

lk
. (2.34)

▶ As the magnetic field is free of sources
(∇ ·B = 0), it follows (node rule – analogous to
Kirchhoff’s first law):∑

k

ϕk = 0. (2.35)
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Magnetic networks (cont.)

Considering magnetostatic situations where the displacement current can be neglected,
Ampère’s law reads: ∮

∂S
H · ds = If = NI =

∑
k

θk =
∑
k

lkHk. (2.36)

So far, the equation has not the structure of the second Kirchhoff’s law (loop rule). However,
we can force this desired format by placing the term with the electric currents on the left-hand
side of the equation: ∑

k

θk − θ0 = 0 with θ0 = NI (MMF term). (2.37)
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Comparison: electric and magnetic network quantities

Electric network Magnetic network

Voltage u =
∫
E · ds V Magnetomotive force θ =

∫
H · ds A

Electric field E V
m Magnetic field H A

m
Current i A Magnetic flux ϕ Vs
Resistance R Ω Reluctance R 1

H
Conductance G S Permeance Λ H

Conductivity σ S
m Permeability µ H

m
Ohm’s law u = Ri Hopkinson’s law θ = Rϕ
Kirchoff’s first law

∑
ik = 0 Equivalent first law

∑
ϕk = 0

Kirchoff’s second law
∑
uk = 0 Equivalent second law

∑
θk − θ0 = 0

Tab. 2.2: Electric and magnetic network quantities and their analogies
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Magnetic network example: simple magnetic actuator

Winding

Iron

(a) Simple magnetic actuator

Constant 
air gaps

Varying 
air gap

MMF
source

(b) Magnetic network representation of the actuator

Fig. 2.35: Example for a simple magnetic actuator and its magnetic network representation (adapted
from J. Böcker, Mechatronics and Electrical Drives, CC BY-NC-ND)
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Eddy currents

▶ A changing magnetic field induces a voltage.

▶ In bulky conductive materials (e.g.,
electromagnetic steel) this voltage drives
currents called eddy currents.

▶ Eddy currents lead to energy losses and heat
dissipation.

▶ To reduce eddy currents, laminated cores
are used as they decrease the effective
current path width and, therefore, increase
the effective resistance per sheet.

Fig. 2.36: Eddy current formations in solid and
laminated steel cores (source: Wikimedia

Commons, Chetvorno, CC0)
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Eddy currents: single sheet example

Assumption

Sheet’s thickness d is much smaller than
the sheet’s width w and the magnetic flux
density B is homogenous in the normal di-
rection of S and introduces a sinusoidal ex-
citation B(x, y, t) = B̂ sin(ωt).

From (2.29) integrating over S, we get

2wE(x, t) = −∂B
∂t

2xw

with 2w being the effective contour length of
∂S and 2xw being the effective surface area.

External 
magn. field

Eddy currents     /  electrical field 

Fig. 2.37: Single sheet and induced eddy currents

Bikash Sah Fundamentals 68



Eddy currents: single sheet example (cont.)
With Ohm’s law and the material conductivity σ, we get the current density J :

J(x, t) = σE(x, t) = −xσ∂B
∂t
.

Inserting the assumed magnetic flux density distribution it follows:

J(x, t) = −xσωB̂ cos(ωt).

The relative power loss (per volume) density p(x, t) results in:

p(x, t) =
1

σ
J2(x, t) = x2σω2B̂2 cos2(ωt).

The average power loss per volume (considering the x-direction) is:

p(t) =
1

d

∫ d/2

−d/2
p(x, t)dx =

1

12
σω2d2B̂2 cos2(ωt).
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Eddy currents: single sheet example (cont.)

The average power loss per volume and time is then:

p =
1

T

∫ T

0
p(t)dt =

1

24
σ
(
ωdB̂

)2
.

Although this is a simplified model, it shows the significance of

▶ the sheet’s thickness d,

▶ and excitation conditions ω and B̂.

This finding motivated empirical fitting approaches, like Bertotti’s model for the eddy currents:

pe ≈ kef
2B̂2.
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Power loss types in electrical machines

Electrical
machine losses

Copper losses Iron losses Mechanical losses

Stator winding

(Rotor winding)

(Skin effect)

(Proximity effect)

Hyteresis

Eddy currents

Excess losses

Windage

Friction

Fig. 2.38: Overview of power loss types in electrical machines
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Transformer definition

Transformer

A transformer is a static device that transfers electri-
cal energy between two or more circuits through elec-
tromagnetic induction. It converts the AC voltage levels
between inputs and outputs.

▶ While a transformer is sometimes called a
“static machine”, it does not meet the formal definition of
an electrical machine (compare first chapter).

▶ However, transformers share some working principles with
electrical machines and are also often used as components
of electrical power systems including drives.

Fig. 3.1: Transformer integrated at
a utility pole (source: pxhere.com,

public domain)
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Function and example use of transformers

▶ Voltage level adjustment: Can help to
make increase or decrease voltage
level(step-up for increase and
step-down for decreasing).

▶ Electrical isolation: Provides galvanic
isolation between circuits, enhancing
safety and reducing noise.

▶ Impedance matching: Helps in
matching impedance between different
electrical devices or systems to
maximize power transfer and minimize
losses (Maximum power transfer
theorem!)

▶ Load sharing: Multiple transformers
can share load in parallel operation,
improving system reliability and
flexibility.

▶ Example need of transformers- power systems
▶ The wires in power systems have resistance

→ I2R/Joule losses eminent
▶ Ohm’s law (V=IR), increase ”V” reduce ”I” for

same power.
▶ So, at increased voltage, the same power can

be delivered by a high-voltage transmission line
in reduced current but higher efficiency.

Fig. 3.2: Diagram of electric grid (source: United
States Department of Energy, SVG version by User:J
JMesserly, Public domain, via Wikimedia Commons,

public domain)
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Examples of transformers

(a) Power supply transformer (source: Wikimedia
Commons, R. Spekking, CC BY-SA 4.0)

(b) Single-phase transformer (source: Wikimedia
Commons, Georg, CC BY-SA 4.0)

(c) Three-phase transformer (source: Wikimedia
Commons, Asurnipal, CC BY-SA 4.0)

(d) Variable tapped transformer (source: Wikimedia
Commons, public domain)
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Types of transformers and working principle

▶ Based on voltage transformation- step up and
step down.

▶ Based on number of phases- single phase, three
phase, multi phase.

▶ Based on usage- power transformers typically
used as generation transformer, transmission
transformer, distribution transformers, current
transformers (CT), voltage transformers (PT),
isolation transformers, etc.

▶ Based on core medium- air core, iron/steel core,
ferrite core, and nanocrystalline core.

▶ Based on construction- core type and shell type.

Fig. 3.4: Transformer winding formats (source:
Wikimedia Commons, CC BY-SA 3.0)
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Basic working principle- Faraday’s Law of Electromagnetic Induction

▶ A changing magnetic flux in the
primary coil induces an electromotive
force (EMF) in the secondary coil.

▶ Mathematical expression: EMF ∝ dψ
dt ,

where ψ is the magnetic flux linkage
through the core and dψ

dt is the rate of
change of magnetic flux.

▶ An alternating current in the primary
winding produces a time-varying
magnetic field. This magnetic field
links with the secondary winding
through a magnetic core. The changing
flux induces a voltage in the secondary
winding.

Main flux Ф  12

 Ф  21

 Ф  σ 1  Ф  σ 2

 Leakage  

flux

 Primary  

winding
 Secondary  

winding

Fig. 3.5: Transformer flux linkage for working
principle (source: Wikimedia Commons, Fred

the Oyster, CC BY-SA 4.0)
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Dot convention in transformers

▶ ”Dot convention” or ”Dot notation”- a method of indicating the
relative polarity or phase relationship between the primary and
secondary windings.

▶ Purpose: helps engineers and technicians understand the polarity of
transformer windings.

▶ Dots mentioned– polarity important, else, does not matter.

▶ If current flows into the dotted terminal of one coil, the induced
mutual voltage in the other coil will be positive at its dotted
terminal. Conversely, if current flows out of the dotted terminal, the
induced voltage will be negative at the dotted terminal.

▶ The polarity of the mutually induced voltage depends on the
direction of current relative to the dot: current entering the dotted
end of one winding results in a positive polarity at the dot of the
coupled winding, while current leaving the dotted terminal results in
a negative polarity at the other dot.

Pr
im

ar
y 

w
in

d
in

g

Secondary 
winding

Dot for direction 
of current

Defining type of 
core

N1:N2

v2=
+

-

-

M
di1

i1

dt

v2= M
di1

i1

dt

+

Fig. 3.6: Dot convention
in transformer
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Introduction to transformer- Ideal transformer

▶ Characteristics of an ideal transformer:

▶ No resistance or reactance: The transformer has
no internal resistance or reactance, meaning that the
primary and secondary windings have zero impedance.

▶ Lossless: No energy losses in the transformer (no
copper or iron losses).

▶ Perfect coupling: All the magnetic flux produced by
the primary winding links with the secondary winding
(no leakage flux).

▶ Linear: The relationship between primary and
secondary voltages and currents is linear (no
saturation or non-linearity).

▶ No phase shift: The primary and secondary voltages
are in phase (no phase difference).

T=

v(t)=VmCosωt

1
f

Fig. 3.7: A sinusoidal waveform or
current or voltage in an ideal transformer
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Voltage transformation in an ideal transformer
Using Faraday’s Law:

e = −N dψ

dt
(3.1)

For the primary and secondary windings:

e1 = −N1
dψ

dt
, e2 = −N2

dψ

dt
(3.2)

Dividing the two equations:
e1
e2

=
N1

N2
(3.3)

Assuming sinusoidal steady-state and ideal conditions (no losses):

U1

U2
=
N1

N2
(3.4)

Where:

▶ U1, U2: RMS voltages
▶ N1, N2: Turns in primary and secondary windings
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Current transformation

For an ideal transformer:
Input VA = Output VA (3.5)

U1I1 = U2I2 (3.6)

From voltage transformation:
U1

U2
=
N1

N2
(3.7)

Substitute into power equation:
I1
I2

=
N2

N1
(3.8)

Where:

▶ I1, I2: Currents in primary and secondary

▶ Power is conserved under ideal conditions
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Overview

Modelling of electrical machines helps in analysis, design, control, and simulation. Various
modelling approaches are used depending on the application, complexity, and level of detail
required.

▶ Steady-State Modelling

▶ Dynamic (Time-Domain) Modelling

▶ Electromagnetic (Field-Based) Modelling

▶ Equivalent Circuit Modelling

▶ Thermal Modelling

▶ Mechanical Modelling

▶ Data-Driven / Empirical Modelling

▶ Hybrid Modelling
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Steady-State and Dynamic (time domain) Modelling

Steady state Modeling

▶ Assumes constant or periodic operating
conditions.

▶ Useful for power flow, losses,
voltage/current analysis under sinusoidal
operation.

▶ Commonly used in:
▶ Load flow studies
▶ Motor rating selection
▶ Efficiency estimation

Dynamic Modeling

▶ Captures transient and time-varying
behavior.

▶ Based on differential equations and flux
linkage dynamics.

▶ Common forms:
▶ dq-axis model (Park’s transformation)
▶ State-space model

▶ Used in control design, simulation of
startup/faults, and power electronics.
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Electromagnetic and Equivalent Circuit Modeling

Electromagnetic (Field-Based) Modeling

▶ Solves Maxwell’s equations using methods
like FEM.

▶ Captures spatial variation of fields, core
saturation, and parasitic effects.

▶ Used for:
▶ Torque ripple/cogging analysis
▶ Magnetic material optimization
▶ Detailed design validation

Equivalent Circuit Modeling

▶ Simplified lumped-parameter model.

▶ Represents machines with resistances,
inductances, and voltage sources.

▶ Used for:
▶ Quick hand calculations
▶ Educational and conceptual understanding
▶ Basic control development
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Thermal and Mechanical Modeling

Thermal Modeling

▶ Predicts temperature rise and heat
dissipation.

▶ Models via lumped networks or FEM-based
thermal simulations.

▶ Key for:
▶ Overtemperature protection
▶ Cooling system design
▶ Electro-thermal coupling

Mechanical Modeling

▶ Models inertia, friction, damping, and
mechanical loads.

▶ Integrated with electrical models in
simulations.

▶ Applications include:
▶ Speed/torque dynamics
▶ Shaft vibration and failure analysis
▶ Control loop tuning
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Data-Driven and Hybrid Modeling

Data-Driven / Empirical Modeling

▶ Based on experimental data or system
identification.

▶ No need for full physical understanding.
▶ Methods include:

▶ Neural networks, lookup tables
▶ Regression models, ML algorithms

▶ Useful when parameters are hard to measure
or unknown.

Hybrid Modeling

▶ Combines multiple domains (electrical,
thermal, mechanical).

▶ Balances accuracy and computational effort.
▶ Typical in:

▶ Digital twin implementations
▶ Real-time HIL simulators
▶ Multi-physics co-simulation
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Electromagnetic modeling of the single-phase transformer
Recap from (2.18): for some given current
i, the flux linkages ψ in the transformer
windings are

ψ =

[
ψ1

ψ2

]
=

[
L1 M
M L2

] [
i1
i2

]
= Li

where L1 and L2 are the self-inductances
of the primary and secondary winding,
respectively, and M is the mutual
inductance.

Note: The above equation is an algebraic
relation, that is, it is valid for any time
instant t and applies to both AC and DC
excitation of the transformer.

Primary
winding

turns
 
 turns

 
 

 

Secondary
winding
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Dynamic modeling of the single-phase transformer
The dynamic transformer behavior can be represented by the ECD in Fig. 3.8, which also
considers the internal resistances of the windings. Applying Faraday’s law, the resulting
differential equations are:

u1(t) = R1i1(t) +
dψ1(t)

dt
, u2(t) = R2i2(t) +

dψ2(t)

dt
. (3.9)

Inserting (2.18) delivers:

u1(t) = R1i1(t) + L1
di1(t)

dt
+M

di2(t)

dt
, u2(t) = R2i2(t) + L2

di2(t)

dt
+M

di1(t)

dt
. (3.10)

Fig. 3.8: General equivalent circuit diagram
(ECD) of a transformer (note: that both ports
of the transformer are denoted in the load
convention reference frame which is an
arbitrary representation decision).
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Dynamic modeling of the single-phase transformer (cont.)

The model (3.10) can be represented by the T-type ECD in Fig. 3.9. It may be noted that
L1 −M and L2 −M can have negative values due to the model representation.

By rearranging (3.10), we can also write the dynamic transformer model in vector-matrix form:[
u1(t)
u2(t)

]
= u(t) =

[
R1 0
0 R2

] [
i1(t)
i2(t)

]
+

[
L1 M
M L2

]
d

dt

[
i1(t)
i2(t)

]
= Ri(t) +L

d

dt
i(t). (3.11)

Fig. 3.9: T-type ECD of a transformer (note
that the model (3.11) assumes linear
time-invariant (LTI) behavior, which among
other effects neglects magnetic saturation).
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Dynamic modeling of the single-phase transformer (cont.)
Rearranging (3.11) gives the state-space representation of the transformer model

d

dt
i(t) = L−1 (u(t)−Ri(t)) (3.12)

with

L−1 =
1

L1L2 −M2

[
L2 −M
−M L1

]
=

1

σ

[
1
L1

−M
L1L2

−M
L1L2

1
L2

]
.

Above, σ is the leakage coefficient defined as (compare also (2.21))

σ =
L1L2 −M2

L1L2
= 1− M2

L1L2
= 1− k2. (3.13)

Finally, the state-space representation of the transformer model (with the currents as states) is

d

dt
i(t) =

[
− R1
σL1

R2M
σL1L2

R1M
σL1L2

− R2
σL2

]
i(t) +

[
1
σL1

− M
σL1L2

− M
σL1L2

1
σL2

]
u(t) = Ai(t) +Bu(t). (3.14)
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Steady-state modeling of the single-phase transformer
Assuming that the transformer operates in steady state and that all quantities are sinusoidal,
the state-space model (3.14) can be simplified and represented by complex phasors:

x(t) = x̂ cos(ωelt+ φx) = Re
{
x̂ej(ωelt+φx)

}
= Re

{
Xejωelt

}
.

From (3.11) we receive

U =

[
U1

U2

]
= RI + jωelLI = Z I =

[
R1 + jωelL1 jωelM

jωelM R2 + jωelL2

] [
I1
I2

]
. (3.15)

For some given U we can calculate the current phasor I (i.e., the steady-state current
response) by solving:

I = Z−1U . (3.16)

Alternative scenarios can be also considered, e.g., defining U1 (input voltage) and I2 (load
current) as given and solving for I1 and U2 by rearranging (3.15).
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Steady-state modeling of the single-phase transformer (cont.)
Assuming that the transformer is not loaded (I2 = 0) and that it is lossless (R1 = 0), (3.15)
simplifies to [

U1

U2

]
=

[
jωelL1

jωelM

]
I1. (3.17)

The voltage transformation ratio in this case results in

U1

U2
=

jωelL1I1
jωelMI1

=
L1

M
. (3.18)

Assuming further that the transformer is leakage-free (L1,σ = 0), the voltage transformation
ratio simplifies to (compare also (2.20))

U1

U2
=
L1

M
=

Λ21N
2
1

Λ21N1N2
=
N1

N2
= ü. (3.19)

Hence, this famous result is only valid for the abstract case of a lossless, leakage-free, and,
unloaded transformer – i.e., not applicable to real-world transformers
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Transformation of the secondary side variables

Sometimes it can be helpful to (mathematically) transform the secondary side variables to ease
the mathematical analysis. This can be done by introducing the transformation factor α:

u′2 = αu2, i′2 =
1

α
i2. (3.20)

Here, u′2 and i′2 are the transformed secondary side voltage and current, respectively. The
primary voltage equation reads

u1(t) = R1i1(t) + L1
di1(t)

dt
+M

di2(t)

dt
= R1i1(t) + L1

di1(t)

dt
+ αM

di′2(t)

dt

= R1i1(t) + L1
di1(t)

dt
+M ′di

′
2(t)

dt

(3.21)

with the transformed mutual inductance M ′ = αM .
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Transformation of the secondary side variables (cont.)
Multiplying the secondary voltage equation with α gives

αu2(t) = αR2i2(t) + αL2
di2(t)

dt
+ αM

di1(t)

dt

⇔ u′2(t) = α2R2i
′
2(t) + α2L2

di′2(t)

dt
+ αM

di1(t)

dt

⇔ u′2(t) = R′
2i

′
2(t) + L′

2

di′2(t)

dt
+M ′di1(t)

dt

(3.22)

with the transformed resistance R′
2 = α2R2 and inductance L′

2 = α2L2.

Fig. 3.10: T-type ECD of a
transformer with transformed
secondary side variables for some
arbitrary transformation factor α
(note that k and σ are
transformation invariant.)
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Transformation of the secondary side variables by the turn ratio
With

α = ü = N1/N2

being the turn ratio as the transformation factor, we receive:

M ′ = (N1/N2)M = L1,m, L′
2 = (N2

1 /N
2
2 )L2 (3.23)

with L1,m being the primary magnetizing inductance, cf. (2.20). Moreover, we have

L1 −M ′ = L1,σ, L′
2 −M ′2 = (N2

1 /N
2
2 )L2,σ = L′

2,σ (3.24)

with L1,σ and L2,σ being the leakage inductances of the primary and secondary winding.

Fig. 3.11: T-type ECD of a
transformer with α = N1/N2 (note
that all inductances within this
model representation have a direct
physical interpretation.)
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Transformation towards a single stray inductance
With

α =M/L2

as the transformation factor, we receive:

L′
2 −M ′ = α2L2 − αM = L2,σ = 0, (3.25)

that is, the secondary transformed leakage inductance is vanishing. Moreover, we have

L1 −M ′ = L′
1,σ = σL1, M ′ =M2/L2. (3.26)

With the alternative choice α = L1/M , the leakage inductance gets concentrated on the
secondary side (not explicitly shown).

Fig. 3.12: T-type ECD of a
transformer with α =M/L2
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Typical transformer core types
▶ The core of a transformer typical build from laminated steel sheets (cf. Fig. 2.36).

Alternatively, sintered ferrite material is also used for high-frequency applications.
▶ To improve the coupling between primary and secondary winding, it is beneficial to place

the windings around the same leg. Hence, the middle example in Fig. 3.13 will exhibit a
larger leakage.

Shell type (EE) Core type (UU) + distr. windingCore type (UU)

Fig. 3.13: Examples of typical transformer core types
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Toroidal core

Fig. 3.14: Examples of a toroidal core and a transformer made from it – note the laminated, wound up
steel sheets to form the toroid (source: Wikimedia Commons, public domain)
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Typical transformer winding schemes
▶ The below examples show improving magnetic coupling (lower leakage) from left to right

due to the reducing effective distance between the turns of the primary and secondary
winding.

▶ Beyond these examples, various winding variations (e.g., a combination of the below
schemes) are used to optimize the transformer design for specific applications.

Cylindrical winding
Double 

cylindrical winding
Sandwich / 
disc winding

Fig. 3.15: Examples of typical transformer winding schemes
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Core loss model (hysteresis and eddy current losses)
To also consider the iron losses inside the transformer core, a first-order model with the
additional core loss resistance Rc can be introduced:

Pl,c ≈ RcI
2
c ≈ U2

1

Rc
. (3.27)

Here, we consider a pure sinusoidal operation with Ic and U1 being root-mean-square (RMS)
values. Obviously, this is only a very rough model approximation (compare Fig. 2.23 and
Fig. 2.36), but for many transformer designs the core losses can be significant and neglecting
them completely would not be justified.

Fig. 3.16: T-type ECD of a
transformer with an additional core
loss resistance Rc
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Transformer model parameterization via measurements – open-circuit test
Applying a sinusoidal test voltage U1,o and several measurement devices during an open-circuit
arrangement, we can determine

ü ≈ U1,o

U2,o
=
N1

N2
, S1,o = U1,oI1,o, cos(φo) =

P1,o

U1,oI1,o
(3.28)

with P1,o being the active input power consumed by the transformer and cos(φo) is the power
factor. With the assumptions R1 << Rc and L1,σ << M ′, we can approximate

Rc ≈
U2
1,o

P1,o
, XM ′ = ωelM

′ ≈ U1,o

I1,o sin(φo)
(3.29)

given the angular frequency ωel = 2πfel and the reactance XM ′ of the mutual inductance.

V V

A Fig. 3.17: Open-circuit (no-load)
test: measuring circuit and its ECD
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Transformer model parameterization via measurements – short-circuit test
Short-circuiting the secondary and applying a sinusoidal test voltage U1,s, we can determine

Zs =
√

(R1 +R′
2)

2 + (XL1,σ +XL′
2,σ

)2, cos(φs) =
P1,s

U1,sI1,s
(3.30)

with Zs being the short-circuit impedance while assuming that the impedance across M ′ and
Rc is much larger, i.e., the short-circuit current will not flow via this branch. Hence, we have

R1 +R′
2 = Zs cos(φs), XL1,σ +XL′

2,σ
= Zs sin(φs). (3.31)

Since we have four remaining unknown component values but only two independent equations,
we additionally assume a symmetrical transformer design, leading to

R1 = R′
2 =

1

2
Zs cos(φs), ωelL1,σ = XL1,σ = ωelL

′
2,σ = XL′

2,σ
=

1

2
Zs sin(φs). (3.32)

V

A Fig. 3.18: Short-circuit test:
measuring circuit and its ECD
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Further short-circuit considerations
Typically the short-circuit test voltage U1,s is limited such that the short-circuit current I1,s is
reaching its nominal value I1,n:

U1,s = u1,sU1,n, I1,s =
U1,s

Zs
= I1,n. (3.33)

Here, u1,s is the relative short-circuit voltage w.r.t. the nominal voltage U1,n. Typical values
are u1,s = 3 . . . 13%.

While the short-circuit test is conducted with a reduced primary voltage, the prospective
short-circuit (PSC) current during normal operation (typical as a fault result) can be
significantly higher:

I1,psc =
U1,n

Zs
=
U1,s

Zs
=
I1,n
u1,s

. (3.34)

Hence, the transformer parameters Zs and u1,s are crucial for the short-circuit behavior and the
protection coordination of the transformer. Lower bounds are typically enforced by standards to
prevent catastrophic damages, in particular in the electrical energy sector.
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Voltage transformer application: measuring high AC voltages
If the voltage to be measured is too high for direct measurement, a voltage transformer can be
used to step down the voltage to a suitable level:

u2(t) =
1

ü
u1(t).

Hence, we choose ü > 1. Moreover, the voltage sensor on the secondary side comes with a
high internal resistance Ri to avoid a significant current and, therefore, power flow. Neglecting
the leakage inductance, we can model the voltage transformer as shown in Fig. 3.19 with

R′
i = ü2Ri, R′

2 = ü2R2, M ′ = L1,m.

The primary RL circuit represents a high-pass filter for the voltage signal, i.e., the transformer
is only suitable for AC signals with ωel > R1/M

′ (cutoff frequency).

V

Fig. 3.19: Voltage transformer
measuring circuit and its ECD
(represented as transformed
quantities with α = N1/N2)

Bikash Sah Transformers 105



Current transformer application: measuring high AC currents
If the current to be measured is too high for direct measurement, a current transformer can be
used to step down the current to a suitable level:

i2(t) = üi1(t).

Hence, we choose ü < 1. Moreover, the current sensor on the secondary side comes with a
minimal internal resistance Ri to avoid a significant ohmic power losses. Likewise, the
transformer should be designed for low R1 and R2 (e.g., N1 = 1 on the primary and sufficiently
large cable cross-sections).

The secondary RL circuit represents a high-pass filter for the current signal, i.e., the
transformer is only suitable for AC signals with ωel > (R′

2 +R′
i)/M

′ (cutoff frequency).

A

Fig. 3.20: Current transformer
measuring circuit and its ECD
(represented as transformed
quantities with α = N1/N2)
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Connection nomenclature and tapped transformer

1.1

1.2

2.1

2.2
3.1

3.2

3.3

Fig. 3.21: Connection nomenclature of
single-phase transformers (the lower secondary
side connection represents a tapped winding)

Fig. 3.22: Tapped transformer with multiple taps on the
secondary side for a train drive application (source:

Wikimedia Commons, Saibo, CC BY-SA 3.0)
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Autotransformer

▶ Uses a common winding for both primary and
secondary side with one or multiple taps.

▶ No galvanic isolation between primary and
secondary side.

▶ The autotransformer can be used to step-up or
step-down the voltage.

Fig. 3.23: Simplified autotransformer representation

Fig. 3.24: Exemplary autotransformer
(source: Wikimedia Commons, R. Spekking,

CC BY-SA 4.0)
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Autotransformer – step-down configuration
Assuming idealized conditions (no leakage, no losses), the apparent power of the standard
transformer S and of the autotransformer Sat are:

S = U1I1 = U2I2, Sat = (U1 + U2)I1 = U2(I2 − I1). (3.35)

1.1

1.2

2.1 2.1

2.2 2.2

1.1

1.2

Fig. 3.25: Step-down autotransformer made from a standard two-winding transformer by connecting 1.2
from the primary to 2.1 on the secondary side
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Autotransformer – step-down configuration (cont.)
From (3.35) we can express the autotransformer apparent power Sat in terms of the standard
transformer apparent power S:

Sat = (U1 + U2)I1 = S + U2I1 = S + U1I1
U2

U1
= S(1 +

1

ü
). (3.36)

Here, ü is the (idealized) voltage transformation ratio of the standard transformer – compare
(3.19). Hence, we can express the apparent power of the autotransformer in terms of the
standard transformer apparent power:

Sat
S

= 1 +
1

ü
= 1 +

N2

N1
. (3.37)

Since N2/N1 > 0 the autotransformer can transfer more apparent power than the standard
transformer since the autotransformer combines two power transfer mechanisms:

▶ the apparent power U1I1 is transferred via the magnetic coupling (induction) and
▶ the apparent power U2I1 is transferred via the electrical conduction between primary and

secondary (not available in the galvanically-isolated standard transformer).
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Autotransformer – step-up configuration
The apparent power of the step-up autotransformer is

Sat = U1(I1 − I2) = (U1 + U2)I2 = S(1 +
U1

U2
) = S(1 + ü) = S(1 +

N1

N2
). (3.38)

Likewise to the step-down autotransformer, the step-up autotransformer can transfer more
apparent power than the standard transformer.

1.1

1.2

2.1

2.1

2.2

2.2
1.1

1.2
Fig. 3.26: Step-up autotransformer made from a standard two-winding transformer by connecting 1.1

from the primary to 2.2 on the secondary side
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Autotransformer remarks

The previous analysis has revealed that the
apparent power boost over the standard
transformer is significant if

▶ N2 >> N1 (step-down case) or

▶ N1 >> N2 (step-up case),

that is, the autotransformer’s input and output
voltage have only a small difference. In this
case, the autotransformer can be more efficient
and cost-effective than the standard
transformer (at the drawback of the lacking
galvanic isolation). Fig. 3.27: 750MVA, 380 kV / 230 kV three-phase

autotransformer (source: Wikimedia Commons,
P. Mertens, CC BY-SA 3.0)
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Autotransformer remarks (cont.)

Another challenge of the autotransformer is its short-circuit behavior. From the step-up case
we know:

Sat = S(1 +
N1

N2
).

Dividing both sides by U1 delivers

I1,at = I1(1 +
N1

N2
) (3.39)

Hence, in case of a short circuit the steady-state current of the autotransformer is 1 +N1/N2

times higher than the standard transformer:

I1,at,psc = I1,psc(1 +
N1

N2
). (3.40)

The same applies to the step-down case. Therefore, the autotransformer may require additional
short-circuit protection measures to prevent damages (e.g., additional choke).
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Three-phase transformer

Fig. 3.28: Simple three-phase transformer with three independent single-phase transformers connected in
star both on the primary and secondary side
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Three-phase transformer with five legs

Fig. 3.29: Three-phase five-leg transformer connected in star both on the primary and secondary side
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Three-phase transformer with five legs (cont.)

Obviously, the three-phase five-leg design from Fig. 3.29 can save space and material compared
to the three independent single-phase transformers from Fig. 3.28. However, there might be a
zero flux component

ϕ0(t) = ϕa(t) + ϕb(t) + ϕc(t) (3.41)

flowing via the winding-free legs. This zero flux component can be avoided if the primary and
secondary side are connected both in star configuration

i1a(t) + i1b(t) + i1c(t) = 0, i2a(t) + i2b(t) + i2c(t) = 0

and if the magnetic reluctances Λm of the three main legs are equal (i.e., symmetric design, no
saturation):

ϕ0 = ϕa + ϕb + ϕc = ΛmN1 (i1a(t) + i1b(t) + i1c(t)) + ΛmN2 (i2a(t) + i2b(t) + i2c(t)) = 0.
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Three-phase transformer with three legs (double star connection)

▶ If the flux zero component ϕ0 can
be avoided, a three-leg design as
shown in Fig. 3.30 can be used.

▶ However, if ϕ0 ̸= 0 due to an
asymmetric design, magnetic
saturation or non-ideal
symmetrical operation, the zero
component will act as a stray field
leaving the core.

▶ This can lead to increased losses in
auxiliary components (e.g.,
housing) and electromagnetic
interference issues. Fig. 3.30: Three-phase three-leg transformer connected in star

both on the primary and secondary side
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Three-phase transformer with three legs (star-delta connection)

If the primary or secondary side is
connected in delta configuration, this
side can carry a zero sequence
current:

i0 =
1

3
(ia(t) + ib(t) + ic(t)) ̸= 0.

This zero sequence current would not
be visible in the phase conductors:

iab = ia − ib,

ibc = ib − ic,

ica = ic − ia.

(3.42)

Fig. 3.31: Three-phase three-leg transformer connected in a
star-delta configuration (delta on secondary is exemplary)
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Zero flux and zero current components in three-phase transformers
Based on (3.42) the winding currents on the delta side becomes

ia = i0 +
1

3
(iab − ica) , ib = i0 +

1

3
(ibc − iab) , ic = i0 +

1

3
(ica − ibc) . (3.43)

If the secondary side is connected in delta, the zero sequence current will result from

ϕ0 = ϕa + ϕb + ϕc = ϕ(i1a, i2a, i20) + ϕ(i1b, i2b, i20) + ϕ(i1c, i2c, i20) = 0 (3.44)

where ϕ(·) is the (potentially nonlinear) magnetic flux function (e.g., including saturation).

Fig. 3.32: Substitute model to represent the zero flux component
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Three-phase transformer connection and winding types
Each side of a three-phase transformer can be connected in:

Y/y: star connection, D/d: delta connection, Z/z: zigzag connection.

The winding nomenclature is as follows:

▶ First upper case letter: primary side (high voltage)

▶ Second lower case letter: secondary side (low voltage)

▶ Number (0 . . . 11): phase deviation between the primary and secondary side in ◦30 steps

▶ Optional: N/n for neutral connection of high/low side.

1U1
1V1
1W1
1N

1U2
1V2
1W2

2U2
2V2
2W2

2U1
2V1
2W1
2N

Fig. 3.33: Connection nomenclature of three-phase transformers
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Three-phase transformer connection and winding types (example: Yd1)

Transformer connection Yd1 indicates

▶ Y: star connection on the primary side,

▶ d: delta connection on the secondary side,

▶ 1: phase deviation of 1 · 30◦ = 30◦ between the primary and secondary side.

1W

1V

1U
1U1

2U2

2U1

2V12V2

2W2

2W1
1U2 1V2

1W2
1W1

1V1

2W

2V

2U

U coils: in 
phase on primary

 & secondary

Fig. 3.34: Winding configuration and resulting phasor diagrams for Yd1 connection
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Three-phase transformer connection and winding types (example: Dy11)

The transformer connection Dy11 indicates

▶ D: delta connection on the primary side,

▶ y: star connection on the secondary side,

▶ 11: phase deviation of 11 · 30◦ = 330◦ between the primary and secondary side.

1W

1V

1U
1U1

2U2

2U1

2V1
2V2

2W2

2W1

1U2

1V2

1W2

1W1

1V1
2W

2V

2U U coils: in phase on primary & secondary

Fig. 3.35: Winding configuration and resulting phasor diagrams for Dy11 connection
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Three-phase transformer connection and winding types (example: Dy5)

In this example, the primary and secondary side are still connected in a delta-star configuration,
but, the polarity of the secondary side is reversed compared to the previous Dy11 connection.
Consequently, the phase deviation is 5 · 30◦ = 150◦.

1W

1V

1U
1U1 2U2

2U1

2V1
2V22W2

2W1
1U2

1V2

1W2

1W1

1V1
2W

2V

2U

U coils: 180° 
phase shift
on primary 
& secondary

Fig. 3.36: Winding configuration and resulting phasor diagrams for Dy5 connection
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Three-phase transformer connection symbols (vector groups)

1V 1V

1V

1U
1U

1U

1W

1V

1U 1W

1V

1U 1W
1W 1U 1W

1W

2V

2V

2V

2U

2U

2W 2V

2U

2W

2V

2U

2W

2V

2U

2W

2V

2U
2W

2U 2W

2W 2V2U 2W

1V1U 1W 1V1U 1W1V1U 1W

2V2U 2W 2V2U 2W

1V

1U 1W

1V

1V1U 1W 1V1U 1W

2V2U 2W 2V2U 2W

Yy0 Dd0 Dy5 Yd5 Yz5 Dy11

Fig. 3.37: Exemplary (simplified) connection symbols for three-phase transformers and the resulting
phasor displacement representations
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Three-phase transformer voltage ratio

If the three-phase connection type changes between the primary and secondary side, the
voltage ratio between the primary and secondary side is affected – cf. Tab. 3.1.

primary Y D Y D Y D
secondary y y d d z z

U1,ll/U2,ll 1
√
3 1/

√
3 1

√
3/2 3/2

Tab. 3.1: Idealized voltage ratios between primary and secondary due to different connection types
(assuming N1 = N2) with U1,ll and U2,ll being the line-to-line voltages on the primary and secondary

side, respectively
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Dynamic modeling of the three-phase transformer

Assuming a three-phase transformer without mutual coupling between the phases abc (as in
the three independent single-phase transformers from Fig. 3.28) and without saturation, the
magnetic flux linkage of the primary and secondary side can be expressed as

ψ(t) =



ψ1a(t)
ψ1b(t)
ψ1c(t)
ψ2a(t)
ψ2b(t)
ψ2c(t)

 =



L1a 0 0 Ma 0 0
0 L1b 0 0 Mb 0
0 0 L1c 0 0 Mc

Ma 0 0 L2a 0 0
0 Mb 0 0 L2b 0
0 0 Mc 0 0 L2c





i1a(t)
i1b(t)
i1c(t)
i2a(t)
i2b(t)
i2c(t)

 = Li(t). (3.45)

If the transformer’s magnetic three-phase circuit is ideally symmetric, also

M =Ma =Mb =Mc, L1 = L1a = L1b = L1c, L2 = L2a = L2b = L2c

holds.
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Homopolar / unipolar machines

(a) Video of an operating homopolar machine (source:
Wikimedia Commons, Smial, Free Art License)
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(b) Electric current, magnetic field and Lorentz force
(adapted: Wikimedia Commons, M. Run, CC BY-SA)

Fig. 4.1: Working principle of homopolar machines demonstrated with a simple permanent magnet,
battery and screw design
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Homopolar / unipolar machines (cont.)

▶ Homopolar machines are the simplest form
of electric machines.

▶ They are also true DC machines, as the
current and flux paths are unidirectional.

▶ The general design prevents connecting
multiple rotor turns in series to increase the
voltage, that is, only a relatively low voltage
is induced.

▶ Consequently, homopolar machines require
high currents (in the order of kA or even
MA) to reach a useful power range which
limited their application.

Fig. 4.2: The Faraday disk: another homopolar
machine (source: Wikimedia Commons, public

domain)
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Working principle of usual DC machines
Let’s consider Fig. 4.3 and assume that the flux
density B is constant in the air gap and that
the conductor loop has the axial length lz.
According to the Lorentz force we have

F = IaBlz. (4.1)

The torque T on the conductor loop is given by

T = 2F
d

2
cos (ε) = IaBlzd cos (ε) . (4.2)

If the loop spins with an angular velocity ω,
mechanical power Pme = Tω is transferred.

Question: What is happening if the coil is
outside the magnetic field?

Fig. 4.3: Torque on a conductor loop (adapted
from J. Böcker, Elektrische Antriebstechnik,

Paderborn University, 2020)
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DC-machine cross section

▶ To ensure a quasi-continuous torque,
the current through the conductor
loop(s) in the rotor must have a
constant direction.

▶ This is achieved by using a
commutator (brushes).

▶ Compared to homopolar machines,
DC machines require a mechanical
rectification of the current.

Stator

Armature  
or rotor

Armature
winding

Armature
winding

Air gap

Brush

Yoke

Field winding

Fig. 4.4: Simplified DC machine cross section (adapted
from J. Böcker, Elektrische Antriebstechnik, Paderborn

University, 2020)
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Commutation

Fig. 4.5: Animation of the commutation process
(source: Wikimedia Commons, M. Frey, CC BY-SA 3.0)
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Armature and commutator

(a) Commutator with brushes and springs (source:
Wikimedia Commons, Marrrci, CC BY-SA 3.0)

(b) DC machine armature with commutator (source:
Wikimedia Commons, public domain)

Fig. 4.6: Examples of commutators and armatures
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Armature and commutator (cont.)

(c) Armature inside stator (source: Wikimedia
Commons, Marrrci, CC BY-SA 3.0)

(d) DC machine with permanent magnet excitation
and tacho speed sensor

Fig. 4.6: Examples of commutators and armatures (cont.)
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Basic structure of the armature

N N NSS

Lap winding Wave winding

Commutator

Commu-
tator

Slot

Armature 
winding

Slot
wedge

Stator pole

Fig. 4.7: Cross section of a drum-type armature including principle winding schemes (adapted from
W. Novender, Elektrische Maschinen, Technische Hochschule Mittelhessen, 2023)
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Types of winding conductors

Slot

Slot wedgeTooth

Fed-in 
type

Form-wound 
type

Iron 

Winding turn (usually copper)

Fig. 4.8: Types of winding conductors – unwound representation along the circumference (adapted from
J. Böcker, Controlled Three-Phase Drives, Paderborn University, 2021)
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Commutation process with an armature lap winding
Armature movement

Short circuit

Fig. 4.9: Three still images of the commutation process with a simplified winding representation (from
left to right): when the brush touches two commutator segments, the according conductor loop is
short-circuited and the current is reduced to zero. The brush then moves to the next commutator

segment and the current starts flowing again but in the opposite direction (adapted from W. Novender,
Elektrische Maschinen, Technische Hochschule Mittelhessen, 2023).
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DC machines with multiple pole pairs

▶ To reduce the effective length per
armature conductor loop, the
winding can form multiple pole pairs
p.

▶ This will reduce the inductance per
loop which is beneficial for the
commutation process.

▶ The stator excitation must meet the
same number of pole pairs.

▶ Given some inner stator diameter ds,
the resulting pole pitch is:

τp =
πds
2p

, ρp =
π

p
. (4.3)

Fig. 4.10: Simplified DC machine cross section with
p = 2 pole pairs (adapted from J. Böcker, Elektrische

Antriebstechnik, Paderborn University, 2020)
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Armature winding characteristics
For describing the armature winding layout, the following parameters are introduced:

Q : number of slots, Nc : number of conductor turns per coil,

K : number of commutator elements, u = K/Q : slot to commutator ratio,

za = 2KNc : total number of armature conductors.

Upper layer

Lower layer

Stator

Armature

Fig. 4.11: Coil width and slot design characteristics (adapted from W. Novender, Elektrische Maschinen,
Technische Hochschule Mittelhessen, 2023)
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Double layer winding
▶ The forward conductor of one coil and the return conductor of another coil are placed in the

same slot. This is the common winding scheme (although not limited to it).
▶ Enables chording of the winding (ρp ̸= yb), another degree of freedom for the machine

design (cf. Fig. 4.11).

Top layer

Bottom layer
Slot

End winding

Fig. 4.12: Double layer winding with u = 3 with a solid conductor element (which can be
pre-manufactured for cost reasons – inspired from A. Binder, Elektrische Maschinen und Antriebe, Vol.

2, Springer, 2017)
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Lap winding characteristics

▶ Back pitch yb: coil span from the
back end

▶ Front pitch yf : coil span from the
front end

▶ Resultant pitch yr: distance between
two consecutive coils

▶ Commutator pitch yc: distance
between two consecutive
commutator segments

Progressive winding

Fig. 4.13 shows a progressive wind-
ing layout with yb > yf , i.e., the coils
do not cross themselves.

Front
connectors

Back
connectors

Fig. 4.13: Distance definitions of the armature lap
winding (adapted from W. Novender, Elektrische

Maschinen, Technische Hochschule Mittelhessen, 2023)
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Lap winding characteristics (cont.)

Retrogressive winding

Fig. 4.14 shows a Retrogressive
winding layout with yb < yf , i.e.,
each coil crosses itself.

▶ Retrogressive windings require more
conductor material due to the
crossing of the coils and, therefore,
are less common.

▶ Technical feasibility requires
yb − yf = ±yc, i.e., the lap winding
progresses or retrogresses by one
commutator element.

Front
connectors

Back
connectors

Fig. 4.14: Lap winding with a retrogressive scheme
(adapted from W. Novender, Elektrische Maschinen,

Technische Hochschule Mittelhessen, 2023)
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Lap winding: final remarks and single pole pair example

▶ Armature turns per pole:
Np = KNc

2p

▶ Current per armature
conductor: Ic =

Ia
2p

Parallel connection of poles

For p > 1 the lap winding
parallels the armature coils for
each pole enabling a higher
current (but limited voltage)
rating.

Circumferential direction Pole Short-circuited

Fig. 4.15: Lap winding with commutator unrolled along the
circumferential coordinate
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Wave winding characteristics

▶ Commutator pitch (wave winding):
yc = yf + yb, i.e., each coil spans
(nearly) the entire pole pitch.

Progressive winding

Fig. 4.16 shows a progressive wind-
ing layout since each new wave wind-
ing coil starts one commutator ele-
ment to the right. Fig. 4.16: Distance definitions of the armature wave

winding (adapted from W. Novender, Elektrische
Maschinen, Technische Hochschule Mittelhessen, 2023)
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Wave winding: final remarks and single pole pair example

▶ Armature turns per pole:
Np = KNc

2

▶ Current per armature
conductor: Ic =

Ia
2

Series connection of poles

For p > 1 the wave winding
connects the armature coils
for all poles in series enabling
a higher voltage (but limited
current) rating.

Circumferential direction Pole Short-circuited

Fig. 4.17: Wave winding with commutator unrolled along the
circumferential coordinate
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Lap and wave winding comparison

Introducing the parameter

a = number of parallel armature conductors (4.4)

we can wrap up the following summary:

Current per conductor: Ic =
Ia
2a
, Armature turns per pole: Np =

KNc

2a
. (4.5)

Comparison

▶ Lap winding: a = p (parallel connection of poles)

▶ Wave winding: a = 1 (series connection of poles)
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Commutation process
During the commutation time ∆tc the brush bridges two commutator segments and the
short-circuited conductor coil current ic is changing signs. Here, two major scenarios can be
distinguished:

▶ The commutation is such fast that high local current densities are prevented.
▶ The commutation is slow and high local current densities lead to sparking effects.

Commutation
in time

Commutation
incomplete

=
electric arc

Fig. 4.18: Left: simplified equivalent circuit diagram of the short-circuited coil during commutation.
Right: qualitative trajectories of the conductor current ic
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Commutation process (cont.)

Fig. 4.19: Commutator sparking of a
simple DC machine (source: Wikimedia
Commons, M. Frey, CC BY-SA 4.0)

Assuming that the brush width wb is much bigger than
one commutator segment (which is usual practice), the
commutation time ∆tc is given by

∆tc ≈
wb

vc
. (4.6)

Here, vc is the brush velocity

vc = ω
da
2

(4.7)

with the armature angular velocity ω and the armature
diameter da. Due to the changing current in the coil, the
so-called reactane voltage ur is induced:

ur = Lc
dic
dt

≈ Lc
ia

a∆tc
= Lcia

ωda
awb2

. (4.8)
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Equivalent circuit diagram and summary of important equations
Field and armature voltage equations:

uf = Rf if + Lf
dif
dt

ua = Raia + La
dia
dt

+ ui

(4.9)

Induced voltage:

ui = ωψ′
f = ωifL

′
f

Torque:
T = L′

fif ia = ψ′
fia

Note: we represent the machine currents with small
letters to indicate that they are time-dependent
(e.g., if the external voltage supplied is varying).

Fig. 4.20: Equivalent circuit diagram of the
DC machine
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Power balance and efficiency
Based on (4.20) (note the load convention), the electrical power of the DC machine is:

Pel = uaia + ufif . (4.10)

This power is separated into the mechanical power Pme, the dissipated power losses Pl, and the
change of the stored magnetic energy d

dtEmag:

Pel = Pme + Pl +
d

dt
Emag. (4.11)

The power losses are (assuming dominant ohmic losses):

Pl = Rfi
2
f +Rai

2
a. (4.12)

The mechanical power is:
Pme = Tω = ψ′

fiaω. (4.13)

The magnetically stored energy is

Emag =
1

2
Lfi

2
f +

1

2
Lai

2
a. (4.14)
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Power balance and efficiency (cont.)

In steady state, the DC machine efficiency η is defined as

ηmot =
Pme

Pel
=

Tω

uaia + ufif
=

L′
fifiaω

Rai2a + ωL′
f ifia +Rfi

2
f

,

ηgen =
Pel

Pme
=
uaia + ufif

Tω
=
Rai

2
a + ωL′

f ifia +Rfi
2
f

L′
fifiaω

.

(4.15)

It can be noted that

▶ The machine parameters Ra, Rf , and L
′
f are influencing the efficiency.

▶ The efficiency is a function of the load torque T and the speed ω, that is, depending on the
operating point.

▶ If if and ia are independently controllable, the efficiency can be optimized as a certain
torque can be produced with infinitely many combinations of if and ia.
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Intermediate remarks on the DC machine model
During the derivation of the DC machine model, we made several assumptions:

▶ The air gap magnetic field is homogenous and without any leakage.
▶ The air gap reluctance is dominating the magnetic circuit (neglecting the iron path

reluctances including potential magnetic saturation).
▶ The magnetic field lines follow distinct paths through the armature winding.
▶ There is no mutual inductance between the stator and rotor (ideal orthogonal windings).
▶ The magnetic field in the air gap and in the armature is governed by the field winding

current only (that is, we have neglected the armature current impact on the field).

Model accuracy

We represent the DC machine by a time-invariant, lumped-parameter model which
is based on several substantial simplifications. While this model is likely sufficient
for many applications, systematic deviations between the observed behavior of real
machines and the model predictions are to be expected.
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Armature reaction
▶ So far, we have neglected the impact of the armature current on the magnetic field.
▶ If ia ̸= 0, the magnetic field lines in the air gap are distorted leading to a so-called armature

reaction (cf. Fig. 4.21).

Only field excitation Only armature excitation

neutral zone

circumferential
direction

Local iron
saturation

Fig. 4.21: Superposition of the field and armature magnetic excitation and the resulting air gap field
normal components (adapted from W. Novender, Elektrische Maschinen, Technische Hochschule

Mittelhessen, 2023)
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Armature reaction (cont.)
Issues related to the armature reaction:

▶ The neutral zone (field-free commutation area) is
shifted by β degrees in the circumferential
direction, that is, exacerbate the commutation
process (increased risk of sparking).

▶ High local field densities can lead to magnetic
saturation which will increase the iron path
reluctance and consequently decrease the
machine’s torque capability. Also, the iron losses
will increase.

▶ The imbalanced magnetic field leads to an
imbalanced Lorentz force distribution on the
armature conductors which can cause mechanical
distortions.

Only field excitation Only armature excitation

neutral zone

circumferential
direction

Local iron
saturation
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Counter measures: compensation winding and interpoles

Only armature-related distortion Only interpoles and compensation winding

InterpoleInterpole

Compensation
winding

Armature 
current

Field
current

Fig. 4.22: Armature reaction counter measures utilizing compensation winding and interpoles: both are
excited by the armature current with an opposite orientation to account for the load-dependent impact
of the armature reaction (adapted from W. Novender, Elektrische Maschinen, Technische Hochschule

Mittelhessen, 2023 and J. Böcker, Elektrische Antriebstechnik, Paderborn University, 2020)
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Counter measures: compensation winding and interpoles (cont.)

Fig. 4.23: Example of a DC machine with interpole winding (one may identify that the interpole winding
is connected to the brushes and, therefore, excited by the armature current)
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Counter measures: compensation winding and interpoles (cont.)
Compensation winding design: In order to compensate for the armature reaction within the
air gap, the compensation winding MMF θcw must meet the armature MMF θa:

|θcw| =
zcw

2acwp
Ia

!
= α

za
2aap

Ia = |θa|. (4.16)

Above, the following parameters are used:

▶ acw/aa: number of parallel conductors of the compensation and armature windings,

▶ zcw/za: number of conductors of the compensation and armature windings.

In (4.16) α is only related to θa as we assume the armature area to be bigger (or at least the
same size) as the field pole (cf. Fig. 4.22). From (4.16) we can calculate the required
compensation winding conductors

zcw = αza
acw
aa

= 2pQcwNcw (4.17)

which can be met by choosing Qcw slots and Ncw turns per pole.
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Counter measures: compensation winding and interpoles (cont.)

Interpole winding design: As discussed in (4.8), the reactane voltage ur ≈ Lciaωda/(awb2)
is self-induced within the short-circuited coil during commutation. To counteract this, the
interpole winding is designed such that the neutral zone is (over-)compensated leading to an
induced voltage uip which is opposite to ur:

|uip|
!
= |ur|. (4.18)

Assuming a rotational angular velocity ω and some (homogenous) Bip ̸= 0 flux density in the
interpole area, the induced voltage uip is

uip = NcωdalzBip. (4.19)

Here, Nc is the number of armature conductor turns per coil assuming that exatly one coil is
placed in the interpole area.
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Counter measures: compensation winding and interpoles (cont.)

From (4.18) and (4.19) we can calculate the
required interpole flux density Bip:

Bip =
ur

Ncωdalz
=

Lcia
2Nclzawb

. (4.20)

Applying the compensation winding design approach
(4.16) results in:∮

∂S
H ·ds = θip+θcw−θa = θip−θa(1−α). (4.21)

The MMFs per pole are:

θip = Nipia, θa = Naia. (4.22)

Fig. 4.24: Integration contour ∂S and related
MMF components for the interpole winding
design (adapted from J. Böcker, Elektrische
Antriebstechnik, Paderborn University, 2020)
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Counter measures: compensation winding and interpoles (cont.)
Assuming that the air gap reluctance is dominating
the magnetic circuit, we receive∮

∂S
H ·ds = 2δHip = Nipia−Naia(1−α). (4.23)

The flux density in the interpole area is then

Bip = µ0
Nip −Na(1− α)

2δ
ia. (4.24)

The comparison with (4.20) reveals:

µ0
Nip −Na(1− α)

2δ
ia

!
=

Lc

2Nclzawb
ia

⇔ Nip = Na(1− α) +
Lcδ

µ0Nclzawb
.

(4.25)
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Connection types of DC machines

NS

(a) Separately excited (or perm. magnet) DC machine (b) Series DC machine

(c) Shunt DC machine (d) Compound DC machine

Fig. 4.24: Connection types of DC machines incl. terminal block designations (note: the not shown
interpole winding has the terminal block designation B1-B2 and the compensation winding C1-C2)
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Steady-state behavior: separately excited DC machine
Assuming a fixed excitation ψ′

f (e.g., by a permanent magnet or constant field current), the
separately excited DC machine’s voltage demand for a certain speed is:

Ua = RaIa + ωψ′
f . (4.26)

On the other hand, the speed-torque characteristic for a fixed armature voltage supply Ua is

T =
(
Ua − ωψ′

f

) ψ′
f

Ra
= Ua

ψ′
f

Ra
− ω

ψ′2
f

Ra
. (4.27)

Fig. 4.25: Steady-state
characteristics curves (adapted
from J. Böcker, Elektrische
Antriebstechnik, Paderborn
University, 2020)
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Steady-state behavior: separately excited DC machine (cont.)

For Ua = const. > 0, the starting torque (i.e., the
torque at zero speed) and the corresponding
armature current are:

T (ω = 0) = T0 = Ua
ψ′
f

Ra
,

Ia(ω = 0) = Ia,0 =
Ua

Ra
.

(4.28)

On the other hand for T = 0, the no-load speed ω0

is:

ω0 =
Ua

ψ′
f

. (4.29)

Fig. 4.26: Starting torque and no-load speed of
a separately excited DC machine (adapted
from J. Böcker, Elektrische Antriebstechnik,

Paderborn University, 2020)
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Steady-state behavior: separately excited DC machine (cont.)
As the start up of a DC machine with a fixed armature voltage Ua can lead to very high
armature currents, which potentially cause damage, dropping resistors can be used to limit the
armature current. While this approach was historically very common (e.g., in rail vehicles), its
additional power losses and the necessity to carry bulky resistors are obvious drawbacks.

Fig. 4.27: Operation with dropping resistor during start up to limit the armature voltage (adapted from
J. Böcker, Elektrische Antriebstechnik, Paderborn University, 2020)
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Operation constraints: separately excited DC machine
Now we consider Ua being controllable (e.g., via buck converter), that is, we can also change
Ia. Nevertheless, the machine is still limited by the voltage and current constraint:

Umax ≤ Ua =
Ra

ψ′
f

T + ωψ′
f , Imax ≤ Ia. (4.30)

For sake of simplicity we only consider the first quadrant (cf. Fig. 1.6), that is, positive torque
and speed mode. From (4.30) T ≤ ψ′

fImax follows. Also, the maximum speed is limited:

ω ≤ Umax

ψ′
f

− Ra

ψ′2
f

T. (4.31)

Hence, for a constant excitation ψ′
f , the torque must be reduced starting at ω1 while ω0

represents the no-load speed where no torque can be generated anymore:

ω1 =
Umax

ψ′
f

− Ra

ψ′
f

Imax, ω0 =
Umax

ψ′
f

. (4.32)
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Operation constraints: separately excited DC machine (cont.)

Fig. 4.28: Maximum achievable torque and mechanical power for the separately excited DC machine
with a fixed excitation ψ′

f but controllable armature voltage Ua and current Ia
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Field weakening of the separately excited DC machine

In the previous scenario, the no-load speed ω0 is limited by the maximum armature voltage
Umax. However, if the field winding current If is also controllable, the no-load speed can be
increased by decreasing the excitation ψ′

f (so-called field weakening). Consider an armature
operation both at the voltage and current constraint:

Umax = RaImax + ωψ′
f = RaImax + ωL′

fif . (4.33)

For ω > ω1 the field weakening is applied by reducing if to stay exactly at the armature voltage
constraint:

if =
1

ω

Umax −RaImax

L′
f

. (4.34)

Hence, we need to reduce the excitation with 1/ω resulting in the torque and mechanical power

T =
1

ω

(
UmaxImax −RaI

2
max

)
, Pme = UmaxImax −RaI

2
max. (4.35)
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Field weakening of the separately excited DC machine (cont.)

Constant torque area
Constant power 

area

Fig. 4.29: Maximum achievable torque and mechanical power for the separately excited DC machine
with a variable excitation ψ′

f as well as controllable armature voltage Ua and current Ia
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Steady-state behavior: shunt DC machine
The shunt DC machine is characterized by:

U = Ua = Uf , I = Ia + If . (4.36)

The steady-state currents are:

If =
Uf

Rf
,

Ia =
Ua − ωL′

fIf
Ra

=
1− L′

f/Rfω

Ra
U,

I = Ia + If =

(
1

Ra
+

1

Rf
−

L′
fω

RaRf

)
U.

(4.37)

The resulting steady-state torque is:

T = L′
fIfIa = L′

f

1− L′
f/Rfω

RaRf
U2. (4.38)
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Steady-state behavior: series DC machine

The series DC machine is characterized by:

U = Ua + Uf , I = Ia = If . (4.39)

We can rewrite the terminal voltage as

U = (Ra +Rf) I + ωL′
fI = R′(ω)I (4.40)

with the effective speed-dependent resistance

R′(ω) = Ra +Rf + ωL′
f . (4.41)

The steady-state torque is then

T = L′
fI

2 = L′
f

(
U

R′(ω)

)2

. (4.42)
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Steady-state behavior: series DC machine (cont.)

If the series DC machine is operated at the negative
mechanical speed

ωr = −Ra +Rf

L′
f

, (4.43)

the current and the torque get (theoretically)
infinite. This is due to the fact that the back EMF
is exactly compensating the resistive voltage drop.
Moreover, for from (4.42) we can observe that

T → 0 ⇒ ω → ∞ (4.44)

holds for any DC voltage U ̸= 0. This is due to
inherent, load-dependent flux weakening effect of
the series DC machine.

Fig. 4.30: Steady-state torque-speed
characteristics for different DC voltage levels
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Universal machine: series DC machine with sinusoidal excitation

From (4.42) it becomes clear that T ∼ I2 holds
and, hence, the torque is independent of the sign of
the current. Hence, the series DC machine can be
also operated with an AC voltage supply (so-called
universal machine).

Consider the sinusoidal excitation

u(t) = û cos(ωelt+ φu) = Re
{
ûej(ωelt+φu)

}
= Re

{
Uejωelt

}
,

which is represented by the complex phasor

U = Uejϕu =
1√
2
ûejφu . (4.45) Fig. 4.31: Qualitative voltage, current and

torque signals for a universal motor
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Universal machine: series DC machine with sinusoidal excitation (cont.)
From (4.9) and (4.39) we can derive the complex voltage and current relations:

U = R′(ω)I + jωelLI (4.46)

with L = Lf + La. The current phasor is

I =
U

R′(ω) + jωelL
(4.47)

resulting in the instantaneous current (setting φu = 0)

i(t) = Re
{√

2Iejωelt
}
=

√
2Re

{
U (R′(ω)− jωelL)

R′(ω)2 + ω2
elL

2
ejωelt

}
(4.48)

=
√
2

U√
R′(ω)2 + ω2

elL
2
cos

(
ωel(t−

L

R′(ω)
)

)
. (4.49)
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Universal machine: series DC machine with sinusoidal excitation (cont.)
The resulting instantaneous torque is

T (t) = L′
fi
2(t)

= 2L′
f

U2

R′(ω)2 + ω2
elL

2
cos

(
ωel(t−

L

R′(ω)
)

)2

= L′
f

U2

R′(ω)2 + ω2
elL

2

[
1 + cos

(
2ωel(t−

L

R′(ω)
)

)]
.

The peak and average torque are

T̂ = 2L′
f

U2

R′(ω)2 + ω2
elL

2
= L′

f

û2

R′(ω)2 + ω2
elL

2
,

T =
ωel

2π

∫ 2π
ωel

0
T (t)dt =

1

2
T̂ .

(4.50)
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Universal machine: series DC machine with sinusoidal excitation (cont.)
Some remarks on the universal machine:

▶ Only if the reactance ωelL impact on the voltage
demand is negligible, the universal machine
average torque at AC mode is identical to the
series DC machine torque in DC mode applying
the same effective voltage.

▶ Due to the AC field current, both the armature
and stator should be based on a laminated iron
core design to reduce iron losses.

▶ The peak armature and field currents are
√
2

times higher in the AC case than in DC
operation. To prevent magnetic saturation, the
iron paths must be designed larger than for an
equivalent DC machine (i.e., leading to more
volume and weight).

Fig. 4.32: Steady-state torque-speed
characteristics for different AC voltage
frequencies at a fixed voltage amplitude
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Commutation of the universal machine

Assuming that the entire air gap field ϕδ is linked by the
commutation coil, the time-varying excitation field induces an
additional spark voltage usp within the commutation coil:

usp = −Nc
p

a

dϕδ
dt

. (4.51)

Due to the time-varying excitation current, we have
ϕδ(t) = ϕ̂δ cos(ωelt) and, hence,

usp = Nc
p

a
ωelϕ̂δ sin(ωelt). (4.52)

This additional induced spark voltage is shifted by (approx.)
90 degrees to the excitation field. Consequently, the interpole
winding current is not in phase and does not compensate usp.

Field excitation

Fig. 4.33: Simplified illustration of
the induced voltage within the

short-circuited commutation coil by
the varying excitation field
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Commutation of the universal machine (cont.)
Assuming an ideal inductive behavior of the short-circuited
coil, the induced spark voltage (4.52) leads to the current

isp = −Nc

Lc

p

a
ϕ̂δ cos(ωelt). (4.53)

This additional current will cause commutator sparking and,
hence, the universal machine commutation process is more
challenging than for a pure DC machine.

Conlusion on the universal machine

The drawbacks of the universal machine in terms of siz-
ing and commutation sparking (leading to higher wear)
are the reasons why this machine type is typical limited to
low-cost applications (e.g., household appliances) nowa-
days.

Field excitation
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Basic induction machine (IM) representation

▶ Three-phase stator + three-phase rotor:
“rotating three-phase transformer”
(plus air gap)

▶ Rotor angular speed: ωr

▶ Rotor angular displacement: εr
▶ Index “s” for stator, “r” for rotor quantities

Fundamental wave model

While it is known that the magnetic flux dis-
tribution in the air gap is subject to plentiful
harmonics, the following model limits itself to
the fundamental wave.

Fig. 5.1: Elementary three-phase induction
machine (IM) lumped-coil representation

(p = 1 pole pair)
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Dynamical IM model

Based on Faraday’s and Ohm’s laws, we can write the following equations for the stator

us
s,abc(t) = Rsi

s
s,abc(t) +

d

dt
ψs

s,abc(t) ⇔

uss,a(t)uss,b(t)

us,c(t)

 = Rs

iss,a(t)iss,b(t)

iss,c(t)

+
d

dt

ψs
s,a(t)

ψs
s,b(t)

ψs
s,c(t)

 (5.1)

and rotor

ur
r,abc(t) = Rri

r
r,abc(t) +

d

dt
ψr

r,abc(t) ⇔

urr,a(t)urr,b(t)

urr,c(t)

 = Rr

irr,a(t)irr,b(t)

irr,c(t)

+
d

dt

ψr
r,a(t)

ψr
r,b(t)

ψr
r,c(t)

 (5.2)

which are generally applicable as only identical resistances per phase on the stator and rotor
are assumed. Above, the lower index denotes the physical location of the quantities, while the
upper index indicates the coordinate system orientation.
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Flux linkage model

In contrast to the simple three-phase transformer
model, the flux linkage model of the IM is more
complex:

▶ Due to the spatial 120◦ phase shift between the
windings of the stator and rotor, the abc phases
are all mutually coupled.

▶ The flux paths and physical dimensions of the
stator and rotor are not identical, i.e., the rotor
and stator inductances are different (even if the
winding turns Ns and Nr are identical).

▶ The coupling between the stator and rotor is
rotor position-dependent (not explicitly shown on
the right due to space limitations).

Fig. 5.2: Simplified representation of the
inductive coupling between the stator/rotor

phases of the IM
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Flux linkages of the three-phase model
The flux linkages are given by

ψs
s,abc(t) =

 Ls −Ms
2 −Ms

2

−Ms
2 Ls −Ms

2

−Ms
2 −Ms

2 Ls

 iss,abc(t) +Mr
Ns

Nr
Rabc(εr,el(t))i

r
r,abc(t),

ψr
r,abc(t) =

 Lr −Mr
2 −Mr

2

−Mr
2 Lr −Mr

2

−Mr
2 −Mr

2 Lr

 irr,abc(t) +Ms
Nr

Ns
Rabc(εr,el(t))

Tiss,abc(t)

(5.3)

with εr,el(t) = pεr(t) and the transformation matrix

Rabc(εr,el(t)) =

 cos(εr,el(t)) cos(εr,el(t) +
2π
3 ) cos(εr,el(t)− 2π

3 )

cos(εr,el(t)− 2π
3 ) cos(εr,el(t)) cos(εr,el(t) +

2π
3 )

cos(εr,el(t) +
2π
3 ) cos(εr,el(t)− 2π

3 ) cos(εr,el(t))

 . (5.4)
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Inductance matrices of the three-phase model
The inductance matrices

Ls,abc =

 Ls −Ms
2 −Ms

2

−Ms
2 Ls −Ms

2

−Ms
2 −Ms

2 Ls

 , Lr,abc =

 Lr −Mr
2 −Mr

2

−Mr
2 Lr −Mr

2

−Mr
2 −Mr

2 Lr


are based on the following considerations.

▶ The self-inductances cover both the leakage and mutual coupling to other windings:
Ls/r = Ls/r,σ +Ms/r.

▶ The mutual inductances on the stator/rotor Ms/r are identical, as all three phases share the
same magnetic paths and have the same winding turns Ns/r.

▶ The mutual inductances on the off diagonal represent the spatial displacement of the
stator/rotor coils by ±120◦, which is why they are multiplied by cos(±120◦) = −0.5.

▶ In (5.3), the coupling term between stator and rotor is multiplied by the turn ratio to
account for the different winding turns Ns/r (i.e., mapping the mutual inductances between
stator/rotor).
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Orthogonal representation: alpha-beta coordinates

▶ The three-phase IM model is obviously quite
unhandy: six differential equations plus a rather
complicated magnetic circuit representation.

▶ Remedy: transform the three-phase model into
the orthogonal αβ coordinates.

▶ Advantage: only four differential equations and a
simpler magnetic circuit representation (as one
will see on the next slides).

Coordinate transformations

The following transformations of the IM model
into different coordinate systems are pure math-
ematical “tricks” to simplify the analysis. The
IM remains a three-phase machine.

Fig. 5.3: Conceptual IM representation within
the orthogonal αβ coordinates (p = 1 pole

pair)
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Clarke transformation

To transform the three-phase model into the orthogonal αβ coordinates, the Clarke
transformation is applied. Consider any xabc ∈ R3, then the Clarke transformation is given by

xαβ0 =

xαxβ
x0

 =

 2/3 −1/3 −1/3

0 1/
√
3 −1/

√
3

√
2/3

√
2/3

√
2/3


xaxb
xc

 = Tcxabc (5.5)

with the inverse transformation

xabc =

 1 0 1/
√
2

−1/2
√
3/2 1/

√
2

−1/2 −
√
3/2 1/

√
2


xαxβ
x0

 = T−1
c xαβ0. (5.6)

Above, Tc ∈ R3×3 is the Clarke transformation matrix and xαβ0 ∈ R3 the transformed vector.
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Clarke transformation: amplitude and power scaling

The transformation (5.5) is amplitude-preserving, i.e., the amplitude of the αβ vector is
identical to the amplitude of the original abc vector. On the other hand, the power is not
preserved, as can be seen from the inner product of the transformed vectors (which commonly
occurs in power calculations):

xTabcyabc = x
T
αβ0

(
T−1
c

)T
T−1
c yαβ0 ⇔ xaya + xbyb + xcyc =

3

2
(xαyα + xβyβ + x0y0) .

The alternative power-preserving Clarke transformation variant is given by

T ′
c =

√
3

2
Tc

(
T ′
c

)−1
=
(
T ′
c

)T
, (5.7)

which utilizes an orthogonal transformation matrix. However, when using T ′
c the amplitude of

the transformed vector is not preserved. While being an arbitrary choice, we will stick to (5.5)
as a convention for the following.
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Clarke transformation: simplification for zero-component-free vectors

If the abc vector xabc is zero-component-free, i.e.,

xa + xb + xc = 0,

e.g., the phase currents of a star connected system, the Clarke transformation simplifies to

xαβ =

[
xα

xβ

]
=

[
2/3 −1/3 −1/3

0 1/
√
3 −1/

√
3

]xaxb
xc

 = T23xabc (5.8)

and

xabc =

 1 0

−1/2
√
3/2

−1/2 −
√
3/2

[xα
xβ

]
= T32xαβ. (5.9)
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Clarke transformation: simplification for zero-component-free vectors

Fig. 5.4: Geometrical interpretation of the Clarke transformation without zero components: mapping
xabc ∈ R3 to xαβ ∈ R2 without information loss (adapted from J. Böcker, Controlled Three-Phase

Drives, Paderborn University, 2021)
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Park transformation

The Park transform rotates a vector xαβ ∈ R2 by a certain angle ε to obtain xdq ∈ R2, that is,

xdq =

[
xd

xq

]
=

[
cos(ε) sin(ε)

− sin(ε) cos(ε)

][
xα

xβ

]
= T−1

p (ε)xαβ (5.10)

with the counter rotation

xαβ =

[
cos(ε) − sin(ε)

sin(ε) cos(ε)

][
xd

xq

]
= Tp(ε)xdq. (5.11)

Above, Tp ∈ R2×2 is the Park transformation matrix. It might be noted that is a (historical)
convention to define that Tp rotates into the mathematically positive direction. Depending on
the application background and choice of ε, the interpretation of xdq can vary.

Bikash Sah Induction machines 191



Park transformation (cont.)

Fig. 5.5: Geometrical interpretation of the Park transformation: mapping xαβ ∈ R2 to xdq ∈ R2

(adapted from J. Böcker, Controlled Three-Phase Drives, Paderborn University, 2021)
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Park transformation: some properties
Performing the Park and inverse Park transformation sequentially, does not change the vector:

xαβ = TpT
−1
p xαβ = T−1

p Tpxαβ. (5.12)

A frequent rotation within the electric machines and drives context is

Tp(ε = π/2) =

[
cos(π/2) − sin(π/2)

sin(π/2) cos(π/2)

]
=

[
0 −1

1 0

]
= J (5.13)

leading to the definition of J ∈ R2×2 which will be used for brevity in the following. Moreover,
if ε results from some rotation, i.e., d/dt ε(t) = ω(t), we have:

d

dt
Tp(ε(t)) =

[
− sin(ε(t)) − cos(ε(t))
cos(ε(t)) − sin(ε(t))

]
d

dt
ε(t) = Tp(ε(t))Jω(t), (5.14)

d

dt
T−1
p (ε(t)) =

[
− sin(ε(t)) cos(ε(t))
− cos(ε(t)) − sin(ε(t))

]
d

dt
ε(t) = −T−1

p (ε(t))Jω(t). (5.15)
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Visualization of different coordinate systems

Fig. 5.6: Representation of a rotating phasor (without zero component) in different coordinate systems
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IM model αβ coordinates

Assuming zero-component-free three-phase quantities, multiplying the three-phase IM model
(5.1) and (5.2) with T23 results in

T23u
s
s,abc(t) = RsT23i

s
s,abc(t) + T23

d

dt
ψs

s,abc(t)

⇔ us
s,αβ(t) = Rsi

s
s,αβ(t) +

d

dt
ψs

s,αβ(t)

(5.16)

and

T23u
r
r,abc(t) = RrT23i

r
r,abc(t) + T23

d

dt
ψr

r,abc(t)

⇔ ur
r,αβ(t) = Rri

r
r,αβ(t) +

d

dt
ψr

r,αβ(t).

(5.17)

Here, it must be noted that the two voltage equations are still represented in their own stator
or rotor coordinate system. In particular, the rotor’s αβ axes are rotating (compare Fig. 5.3).
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IM model αβ coordinates: transformation of rotor quantities
To bring both model parts into the same coordinate system, the rotor quantities will be
transformed into the stator’s αβ coordinates. This is done by applying the Park transformation
with ε(t) = εr,el(t) = pεr(t):

Tp(εr,el(t))u
r
r,αβ(t) = Tp(εr,el(t))Rri

r
r,αβ(t) + Tp(εr,el(t))

d

dt
ψr

r,αβ(t)

⇔ us
r,αβ(t) = Rri

s
r,αβ(t) + Tp(εr,el(t))

d

dt
ψr

r,αβ(t).

(5.18)

The last term of (5.18) is rewritten as

Tp(εr,el(t))
d

dt
ψr

r,αβ(t) = Tp(εr,el(t))
d

dt

[
T−1
p (εr,el(t))ψ

s
r,αβ(t)

]
= Tp(εr,el(t))

[
d

dt

(
T−1
p (εr,el(t))

)
ψs

r,αβ(t) + T−1
p (εr,el(t))

d

dt

(
ψs

r,αβ(t)
)]

= −ωr,el(t)Jψ
s
r,αβ(t) +

d

dt
ψs

r,αβ(t).
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IM model αβ coordinates: transformation of rotor quantities (cont.)
Hence, the IM model voltage equations in the stator-oriented αβ coordinates are

us
s,αβ(t) = Rsi

s
s,αβ(t) +

d

dt
ψs

s,αβ(t),

us
r,αβ(t) = Rri

s
r,αβ(t)− ωr,el(t)Jψ

s
r,αβ(t) +

d

dt
ψs

r,αβ(t).

(5.19)

Furthermore, the flux linkages representation (5.3) should be also transformed into the
stator-oriented αβ coordinates. Hence, (5.3) is multiplied with T23:

ψs
s,αβ(t) = T23ψ

s
s,abc(t) =

Ls,αβ︷ ︸︸ ︷
T23Ls,abcT32 i

s
s,αβ(t) +Mr

Ns

Nr

Rs
αβ(εr,el(t))︷ ︸︸ ︷

T23Rabc(εr,el(t))T32 i
r
r,αβ(t),

ψr
r,αβ(t) = T23ψ

r
r,abc(t) = T23Lr,abcT32︸ ︷︷ ︸

Lr,αβ

irr,αβ(t) +Ms
Nr

Ns
T23Rabc(εr,el(t))

TT32︸ ︷︷ ︸
Rr

αβ(εr,el(t))

iss,αβ(t).

(5.20)
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IM model αβ coordinates: transformation of rotor quantities (cont.)

Continuing from the previous slide, we can rewrite the newly defined inductance matrices as

Ls,αβ = T23Ls,abcT32 =

[
Ls +Ms/2 0

0 Ls +Ms/2

]
= (Ls +Ms/2)I,

Lr,αβ = T23Lr,abcT32 =

[
Lr +Mr/2 0

0 Lr +Mr/2

]
= (Lr +Mr/2)I

(5.21)

and the rotation matrices as

Rs
αβ(εr,el(t)) = T23Rabc(εr,el(t))T32 =

3

2

[
cos(εr,el(t)) − sin(εr,el(t))

sin(εr,el(t)) cos(εr,el(t))

]
=

3

2
Tp(εr,el(t)),

Rr
αβ(εr,el(t)) = T23Rabc(εr,el(t))

TT32 =
3

2

[
cos(εr,el(t)) sin(εr,el(t))

− sin(εr,el(t)) cos(εr,el(t))

]
=

3

2
T−1
p (εr,el(t)).

(5.22)
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IM model αβ coordinates: transformation of rotor quantities (cont.)
Inserting (5.21) and (5.22) into the flux linkage model (5.20) yields

ψs
s,αβ(t) = (Ls +Ms/2)iss,αβ(t) +Mr

3

2

Ns

Nr
Tp(εr,el(t))i

r
r,αβ(t),

ψr
r,αβ(t) = (Lr +Mr/2)irr,αβ(t) +Ms

3

2

Nr

Ns
T−1
p (εr,el(t))i

s
s,αβ(t).

(5.23)

Multiplying the second equation with Tp(εr,el(t)) from the left allows transforming the rotor
flux linkage into the stator’s αβ coordinates

Tp(εr,el(t))ψ
r
r,αβ(t) = (Lr +Mr/2)Tp(εr,el(t))i

r
r,αβ(t) +Ms

3

2

Nr

Ns
Tp(εr,el(t))T

−1
p (εr,el(t))i

s
s,αβ(t)

resulting in a mutual flux linkage model in the stator’s αβ coordinates:

ψs
s,αβ(t) = (Ls +Ms/2)iss,αβ(t) +Mr

3

2

Ns

Nr
isr,αβ(t),

ψs
r,αβ(t) = (Lr +Mr/2)isr,αβ(t) +Ms

3

2

Nr

Ns
iss,αβ(t).

(5.24)
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IM model αβ coordinates: torque
To obtain the IM’s torque equation, a power balance is performed w.r.t. (5.19). Dropping the
time dependency for brevity, the power terms (transposed current times voltage) are

(iss,αβ)
Tus

s,αβ = Rs(i
s
s,αβ)

Tiss,αβ(t) + (iss,αβ)
T d

dt
ψs

s,αβ,

(isr,αβ)
Tus

r,αβ = Rr(i
s
r,αβ)

Tisr,αβ − ωr,el(i
s
r,αβ)

TJψs
r,αβ + (isr,αβ)

T d

dt
ψs

r,αβ.

(5.25)

Considering Fig. 1.5 and the Clarke transf. power mapping, one can identify the following:

Input power:
2

3
Pel = (iss,αβ)

Tus
s,αβ + (isr,αβ)

Tus
r,αβ,

Losses:
2

3
Pl = Rs(i

s
s,αβ)

Tiss,αβ +Rr(i
s
r,αβ)

Tisr,αβ,

Change of stored energy:
2

3

d

dt
Ei = (iss,αβ)

T d

dt
ψs

s,αβ + (isr,αβ)
T d

dt
ψs

r,αβ,

Mechanical power:
2

3
Pme = −ωr,el(i

s
r,αβ)

TJψs
r,αβ.

(5.26)
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IM model αβ coordinates: torque (cont.)
From (5.26) one can compare the mechanical power representations

2

3
Pme =

2

3
ωrT = −pωr(i

s
r,αβ)

TJψs
r,αβ (5.27)

and find the torque expression

T = −3

2
p(isr,αβ)

TJψs
r,αβ =

3

2
p
(
ψs
r,βi

s
r,α − ψs

r,αi
s
r,β

)
. (5.28)

As all terms in (5.28) are invariant with respect to the choice of the coordinate system, the
superscript labeling can be omitted:

T =
3

2
p (ψr,βir,α − ψr,αir,β) . (5.29)

If one would transform the model (5.19) into the rotor-oriented αβ coordinates and redo the
torque derivation, one would find the alternative torque expression

T =
3

2
p(is,αβ)

TJψs,αβ =
3

2
p (ψs,αis,β − ψs,βis,α) . (5.30)
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Summary: IM model in stator-oriented αβ coordinates

The most important equations of the IM model in the stator-oriented αβ coordinates are:

Stator voltage: us
s,αβ(t) = Rsi

s
s,αβ(t) +

d

dt
ψs

s,αβ(t),

Rotor voltage: us
r,αβ(t) = Rri

s
r,αβ(t)− ωr,el(t)Jψ

s
r,αβ(t) +

d

dt
ψs

r,αβ(t),

Stator flux linkage: ψs
s,αβ(t) = (Ls +Ms/2)iss,αβ(t) +Mr

3

2

Ns

Nr
isr,αβ(t),

Rotor flux linkage: ψs
r,αβ(t) = (Lr +Mr/2)isr,αβ(t) +Ms

3

2

Nr

Ns
iss,αβ(t),

Torque: T (t) =
3

2
p(iss,αβ)

TJψs
s,αβ = −3

2
p(isr,αβ)

TJψs
r,αβ.

It may be noted that the voltage and torque equations are independent of any linearity
assumption, i.e., also apply to IMs with magnetic saturation. Only if the above flux linkage
models are utilized, magnetic linearity is assumed.
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Transformation of the rotor quantities based on the turn ratio

▶ The previous model depends on the physical parameters of the rotor: Rr, Lr, and Mr.

▶ Those parameters might not be accessible or known in practice (in particular when direct
rotor measurements are not possible).

▶ Remedy: Transform the rotor quantities into the stator side based on the turn ratio Ns/Nr.

▶ Identical procedure to the transformer approach as from Fig. 3.11.

▶ Hence, stator-based measurements can be used to infer the rotor quantities (compare
open-circuit test Fig. 3.17 and short-circuit test Fig. 3.18).
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Transformation of the rotor quantities based on the turn ratio (cont.)
Applying (3.22) with α = Ns/Nr to the IM model interpreting the rotor as the secondary side
results in

u′
r =

Ns

Nr
ur, i′r =

Nr

Ns
ir, ψ′

r,αβ =
Ns

Nr
ψr,αβ,

R′
r =

N2
s

N2
r

Rr, L′
r =

N2
s

N2
r

Lr, M ′
r =

Ns

Nr
Mr.

(5.31)

Above, the indices representing the coordinate system are omitted as the transformation is
independent of the chosen coordinate system.

Utilizing also Ls = Lσ,s +Ms and Lr = Lσ,r +Mr, the flux linkage equations in the
stator-oriented αβ coordinates are then

ψs
s,αβ(t) = (Lσ,s +

3

2
Ms)i

s
s,αβ(t) +M ′

r

3

2
is

′
r,αβ(t),

ψs′
r,αβ(t) = (L′

σ,r +
3

2
M ′

r)i
s′
r,αβ(t) +Ms

3

2
iss,αβ(t).
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Transformation of the rotor quantities based on the turn ratio (cont.)
Analyzing the (magnetic) power balance reveals

3

2
Ms =

3

2
M ′

r =M, (5.32)

that is, the mutual inductance is identical for both the stator and (transformed) rotor side.
Hence, we can rewrite the flux linkage equations as

ψs
s,αβ(t) = (Lσ,s +M)iss,αβ(t) +Mis

′
r,αβ(t), (5.33)

ψs′
r,αβ(t) = (L′

σ,r +M)is
′
r,αβ(t) +Miss,αβ(t). (5.34)

Alternatively, we can express the currents as a function of the flux linkages:

iss,αβ(t) =
(Lσ,s +M)ψs

s,αβ(t)−Mψs′
r,αβ(t)

M(Lσ,s + L′
σ,r) + Lσ,sL′

σ,r

, (5.35)

is
′
r,αβ(t) =

(L′
σ,r +M)ψs′

r,αβ(t)−Mψs
s,αβ(t)

M(L′
σ,r + Lσ,s) + L′

σ,rLσ,s
. (5.36)
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Transformation of the rotor quantities based on the turn ratio (cont.)

Rewriting the transformer’s leakage coefficient definition (3.13) for the IM model as

σ =
(Lσ,s + L′

σ,r)M + L′
σ,rLσ,s

(M + Lσ,s)(M + L′
σ,r)

= 1− M2

(M + Lσ,s)(M + L′
σ,r)

(5.37)

allows expressing the currents as

iss,αβ(t) =
1

σ(Lσ,s +M)

(
ψs

s,αβ(t)−
M

M + L′
σ,r

ψs′
r,αβ(t)

)
, (5.38)

is
′
r,αβ(t) =

1

σ(L′
σ,r +M)

(
ψs′

r,αβ(t)−
M

M + Lσ,s
ψs

s,αβ(t)

)
. (5.39)
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ECD of transformed IM model in general αβ coordinates

Fig. 5.7: T-type ECD of an IM in stator-oriented αβ coordinates with rotor quantities transformed using
α = Ns/Nr
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Summary: transformed IM model in stator-oriented αβ coordinates

The most important equations of the IM model in the stator-oriented αβ coordinates with all
rotor quantities transformed to the stator side are:

Stator voltage: us
s,αβ(t) = Rsi

s
s,αβ(t) +

d

dt
ψs

s,αβ(t),

Rotor voltage: us′
r,αβ(t) = Rri

s′
r,αβ(t)− ωr,el(t)Jψ

s′
r,αβ(t) +

d

dt
ψs′

r,αβ(t),

Stator flux linkage: ψs
s,αβ(t) = (Lσ,s +M)iss,αβ(t) +Mis

′
r,αβ(t),

Rotor flux linkage: ψs′
r,αβ(t) = (L′

σ,r +M)is
′
r,αβ(t) +Miss,αβ(t),

Torque: T (t) =
3

2
p(iss,αβ(t))

TJψs
s,αβ(t) = −3

2
p(is

′
r,αβ(t))

TJψs′
r,αβ(t).

The transformed rotor quantities are u′
r = αur, i

′
r = 1/αir, ψ

′
r = αψr, R

′
r = α2Rr, L

′
r = α2Lr,

and M ′
r = αMr with α = Ns/Nr.
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General rotating coordinate system k

▶ In αβ coordinates, all quantities have sinusoidal
trajectory under regular IM operation.

▶ Compare rotating field theory: sinusoidal phase
currents lead to sinusoidal αβ currents.

K coordinate system

To simplify the machine analysis, a general ro-
tating coordinate system k is introduced. The
orientation of the d-axis of that coordinate sys-
tem can be chosen freely, however, if aligned to
the stator or rotor flux linkage vector all quan-
tities become constant during steady state (cf.
Fig. 5.6). Fig. 5.8: Comparison of coordinate systems
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IM model in coordinate system k

Applying the Park transformation to the IM model in the stator-oriented αβ coordinates results
in (dropping the time dependency for brevity):

uk
s,dq = T−1

p (εk,el)u
s
s,αβ, iks,dq= T

−1
p (εk,el)i

s
s,αβ, ψk

s,dq = T−1
p (εk,el)ψ

s
s,αβ,

uk
r,dq = T−1

p (εk,el)u
s
r,αβ, ikr,dq= T

−1
p (εk,el)i

s
r,αβ, ψk

r,dq = T−1
p (εk,el)ψ

s
r,αβ.

(5.40)

The transformed flux linkage model in the k coordinate system remains structurally unaffected
by the coordinate transformation

ψk
s,dq = (Ls +Ms/2)iks,dq +Mr

3

2

Ns

Nr
ikr,dq,

ψk
r,dq = (Lr +Mr/2)ikr,dq +Ms

3

2

Nr

Ns
iks,dq

(5.41)

since both the current and flux linkage vectors are transformed in the same way starting from
(5.24).
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IM model in coordinate system k (cont.)
Likewise, the torque is invariant with respect to the chosen coordinate system:

T =
3

2
p (is,dq)

T Jψs,dq = −3

2
p (ir,dq)

T Jψr,dq. (5.42)

Applying the Park transformation derivative rule (5.15) to the voltage equations in the k
coordinate system yields

uk
s,dq = Rsi

k
s,dq + ωk,elJψ

k
s,dq +

d

dt
ψk

s,dq,

uk
r,dq = Rri

k
r,dq + (ωk,el − ωr,el)Jψ

k
r,dq +

d

dt
ψk

r,dq.

(5.43)

Likewise, the transformation of the rotor quantities based on the turn ratio α = Ns/Nr can be
applied to the k coordinate system:

uk′
r,dq = αuk

r,dq, ik
′

r,dq = 1/αikr,dq, ψk′
r,dq = αψk

r,dq,

R′
r = α2Rr, L′

r = α2Lr, M ′
r = αMr.

(5.44)
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Summary: IM model in general dq coordinates
The most important equations of the IM model in the general k coordinate system with dq
coordinates are:

Stator voltage: uk
s,dq(t) = Rsi

k
s,dq(t) + ωk,el(t)Jψ

k
s,dq(t) +

d

dt
ψk

s,dq(t),

Rotor voltage: uk
r,dq(t) = Rri

k
r,dq(t) + (ωk,el(t)− ωr,el(t))Jψ

k
r,dq(t) +

d

dt
ψk

r,dq(t),

Stator flux linkage: ψk
s,dq(t) = (Ls +Ms/2)iks,dq(t) +Mr

3

2

Ns

Nr
ikr,dq(t),

Rotor flux linkage: ψk
r,dq(t) = (Lr +Mr/2)ikr,dq(t) +Ms

3

2

Nr

Ns
iks,dq(t),

Torque: T (t) =
3

2
p(iks,dq(t))

TJψk
s,dq(t) = −3

2
p(ikr,dq(t))

TJψk
r,dq(t).

Likewise in the stator-oriented αβ coordinates, one can further transform the rotor quantities
based on the turn ratio α = Ns/Nr to infer the rotor parameters from stator-based
measurements (cf. next slide).
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Summary: transformed IM model in general dq coordinates

The most important equations of the IM model in the general k coordinate system with dq
coordinates with all rotor quantities transformed to the stator side are:

Stator voltage: uk
s,dq(t) = Rsi

k
s,dq(t) + ωk,el(t)Jψ

k
s,dq(t) +

d

dt
ψk

s,dq(t),

Rotor voltage: uk′
r,dq(t) = Rri

k′
r,dq(t) + (ωk,el(t)− ωr,el(t))Jψ

k′
r,dq(t) +

d

dt
ψk′

r,dq(t),

Stator flux linkage: ψk
s,dq(t) = (Lσ,s +M)iks,dq(t) +Mik

′
r,dq(t),

Rotor flux linkage: ψk′
r,dq(t) = (L′

σ,r +M)ik
′

r,dq(t) +Miks,dq(t),

Torque: T (t) =
3

2
p(iks,dq(t))

TJψk
s,dq(t) = −3

2
p(ik

′
r,dq(t))

TJψk′
r,dq(t).

The transformed rotor quantities are u′
r = αur, i

′
r = 1/αir, ψ

′
r = αψr, R

′
r = α2Rr, L

′
r = α2Lr,

and M ′
r = αMr with α = Ns/Nr.
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ECD of transformed IM model in general dq coordinates

Fig. 5.9: T-type ECD of an IM in general dq coordinates with rotor quantities transformed using
α = Ns/Nr
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Stator flux orientation in the k coordinate system
Per definition we can assign the stator flux
linkage vector to the d-axis of the k coordinate
system:

ψk
s,dq(t) =

ψk
s,d(t)

ψk
s,q(t)

 =

ψk
s,d(t)

0


=

|ψk
s,dq(t)|

0

 .
(5.45)

In this case, the torque expression simplifies to

T (t) =
3

2
p(iks,dq(t))

TJψk
s,dq(t)

=
3

2
piks,q(t)ψ

k
s,d(t).

(5.46)
Fig. 5.10: Stator flux-oriented coordinate system
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Rotor flux orientation in the k coordinate system
Per definition we can also assign the rotor flux
linkage vector to the d-axis of the k coordinate
system:

ψk
r,dq(t) =

ψk
r,d(t)

ψk
r,q(t)

 =

ψk
r,d(t)

0


=

|ψk
r,dq(t)|

0

 .
(5.47)

In this case, the torque expression simplifies to

T (t) = −3

2
p(ikr,dq(t))

TJψk
r,dq(t)

= −3

2
pikr,q(t)ψ

k
r,d(t).

(5.48)
Fig. 5.11: Rotor flux-oriented coordinate system
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Steady-state behavior
Starting from the general IM model voltage equations in the transformed k coordinate system
(5.44), the steady-state (dx(t)/dt=0) behavior is described by

uk
s,dq = Rsi

k
s,dq + ωk,elJψ

k
s,dq,

uk′
r,dq = R′

ri
k′
r,dq + (ωk,el − ωr,el)Jψ

k′
r,dq.

(5.49)

During steady state the stator is excited by a constant three-phase voltage with the stator
frequency ωs while the rotor is excited with the rotor or slip frequency ωslip:

ωk,el → ωs, ωk,el − ωr,el → ωslip. (5.50)

Dropping the coordinate system indices, we have

us = Rsis + ωsJψs, u′
r = R′

ri
′
r + ωslipJψ

′
r. (5.51)

Rewriting the vectorial quantities as complex phasors Xdq = Xejϕ = Xd + jXq, we obtain

U s = RsIs + jωsΨs, U ′
r = R′

rI
′
r + jωslipΨ

′
r. (5.52)
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Steady-state behavior (cont.)
In (5.52) the complex rotor and stator fluxes rotate with different frequencies. To simplify the
analysis, we introduce the slip ratio

s =
ωslip

ωs
. (5.53)

Multiplying (5.52) with the inverse slip ratio delivers then

U s = RsIs + jωsΨs,
1

s
U ′

r =
1

s
R′

rI
′
r + jωsΨ

′
r. (5.54)

Here, both the stator and rotor fluxes rotate with the same frequency ωs. Additionally, we can
insert the current-to-flux linkage relationships

Ψs = (Lσ,s +M)Is +MI ′r, Ψ′
r = (L′

σ,r +M)I ′r +MIs (5.55)

leading to
U s = RsIs + jωs

[
(Lσ,s +M)Is +MI ′r

]
,

1

s
U ′

r =
1

s
R′

rI
′
r + jωs

[
(L′

σ,r +M)I ′r +MIs
]
.

(5.56)
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Steady-state behavior: equivalent circuit diagram

The complex steady-state phasor model (5.56) can be represented by the following equivalent
circuit diagram. Here, one can note the striking similarity to the T-type ECD of a transformer.

Fig. 5.12: T-type ECD of an IM in steady state represented by complex phasors
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IM rotor types

(a) Squirrel cage rotor (source: Wikimedia Commons,
Zurek, CC BY-SA 3.0)

(b) Wound or
slip ring rotor

Fig. 5.13: IM rotor variants
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Squirrel cage IM torque-speed characteristic
Utilizing the stator flux orientation we define

Ψs = Ψs,d + jΨs,q = Ψs,d = Ψs.

Assuming that the stator ohmic voltage drop is negligible (Rs = 0), we get from (5.54)

U s = Us,d + jUs,q = jωsΨs = jωsΨd (5.57)

and, therefore,

Us,d = 0, Ψs,d =
Us,q

ωs
=
Us

ωs
= Ψs. (5.58)

Hence, the stator voltage phasor is purely imaginary and the stator flux phasor is real due to
the chosen orientation. From (5.55) we can rewrite the flux-to-current relationships as

Is =
1

σ(Lσ,s +M)
Ψs −

M

σ(Lσ,s +M)(L′
σ,r +M)

Ψ′
r,

I ′r =
1

σ(L′
σ,r +M)

Ψ′
r −

M

σ(Lσ,s +M)(L′
σ,r +M)

Ψs.

(5.59)
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Squirrel cage IM torque-speed characteristic (cont.)
Furthermore, the rotor voltage for the squirrel cage IM is

U ′
r = 0

due to the short-circuited rotor winding. The rotor voltage equation (5.54) then simplifies to

0 =
1

s
R′

rI
′
r + jωsΨ

′
r ⇔ Ψ′

r =
j

ωs

R′
r

s
I ′r. (5.60)

Fig. 5.14: T-type ECD of a squirrel cage IM in steady state represented by complex phasors

Bikash Sah Induction machines 222



Squirrel cage IM torque-speed characteristic (cont.)
Combining (5.58), (5.59), and (5.60) we have a linear equation system resulting in

Is,d =
Us

ωs

σ2ω2
slip(Lσ,s +M)(L′

σ,r +M)3 + (L′
σ,r +M)(Lσ,s +M)(R′

r)
2 −M2(R′

r)
2

σ(Lσ,s +M)2(L′
σ,r +M)ωslip(σ2ω2

slip(L
′
σ,r +M)2 + (R′

r)
2)

, (5.61)

Is,q =
Us

ωs

M2ωslipR
′
r

(Lσ,s +M)2(σ2(L′
σ,r +M)2ω2

slip + (R′
r)

2)
, (5.62)

Ir,d = −Us

ωs

σMω2
slip(L

′
σ,r +M)

(Lσ,s +M)(σ2(L′
σ,r +M)2ω2

slip + (R′
r)

2)
, (5.63)

Ir,q = −Us

ωs

MR′
rωslip

(Lσ,s +M)(σ2(L′
σ,r +M)2ω2

slip + (R′
r)

2)
, (5.64)

Ψr,d =
Us

ωs

M(R′
r)

2

(Lσ,s +M)(σ2(L′
σ,r +M)2ω2

slip + (R′
r)

2)
, (5.65)

Ψr,q = −Us

ωs

σM(L′
σ,r +M)R′

rωslip

(Lσ,s +M)((L′
σ,r +M)2σ2ω2

slip + (R′
r)

2)
. (5.66)
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Squirrel cage IM torque-speed characteristic (cont.)
With the definition of ωmax = R′

r/σ(L′
σ,r+M) we can rewrite and receive

Is,d =
Us

ωs

σ2ω2
slip(Lσ,s +M)(L′

σ,r +M)3 + (L′
σ,r +M)(Lσ,s +M)(R′

r)
2 −M2(R′

r)
2

σ(Lσ,s +M)2(L′
σ,r +M)ωslip(σ2ω2

slip(L
′
σ,r +M)2 + (R′

r)
2)

, (5.67)

Is,q =
Us

ωs

M2

σ(Lσ,s +M)2(L′
σ,r +M)

1
ωslip

ωmax
+ ωmax

ωslip

, (5.68)

Ir,d = −Us
Ms

(Lσ,s +M)R′
r

1
ωslip

ωmax
+ ωmax

ωslip

, (5.69)

Ir,q = −Us

ωs

M

σ(Lσ,s +M)(L′
σ,r +M)

1
ωslip

ωmax
+ ωmax

ωslip

, (5.70)

Ψr,d =
Us

ωs

MR′
r

σ(Lσ,s +M)(L′
σ,r +M)ωslip

1
ωslip

ωmax
+ ωmax

ωslip

, (5.71)

Ψr,q = −Us

ωs

M

(Lσ,s +M)

1
ωslip

ωmax
+ ωmax

ωslip

. (5.72)
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Squirrel cage IM torque-speed characteristic (cont.)
The torque expression is then

T =
3

2
p
√
2Ψs

√
2Is,q =

3

2
p
U2
s

ω2
s

M2

σ(Lσ,s +M)2(L′
σ,r +M)

2
ωslip

ωmax
+ ωmax

ωslip

. (5.73)

Hence, the maximum achievable torque for a constant stator excitation is

Tmax =
3

2
p
U2
s

ω2
s

M2

σ(Lσ,s +M)2(L′
σ,r +M)

(5.74)

since

max
ωslip

{
2

ωslip

ωmax
+ ωmax

ωslip

}
= 1, argmax

ωslip

{
2

ωslip

ωmax
+ ωmax

ωslip

}
= ωmax =

R′
r

σ(L′
σ,r +M)

applies. Above, Ψs and Is,q are RMS values according to the complex phasor definitions, which
is why the factor

√
2 appears in the torque expression.
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Squirrel cage IM torque-speed characteristic (cont.)

The torque expression

T = Tmax
2

ωslip

ωmax
+ ωmax

ωslip

(5.75)

can be also alternatively expressed as a function of the slip ratio s by utilizing

ωslip = sωs, smax =
ωmax

ωs
=

R′
r

σ(L′
σ,r +M)ωs

leading to

T = Tmax
2

s
smax

+ smax
s

. (5.76)

The torque-speed characteristic of a squirrel cage IM is also known as Kloss’s formula. It
should be noted that ωmax and smax are machine-dependent parameters (for a constant stator
excitation), i.e., constants. Contrary, the slip ratio s and slip frequency ωslip depend on the
IM’s shaft speed and vary during operation.
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Kloss’s formula: visual representation

Rotor speed

Starting 
torque

(a) Illustration based on the mechanical speed (b) Illustration based on the slip ratio

Fig. 5.15: Steady-state torque-speed characteristic of a squirrel cage IM for a fixed stator excitation
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Squirrel cage IM torque-speed characteristic: rotor resistance

The starting torque, i.e., the torque at motor standstill (ωr = 0), is given by

T0 = Tmax
2smax

1 + s2max

= Tmax
2ωmax

1 + ω2
max

(5.77)

since
ωslip = ωs − pωr = ωs − 0 = ωs

holds. Depending on the machine design T0 can be significantly lower than Tmax, which might
be a disadvantage for certain applications. Since

ωmax =
R′

r

σ(L′
σ,r +M)

, smax =
R′

r

σ(L′
σ,r +M)ωs

depend on the rotor resistance R′
r, the starting torque can be modified by changing the rotor

resistance, e.g., via a dropping resistor or potentiometer (which would require a slip ring rotor).
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Squirrel cage IM torque-speed characteristic: rotor resistance (cont.)

Rotor speed

Fig. 5.16: Steady-state torque-speed characteristic of a squirrel cage IM for a fixed stator excitation with
varying rotor resistance R′

r – note that the synchronous speed ωr = ωs/p and the maximum torque
Tmax are independent of the rotor resistance variation
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Slip frequency-dependent rotor skin effect

▶ If ωslip ̸= 0, the rotor bars are exposed to a
time-varying magnetic field.

▶ This induces eddy currents leading to an uneven
current distribution within the bars.

▶ As a result, the effective rotor resistance
increases with the slip frequency:

Rr(ωslip)

Rr,DC
= δ

sinh(2δ) + sin(2δ)

cosh(2δ)− cos(2δ)
(5.78)

with

δ = hbar

√
ωslip

µ0κ

2

wbar

wslot

being the skin depth. Here, µ0 is the vacuum
permeability and κ is the bar’s conductivity.

Fig. 5.17: Rotor bar with eddy currents
induced by the rotating magnetic field
(inspired from A. Binder, Elektrische

Maschinen und Antriebe, Vol. 2, Springer,
2017)
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Slip frequency-dependent rotor skin effect (cont.)

0 10 20 30 40 50
fslip in Hz

1.0

1.5

2.0

2.5

3.0
R

r(
ω

sl
ip

)
R

r,
D

C

Fig. 5.18: Rotor resistance of a squirrel cage IM as a function of the slip frequency (example based on
the following values: κ = 3.7 · 107 S

m , hbar = 50mm, wbar = 10mm, wslot = 15mm)
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Squirrel cage IM torque-speed characteristic: varying stator frequency

▶ Adaption of rotor resistance might be
technically tricky.

▶ Alternative: vary stator frequency ωs.

▶ Shift of the torque-speed characteristic
along the speed axis, i.e., the synchronous
speed ωr = ωs/p.

▶ Allows utilizing Tmax at different speeds
(including initial starting torque).

▶ Requires a variable frequency source, e.g., a
power electronic converter. Fig. 5.19: Steady-state torque-speed characteristic

of a squirrel cage IM with varying ωs while keeping
Us/ωs = const.
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Squirrel cage IM torque-speed characteristic: flux weakening

▶ The previous consideration from Fig. 5.19
assumed that Us/ωs = const. applies, that
is, the stator voltage amplitude is adjusted
according to the frequency.

▶ Obviously, this is only possible to a certain
extent due to the voltage source limitations.

▶ Hence, at some point, the torque-speed
characteristic is limited by the available
voltage leading to a flux weakening
operation mode (cf. right figure).

Fig. 5.20: Steady-state torque-speed characteristic
of a squirrel cage IM with varying ωs while keeping

Us = const., i.e., field weakening operation
(Ψs ∼ 1/ωs)
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Squirrel cage IM torque-speed characteristic: air gap harmonics

▶ The rotating field analysis (??) revealed
that the air gap magnetic field contains
harmonics:

B =
6

πp
B̂

∞∑
k

1

k
sin

(
kπ

2

)
cos(ωt− kϑel)

▶ This induces rotor currents with the
harmonic slip frequency ω

(k)
slip.

▶ Likewise the IM fundamental torque,
these air gap field and rotor current
harmonics lead to constant, i.e.,
non-harmonic, torque contributions
distorting the torque-speed
characteristic.

Fig. 5.21: Steady-state torque-speed characteristic of a
squirrel cage IM considering torque harmonics due to

stator magnetic field harmonics of order k = 1,−5, 7,−11

Bikash Sah Induction machines 234



Table of contents

6 Synchronous machines

Bikash Sah Induction machines 235



Synchronous machines
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Synchronous machine (SM) rotor types

(a) Salient pole rotor (b) Cylindrical rotor

Fig. 6.1: Major rotor types of synchronous machines (SM)
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SM application examples

(a) 2MVA generator from 1920 (source: Wikimedia
Commons, Kolossos, CC BY-SA 3.0)

(b) 36MVA Pelton wheel generator (source:
Wikimedia Commons, Asurnipal, CC BY-SA 4.0)

Fig. 6.2: SM examples with salient pole rotor type
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SM application examples (cont.)

(a) 650MVA turbogenerator from Cernavodă nuclear
power plant (source: Wikimedia Commons, R. Lavinia,

CC BY-SA 4.0)

(b) 1GVA turbogenerator SM rotor from Balakovo
nuclear power plant (source: Wikimedia Commons, A.

Seetenky, CC BY-SA 3.0)

Fig. 6.3: SM examples with cylindrical rotor type
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Visualization of the synchronous machine operation

Fig. 6.4: Exemplary SM operation at ω = 2π50 1
s in motoric operation (positive average torque)
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Visualization of the synchronous machine operation (cont.)

Fig. 6.5: Exemplary SM operation at ω = 2π50 1
s in no-load operation (zero average torque)
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Dynamical SM model

Based on Faraday’s and Ohm’s laws, we can write the following equations for the stator

us
s,abc(t) = Rsi

s
s,abc(t) +

d

dt
ψs

s,abc(t) ⇔

uss,a(t)uss,b(t)

us,c(t)

 = Rs

iss,a(t)iss,b(t)

iss,c(t)

+
d

dt

ψs
s,a(t)

ψs
s,b(t)

ψs
s,c(t)

 (6.1)

and rotor field winding

urf(t) = Rfi
r
f(t) +

d

dt
ψr
f (t) (6.2)

which are generally applicable as only identical resistances per phase on the stator are assumed.
In contrast to the induction motor, only a single rotor field winding is present.
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Flux linkage model

The SM flux linkage model is similar to the IM
model:

▶ Assuming a cylindrical rotor, the self-induced
stator flux remains identical to the IM model
(derived from rotating field theory chapter).

▶ In contrast to the IM model Fig. 5.2, the SM’s
rotor field coil is a represented by a single
winding.

▶ The coupling of the stator and rotor remains
rotor position-dependent (not explicitly shown on
the right due to space limitations). Fig. 6.6: Simplified representation of the

inductive coupling between the stator/rotor
phases of the cylindrical rotor SM
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Flux linkages of the three-phase model

Based on the previous considerations, the flux linkages of the cylindrical SM are given by

ψs
s,abc(t) =

 Ls −Ms
2 −Ms

2

−Ms
2 Ls −Ms

2

−Ms
2 −Ms

2 Ls

 iss,abc(t) +Mr
Ns

Nr

 cos(εr,el(t))

cos(εr,el(t)− 2π
3 )

cos(εr,el(t) +
2π
3 )

 irf(t),
ψr
f (t) = Lfi

r
f(t)

+Ms
Nr

Ns

[
cos(εr,el(t)) cos(εr,el(t)− 2π

3 ) cos(εr,el(t) +
2π
3 )
]
iss,abc(t)

(6.3)

with εr,el(t) = pεr(t). Consequently, (6.3) is a reduced representation of the IM’s flux linkage
model (5.3).
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Cylindrical SM model in alpha-beta coordinates: voltage equations

Similar to the IM, we can represent the SM model is
orthogonal αβ-coordinates. For the SM this only
applies to the three-phase stator, as the rotor has
only a single phase winding. The αβ-coordinates
voltage equation is given by (compare to (5.16))

us
s,αβ(t) = Rsi

s
s,αβ(t) +

d

dt
ψs

s,αβ(t) (6.4)

while the rotor field winding voltage equation
remains identical to (6.2):

urf(t) = Rfi
r
f(t) +

d

dt
ψr
f (t). Fig. 6.7: Conceptual cylindrical SM

representation within the orthogonal αβ
coordinates (p = 1 pole pair)
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Cylindrical SM model in alpha-beta coordinates: flux linkage

For the flux linkage model in αβ-coordinates, we multiply the stator flux equations from (6.3)
with T23 from the right

ψs
s,αβ(t) = T23ψ

s
s,abc(t) =

Ls,αβ︷ ︸︸ ︷
T23Ls,abcT32 i

s
s,αβ(t) +Mr

Ns

Nr
T23

 cos(εr,el(t))
cos(εr,el(t)− 2π

3 )
cos(εr,el(t) +

2π
3 )

 irf(t)
= (Ls +Ms/2)iss,αβ(t) +Mr

Ns

Nr

[
cos(εr,el(t))
sin(εr,el(t))

]
irf(t)

(6.5)

and utilize iss,abc(t) = T32i
s
s,αβ(t) to modify the rotor flux linkage equation accordingly:

ψr
f (t) = Lf i

r
f(t) +Ms

Nr

Ns

[
cos(εr,el(t)) sin(εr,el(t))

]
iss,αβ(t). (6.6)

In contrast to the IM αβ-coordinates flux linkage model, the SM flux-to-current coupling is
rotor position-dependent.
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Cylindrical SM model in alpha-beta coordinates: flux linkage (cont.)

Analyzing the (magnetic) power balance reveals

Mr
Ns

Nr
=Ms

Nr

Ns

!
=Mfs, (6.7)

and with the shorter notation
L′
s = (Ls +Ms/2) (6.8)

we can rewrite the flux linkage model in αβ-coordinates to

ψs
s,αβ(t) = L′

si
s
s,αβ(t) +Mfs

[
cos(εr,el(t))
sin(εr,el(t))

]
irf(t),

ψr
f (t) = Lfi

r
f(t) +Mfs

[
cos(εr,el(t))
sin(εr,el(t))

]T
iss,αβ(t).

(6.9)
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Cylindrical SM model in alpha-beta coordinates: torque

Following the same power balance approach as from the IM, the SM’s torque equation is given
by

T (t) =
3

2
p(iss,αβ(t))

TJψs
s,αβ(t). (6.10)

The equivalent representation with the rotor current and flux linkage as in the IM case is not
applicable in the SM case, as the rotor has only a single field winding, i.e., is lacking an αβ
representation. Inserting the linear flux linkage model from (6.9) into the torque equation yields

T (t) =
3

2
p(iss,αβ(t))

TJψs
s,αβ(t)

=
3

2
p(iss,αβ(t))

TJ

(
L′
si

s
s,αβ(t) +Mfs

[
cos(εr,el(t))
sin(εr,el(t))

]
irf(t)

)
=

3

2
pMfsi

r
f

(
cos(εr,el(t))i

s
s,β(t)− sin(εr,el(t))i

s
s,α(t)

)
.

(6.11)
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Cylindrical SM model in alpha-beta coordinates: torque interpretation
In (6.11) the term

Mfs

[
cos(εr,el(t))
sin(εr,el(t))

]
irf(t) = ψ

s
f (t) (6.12)

can be interpreted as the field winding flux linkage
coupled with the stator winding. Hence, the torque
expression can be rewritten as:

T (t) =
3

2
p
∥∥ψs

f (t)× iss,αβ(t)
∥∥

=
3

2
p
∥∥ψs

f (t)
∥∥∥∥iss,αβ(t)∥∥ sin(θ(t)) (6.13)

with θ being the angle between the field winding
flux linkage and the stator current vectors, also
known as the load angle.

Fig. 6.8: Interpretation of the torque as the
parallelogram area spannend by the vectors of
the field winding flux and the stator current
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Summary: cylindrical SM model in αβ coordinates

The most important equations of the cylindrical SM model in the αβ coordinates are:

Stator voltage: us
s,αβ(t) = Rsi

s
s,αβ(t) +

d

dt
ψs

s,αβ(t),

Rotor / field winding voltage: urf(t) = Rfi
r
f(t) +

d

dt
ψr
f (t),

Stator flux linkage: ψs
s,αβ(t) = L′

si
s
s,αβ(t) +Mfs

[
cos(εr,el(t))
sin(εr,el(t))

]
irf(t),

Rotor / field winding flux linkage: ψr
f (t) = Lfi

r
f(t) +Mfs

[
cos(εr,el(t))
sin(εr,el(t))

]T
iss,αβ(t),

Torque: T (t) =
3

2
p(iss,αβ)

TJψs
s,αβ.
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Rotor flux orientation: the dq coordinate system

▶ In the SM case the rotor flux orientaton is
directly related to the rotor position (cf.
Fig. 6.1).

▶ Hence, to transfer the rotor and stator
equations into a mutual coordinate system,
the rotor flux orientation is typically used as
a reference.

▶ In contrast to the αβ-coordinates, where the
stator quantity signals are of sinusoidal
shape during steady state, the rotor
flux-oriented signals are constant during
steady state. Fig. 6.9: Rotor flux-oriented coordinate system
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Rotor flux orientation: the dq coordinate system (cont.)

Transferring the stator voltage equation into the dq coordinate system results in

us
s,αβ(t) = Rsi

s
s,αβ(t) +

d

dt
ψs

s,αβ(t)

⇔ T−1
p (εr,el)u

s
s,dq(t) = RsT

−1
p (εr,el)i

s
s,dq(t) +

d

dt
(T−1

p (εr,el)ψ
s
s,dq(t))

⇔ ur
s,dq(t) = Rsi

r
s,dq(t) + ωr,el(t)Jψ

r
s,dq(t) +

d

dt
ψr

s,dq(t).

(6.14)

Since the dq coordinate system is always aligned with the rotor flux in the SM case, one can
also drop the superscript r:

us,dq(t) = Rsis,dq(t) + ωr,el(t)Jψs,dq(t) +
d

dt
ψs,dq(t).
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Rotor flux orientation: the dq coordinate system (cont.)
The stator flux linkage model in the dq coordinate system is given by

ψs
s,αβ(t) = L′

si
s
s,αβ(t) +Mfs

[
cos(εr,el(t))
sin(εr,el(t))

]
irf(t),

⇔ T−1
p (εr,el)ψs,dq(t) = L′

sT
−1
p (εr,el)is,dq(t) +Mfs

[
cos(εr,el(t))
sin(εr,el(t))

]
if(t)

⇔ ψs,dq(t) = L′
sis,dq(t) +Mfs

[
1
0

]
︸ ︷︷ ︸

Mfs

irf(t) = L′
sis,dq(t) +Mfsi

r
f(t).

(6.15)

while the field winding flux results in

ψr
f (t) = Lfi

r
f(t) +Mfs

[
cos(εr,el(t)) sin(εr,el(t))

]
iss,αβ(t)

⇔ ψr
f (t) = Lfi

r
f(t) +Mfs

[
cos(εr,el(t)) sin(εr,el(t))

]
T−1
p (εr,el)i

s
s,dq(t)

⇔ ψr
f (t) = Lfi

r
f(t) +Mfs

[
1 0

]
is,dq(t) = Lfi

r
f(t) +M

T
fsis,dq(t).

(6.16)
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Summary: cylindrical SM model in dq coordinates

The most important equations of the cylindrical SM model in the dq coordinates are:

Stator voltage: us,dq(t) = Rsis,dq(t) + ωr,el(t)Jψs,dq(t) +
d

dt
ψs,dq(t),

Rotor / field winding voltage: uf(t) = Rf if(t) +
d

dt
ψf(t),

Stator flux linkage: ψs,dq(t) = L′
sis,dq(t) +Mfsif(t),

Rotor / field winding flux linkage: ψf(t) = Lf i
r
f(t) +M

T
fsis,dq(t),

Torque: T (t) =
3

2
p(is,dq)

TJψs,dq.

Here, one can observe that the d component of the stator flux linkage is directly coupled with
the field winding flux and vice versa, which was to be expected due to the rotor flux orientation
of the chosen coordinate system.
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ECD of cylindrical SM model in dq coordinates

Fig. 6.10: T-type ECD of a cylindrical
SM in dq coordinates (note that this
ECD is represented with scalar values and
not as vectors or complex numbers as in
the IM case).
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Salient pole SM model

▶ The cylindrical rotor SM model (6.15)
considered an identical stator inductance L′

s

for the d and q axis.

▶ In the cylindrical SM case this is a valid
assumption, as the rotor is symmetrical.

▶ However, in the case of a salient pole SM,
the rotor is not symmetrical and the flux
path per axis is different (cf. Fig. 6.11).

▶ The q-axis reluctance is larger than the
d-axis reluctance due to the larger air gap in
the q-axis direction.

▶ Consequently, the inductance per axis is
different.

d reluctance 
path

 q reluctance 
path

Fig. 6.11: Effective reluctance paths of the salient
pole SM in the dq coordinate system
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Salient pole SM model (cont.)
From Fig. 6.11 we derive the following stator flux linkage model for the salient pole SM:

ψs,dq(t) =

[
L′
s,d 0

0 L′
s,q

]
︸ ︷︷ ︸

Ls,dq

is,dq(t) +Mfs

[
1
0

]
if(t) = Ls,dqis,dq(t) +Mfsif(t) (6.17)

while the rotor field winding flux linkage remains identical to the cylindrical SM case. Inserting
the stator flux linkage model into the torque equation yields

T (t) =
3

2
p(is,dq)

TJψs,dq =
3

2
pis,q

[
Mfsif +

(
L′
s,d − L′

s,q

)
is,d
]

=
3

2
pMfsis,qif︸ ︷︷ ︸

main torque

+
3

2
pis,qis,d

(
L′
s,d − L′

s,q

)
︸ ︷︷ ︸

reluctance torque

. (6.18)

The latter part is specific to the salient pole SM since L′
s,d ̸= L′

s,q holds, while
L′
s,d = L′

s,q = L′
s applies to the cylindrical SM, that is, the reluctance torque is zero.
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Summary: salient pole SM model in dq coordinates

The most important equations of the salient pole SM model in the dq coordinates are:

Stator voltage: us,dq(t) = Rsis,dq(t) + ωr,el(t)Jψs,dq(t) +
d

dt
ψs,dq(t),

Rotor / field winding voltage: uf(t) = Rf if(t) +
d

dt
ψf(t),

Stator flux linkage: ψs,dq(t) = Ls,dqis,dq(t) +Mfsif(t),

Rotor / field winding flux linkage: ψf(t) = Lf i
r
f(t) +M

T
fsis,dq(t),

Torque: T (t) =
3

2
p(is,dq)

TJψs,dq

=
3

2
pis,q

[
Mfsif +

(
L′
s,d − L′

s,q

)
is,d
]
.
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Damper winding

damper
winding

(a) Salient pole SM with damper winding

(b) Salient pole with dismantled damper winding
(source: L. Frosini, Novel Diagnostic Techniques for
Rotating Electrical Machines – A Review, Energies,

2020, CC BY 4.0)

Fig. 6.12: SM with damper winding
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Damper winding (cont.)

▶ The damper winding is a short-circuited
winding in the rotor slots of the SM.

▶ The damper winding is used to dampen the
rotor oscillations during transients.

▶ This is important for synchronous generators
in power systems, where the rotor
oscillations can lead to instabilities.

Damper winding model

The SM damper winding can be interpreted
as the IM squirrel cage, i.e., the rotor model
can be extended accordingly (superposi-
tion).

Fig. 6.13: SM rotor with solid damper bars (source:
J. Cros et al., Simulation Methods for the Transient
Analysis of Synchronous Alternators, Renewable

Energy, 2016, CC BY 3.0)
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SM model with damper winding
From the IM model in dq-coordinates (compare Fig. 5.9) we introduce the short-circuited
damper winding voltage equation:

0 = Rr,DQir,DQ(t) +
d

dt
ψr,DQ(t) =

[
Rr,D 0
0 Rr,Q

] [
ir,D(t)
ir,Q(t)

]
+

d

dt

[
ψr,D(t)
ψr,Q(t)

]
. (6.19)

Here, the following applies:

▶ Capital indices represent the damper winding.

▶ ir,DQ(t) and ψr,DQ(t) are the current as well as flux linkage in the damper winding.

▶ Rr,DQ represents the resistance matrix: Since the damper winding eventually does not cover
the entire rotor circumference, Rr,D ̸= Rr,Q can apply (compare Fig. 6.12).

The stator and field winding voltage equations remain unchanged:

us,dq(t) = Rsis,dq(t) + ωr,el(t)Jψs,dq(t) +
d

dt
ψs,dq(t), uf(t) = Rfif(t) +

d

dt
ψf(t).
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SM model with damper winding (cont.)

The flux linkage equations become

ψs,dq(t) = Ls,dqis,dq(t) +Mfsif(t) +Mrsir,DQ(t)

=

[
L′
s,d 0

0 L′
s,q

] [
is,d(t)
is,q(t)

]
+Mfs

[
1
0

]
if(t) +

[
MdD 0
0 MqQ

] [
ir,D(t)
ir,Q(t)

]
,

ψf(t) = Lfif(t) +M
T
fsis,dq(t) +M

T
frir,DQ(t)

= Lfif(t) +Mfs

[
1 0

] [is,d(t)
is,q(t)

]
+Mfr

[
1 0

] [ir,D(t)
ir,Q(t)

]
,

ψr,DQ(t) = Lr,DQir,DQ(t) +Mrsis,dq(t) +Mfrif(t)

=

[
LD 0
0 LQ

] [
ir,D(t)
ir,Q(t)

]
+

[
MdD 0
0 MqQ

] [
is,d(t)
is,q(t)

]
+Mfr

[
1
0

]
if(t).

(6.20)
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SM model with damper winding (cont.)

The torque equation results in

T (t) =
3

2
p(is,dq)

TJψs,dq

=
3

2
p
[
Mfsifis,q +

(
L′
s,d − L′

s,q

)
is,dis,q +MdDis,qir,D −MqQis,dir,Q

]
.

(6.21)

Here, the last two terms represent the torque contribution of the damper winding:

▶ In steady state, that is, the stator field rotates synchronously with the rotor, the damper
winding current is zero, cf. (6.19). Consequently, the damper torque is zero.

▶ Only during transients, when a changing flux linkage induces a voltage within the damper
winding, non-zero damper currents occur.

▶ The resulting damper torque will oppose the transient and, e.g., dampen mechanical rotor
oscillations in generator applications.

Bikash Sah Synchronous machines 263



Permanent magnet synchronous machine (PMSM)

N

S

(a) Surface-mounted PMSM (SPMSM)

N

S

(b) Interior PMSM (IPMSM)

Fig. 6.14: SM with permanent magnet excitation
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PMSM characteristics

▶ Field winding is replaced by permanent
magnets (PMs) in the rotor.

▶ Typically increases efficiency and power
density, since no field winding losses occur.

▶ However, PMs are often more expensive
than field windings and the machine is less
flexible in terms of field weakening.

PMSM applications

Due to weight and size advantages, PMSMs
are often used in automotive applications
(e.g., electric vehicles) and in highly dy-
namic industrial applications (e.g., servo
drives).

Fig. 6.15: PMSM with external rotor (source:
Wikimedia Commons, R. Spekking, CC BY-SA 4.0)
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PMSM model
Due to the absence of a field winding, the PMSM model simplifies: The general stator voltage
equation in the dq coordinate system remains identical to the SM model

us,dq(t) = Rsis,dq(t) + ωr,el(t)Jψs,dq(t) +
d

dt
ψs,dq(t)

while the field winding voltage equation is omitted. The stator flux linkage model becomes

ψs,dq(t) = Ls,dqis,dq(t) +ψpm =

[
L′
s,d 0

0 L′
s,q

] [
is,d(t)
is,q(t)

]
+

[
ψpm

0

]
. (6.22)

Here, ψpm represents the (constant) permanent magnet flux linkage. By definition of the dq
coordinate system, the permanent magnet flux linkage is directed exclusively along the d-axis
(cf. Fig. 6.14). The rotor flux linkage model is omitted, since no field winding is present. Also,
a damper winding is very uncommon for PMSMs. Hence, torque equation results in

T (t) =
3

2
p(is,dq)

TJψs,dq =
3

2
pis,q

[
ψpm +

(
L′
s,d − L′

s,q

)
is,d
]
. (6.23)
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Isotropic vs. anisotropic PMSM

From (2.26) we know that the relative permeability of the PM material is nearly as that of air,
i.e.,

µr,PM ≈ 1

applies. Consequently, the PM flux path can be considered as an (additional) air gap. Against
this background, the two types for PMSM rotors as in Fig. 6.14 show different characteristics:

▶ SPMSM: The PMs are distributed over the entire rotor circumference.
▶ The PM flux path is isotropic, i.e., the same in all directions.
▶ Consequently, the relucance paths in the d and q axis are identical.
▶ L′

s,d = L′
s,q = L′

s applies.

▶ IPMSM: The PMs are concentrated inside the rotor core.
▶ The PM flux path is anisotropic, i.e., different in the d and q axis.
▶ Consequently, the effective reluctance along the d axis is much higher than along the q axis.
▶ L′

s,d < L′
s,q applies.
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Synchronous reluctance machine (SynRM)

▶ SynRM: utilizes only the reluctance torque.

▶ No field winding or PMs are present.

▶ The rotor is designed such that the
reluctance difference in the d and q axis is
maximized.

▶ PMSM model equations can be used, but
the PM flux linkage is zero.

ψs,dq(t) = Ls,dqis,dq(t),

T (t) =
3

2
p(is,dq)

TJψs,dq

=
3

2
pis,q

(
L′
s,d − L′

s,q

)
is,d.

(6.24)

Flux barriers

Fig. 6.16: Example of a SynRM with rotor flux
barriers (no PMs or field winding present)
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Steady-state behavior
We limit the following discussion to the isotropic case

L′
s,d = L′

s,q = L′
s

which covers the SPMSM and the cylindrical SM. In steady state (dx/dt = 0), the flux linked
with possibly present damper windings is constant, i.e., no voltage is induced within the
damper windings and

Ir,DQ = 0

applies. Hence, the damper winding can be neglected in steady state. Furthermore, in steady
state the field winding current is constant:

If =
Uf

Rf
= const.

Consequently, the stator flux linkage share resulting from the field winding MfsIf is constant
and can be interpreted as an equivalent permanent magnet flux linkage. Hence, we will focus
on the steady-state behavior of the cylindrical SM in the following, which implicitly covers the
SPMSM case as well. The steady-state characteristics of the other SM types are not covered.
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Steady-state behavior (cont.)
In steady state, the flux linkage equation remains

ψs,dq = L′
sIs,dq +MfsIf ⇔

[
ψs,d

ψs,q

]
=

(
Ls +

Ms

2

)[
Is,d
Is,q

]
+Mfs

[
If
0

]
.

With the decomposition of Ls into its leakage part Lσ,s and the mutual part Ms,

Ls = Lσ,s +Ms, (6.25)

we obtain [
ψs,d

ψs,q

]
=

(
Lσ,s +

3

2
Ms

)[
Is,d
Is,q

]
+Mfs

[
If
0

]
. (6.26)

In the context of simplified modeling, the assumption is (often) made that the (scaled) mutual
inductances are equal, i.e.,

Mfs = 3/2Ms =M

leading to
ψs,d = (Lσ,s +M) Is,d +MIf , ψs,q = (Lσ,s +M) Is,q. (6.27)
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Steady-state behavior (cont.)
The steady-state voltage equation is

Us,dq = RsIs,dq + ωr,elJψs,dq ⇔
[
Us,d

Us,q

]
= Rs

[
Is,d
Is,q

]
+ ωr,el

[
−ψs,q

ψs,d

]
. (6.28)

Inserting the (simplified) flux linkage equation (6.27) yields[
Us,d

Us,q

]
= Rs

[
Is,d
Is,q

]
+ ωr,el

[
− (Lσ,s +M) Is,q

(Lσ,s +M) Is,d +MIf

]
. (6.29)

Rewriting the vectorial quantities as complex phasors Xdq = Xejϕ = Xd + jXq rotating with
the angular frequency ωr,el → ωs, we obtain

U s = RsIs + jωs [(Lσ,s +M) Is +MIf ] = RsIs + jωs (Lσ,s +M)︸ ︷︷ ︸
Xs

Is + jωsMIf︸ ︷︷ ︸
U i

(6.30)

with U i being the internal voltage, i.e., the induced voltage due to the field winding excitation
and Xs being the synchronous reactance (which can be empirically identified using open-circuit
and short-circuit tests, cf. after next slide).
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Steady-state behavior (cont.)
The ECD of the cylindrical SM is sown in Fig. 6.17. Here, the following can be noted:

▶ The internal voltage U i is purely imaginary as the field winding current is a DC current and
defined as real (convention).

▶ If U s is fixed, e.g., by a stiff grid voltage, the stator current Is is determined by the voltage
difference ∆U = U s − U i.

▶ Hence, in grid operation the field winding current If is adjusted to reach a certain operation
point, that is, the field excitation is controlled.

Fig. 6.17: ECD of a (simplified) cylindrical SM in steady state represented by complex phasors
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Short-circuit and open-circuit tests

From Fig. 6.17 the open-circuit voltage is

U s,oc = U i = jωsMIf . (6.31)

Here, the stator current is zero. On the other hand, the short-circuit current is given by

Is,sc = − U i

jXs
= − ωsMIf

jωs (Lσ,s +M)
=

jM

(Lσ,s +M)
If . (6.32)

Here, the stator voltage is zero and one can observe that the short-circuit current Is,sc can be
interpreted as the excitation current If converted via the inductance ratio. Finally, the
synchronous reactance can be calculated by the ratio of the open-circuit voltage and the
short-circuit current:

Xs =
U s,oc

Is,sc
. (6.33)
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Steady-state torque
The steady-state torque of the cylindrical SM is given by

T =
3

2
p
√
2Is,qMIf =

3√
2
pIs,qMIf .

Here, the factor
√
2 results from the RMS value representation of the AC stator current in the

complex phasor component Is,q. Note that If is a DC quantity, i.e., its RMS value is equal to
the DC value in the time domain. From (6.30) we obtain the stator current as

Is =
U s − U i

Rs + jωs (Lσ,s +M)
. (6.34)

Assuming that the ohmic voltage drop is negligible (Rs ≈ 0), which typically applies to high
power machines, the stator current simplifies to

Is = j
U i − U s

ωs (Lσ,s +M)
. (6.35)
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Steady-state torque (cont.)

The q part from Is = Is,d + jIs,q is

Is,q =
|U i − U s|

ωs (Lσ,s +M)
. (6.36)

From Fig. 6.18 we identify

sin(θ) =
|U i − U s|

|U s|

and can rewrite Is,q as

Is,q =
|U s|

ωs (Lσ,s +M)
sin(θ). (6.37)

Here, θ is the load angle counted from U i to U s.

Fig. 6.18: Exemplary phasor diagram of the
cylindrical SM
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Steady-state torque (cont.)

Moreover, from (6.30) we can express the field winding current (amplitude, DC quantity) as

If =
√
2
|U i|
ωsM

. (6.38)

Inserting the expressions for Is,q and If into the torque equation yields

T = 3p
|U s| |U i|

ω2
s (Lσ,s +M)

sin(θ) = 3p
UsUi

ω2
s (Lσ,s +M)

sin(θ). (6.39)

Hence, the load angle θ determines the torque of the cylindrical SM:

▶ For θ < 0◦, the torque is negative (generator mode, if ωr > 0).

▶ For θ = 0◦, the torque is zero.

▶ For θ > 0◦, the torque is positive (motor mode, if ωr > 0).

▶ For θ = ±90◦, the absolute torque is maximal.
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Stable steady-state operation (with fixed stator excitation)

▶ From (6.39) we see that the torque depends on
sin(θ).

▶ Beyond θ = ±90◦, the absolute torque decreases
again.

▶ If the SM is operated with a fixed stator
excitation, e.g., by a stiff grid voltage, the load
angle θ is determined by the mechanical load.

▶ If the absolute mechanical load is increased such
that |θ| > 90◦ applies, the SM will lose
synchronicity and stall.

▶ Hence, the stable operation range is limited to
|θ| ≤ 90◦ (while in practice an additional safety
margin is considered).

stable operation

Fig. 6.19: Torque vs. load angle for the
cylindrical SM
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Power balance

The SM’s complex power is given by

S = 3U sIs = 3(P + jQ) = 3Sejφ (6.40)

with X being the complex conjugate and the factor 3 results from the representation of the
three-phase machine in an orthogonal coordinate system (cf. Clarke transf.) plus the RMS
phasor representation of currents and voltages. Above, S is the apparent power, P and Q are
the active and reactive power, respectively. The active power is

P = 3Re
{
U sIs

}
= 3UsIs cos(φ) (6.41)

and the reactive power is
Q = 3Im

{
U sIs

}
= 3UsIs sin(φ). (6.42)

Here, φ is the power factor angle, that is, the phase change between stator voltage and current
(compare Fig. 6.18).
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Power balance (cont.)
From (6.39) we receive the active power as

P = Tωr = T
ωs

p
= 3

UsUi

ωs (Lσ,s +M)
sin(θ). (6.43)

For the reactive power we insert (6.35) in (6.42) and obtain (after some rewritting)

Q = 3
Us

ωs (Lσ,s +M)
(Us − Ui cos(θ)) . (6.44)

Four quadrant operation

Due to a combination of θ and Ui, which are adjustable via the field winding current If ,
the (cylindrical) SM can cover all four quadrants of operation (i.e., combine positive
/ negative signs of both the active and reactive power). This is why the externally-
excited SM is often used in generator / power plant applications.
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Phasor diagrams for the cylindrical SM in all four quadrants
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What are power electronics?

Power converter Load

Controller

u1, i1 u2, i2

Reference

Feedback

i1

u1

i2

u2

Fig. 7.1: High-level block diagram of a power electronic system

Power electronics – a definition

Power electronics is a multidisciplinary branch of electrical engineering. It focuses on
processing, controlling, and converting electric power. Power electronics manipulate
voltages and currents to deliver a defined power to electrical equipment and devices.
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Power electronics vs. microelectronics

Input power Power electronics Output power

Control signals

Input signals Microelectronics Output signals

Power supply

Fig. 7.2: Power electronics vs. microelectronics
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Typical voltage and current manipulation tasks of power electronics
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−û

û
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Power electronic application examples: residential

(a) Home appliances (source: pxhere, CC0 1.0) (b) Smartphone charger (source: rawpixel, CC0 1.0)

(c) Induction plate (source: flickr, Electrolux,
CC BY-SA-NC 2.0)

(d) LED rectifier (source: Wikimedia Commons,
D. Tribble, CC BY-SA 4.0)
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Power electronic application examples: industrial

(a) Uninterruptible power supply (source: Wikimedia
Commons, Stevebwallace, CC BY-SA 4.0)

(b) Welding power supply (source: Wikimedia
Commons, Trumpf GmbH, CC BY-SA 3.0)

(c) Industrial drives / automation (source: Wikimedia
Commons, M. Blume, CC BY-SA 4.0)

(d) Conveyor belt drive (source: Wikimedia Commons,
K. Hannessen, CC BY-SA 4.0)
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Power electronic application examples: energy system

(a) Wind power plants (source: pxhere, CC0 1.0) (b) PV power plants (source: pxhere, CC0 1.0)

(c) Battery storage systems (source: flickr, Portland
General Electric, CC BY-ND 2.0)

(d) High voltage DC transmission (source: Wikimedia
Commons, Marshelec, CC BY-SA 3.0)
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Power electronic application examples: transportation

(a) Train drive (source: Wikimedia Commons, T. Wolf,
CC0 1.0)

(b) Electric vehicle drive (source: Wikimedia
Commons, Caprolactam123, CC BY-SA 4.0)

(c) Electric scooter (source: Wikimedia Commons,
Raju, CC BY-SA 4.0)

(d) Electic ship (source: Wikimedia Commons,
Wikimalte, CC BY-SA 4.0)
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A broad range of nominal power ratings

100 000 000 W

10 000 000 W

1 000 000 W

100 000 W

10 000 W

1 000 W

100 W

10 W

1 W LED light rectifier

Smartphone charger

Laptop charger

PC power supply

PV inverter

Electric vehicle drive

Train drive

Wind turbine inverter

High voltage DC transmission

Fig. 7.7: Power range overview (figure sources: T. Wolf, KoeppiK, Caprolactam123, D. Hawgood,
Mister rf, D. Tribble and rawpixel under varying CC licenses)
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Typical power electronic objectives
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Fig. 7.8: Illustration of typical, conflicting power electronic (normalized) objectives via a Pareto front
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Terminology: work vs. energy

Work

Work is the integral of the power over a
time integral (or force over distance) and is
a measure of the energy transfer.

Energy

Energy is the capacity to do work, that is, a
quantity depending on the state of a system
at a given point of time.

Work

Heat

Losses

Energy Energy

Fig. 7.9: Illustration addressing the work vs. energy terminology (simplified Sankey diagram)
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Power balance of an electrical energy conversion system

Electrical
output power

Losses

Power converter
Electrical
input power

Power converter

Change of stored energy tEi(t)

Pl(t)

Pout(t)Pin(t)

Fig. 7.10: Power balance of an energy conversion system

The power balance
Pin(t) = Pl(t) +

t
Ei(t) + Pout(t) (7.1)

must hold for any point in time as energy is conserved, that is, not created or destroyed.
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Efficiency

Electrical
output power

Losses

Power converter
Electrical
input power

Pl

PoutPin

Fig. 7.11: Power balance of an energy conversion system in steady state

The power balance in steady state (dx(t)/dt = 0) is

Pin = Pout + Pl (7.2)

and leads to the definition of the efficiency

η =
Pout

Pin
=

Pout

Pout + Pl
. (7.3)
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Four quadrants of operation

Depending on the current and voltage signs, the
power P can be positive or negative. This leads
to four quadrants of operation:

▶ Quadrants I & III: P ≥ 0,
(Power transfer from input to output)

▶ Quadrants II & IV: P ≤ 0.
(Power transfer from output to input)

How many quadrants a power converter can op-
erate in depends on the topology and control
strategy, i.e., is an important design criterion.

i

u

I
P ≥ 0

II
P ≤ 0

III
P ≥ 0

IV
P ≤ 0

i1

u1

i2

u2

Fig. 7.12: Four quadrants of energy conversion
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Why efficiency matters: a computer supply example

Power supply A Power supply B
80 PLUS Gold 80 PLUS Titanium

Input power 250W
Efficiency 89% 94%
Power loss 27.5W 15W

Operating hours per year 8 h× 220 = 1760 h
Cumulated loss work per year 48.4 kWh 26.4 kWh
Electricity cost for yearly losses 14.52e 7.92e

Cumulated loss work in Germany 1.936TWh 1.056TWh
Electricity cost for yearly losses in Germany 580.8Me 316.8Me

Tab. 7.1: Comparison of two computer power supplies (further assumptions: effective nominal power
calculation, electricity price 0.3 e/kWh, 40 · 106 computers in Germany)
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Why efficiency matters: a wind power plant example

Wind power plant A Wind power plant B

Input power 5MW
Efficiency 97% 97.1%
Power loss 150 kW 145 kW

Nominal power operating hours per year 3000 h
Cumulated loss work per year 450MWh 435MWh
Cumulated loss work (lifetime) 9.0GWh 8.7GWh

Lost sales proceeds due to losses per year 22.5 ke 21.75 ke
Lost sales proceeds due to losses (lifetime) 450 ke 435 ke

Cumulated loss work (lifetime, Germany) 9.0TWh 8.7TWh
Lost sales proceeds (lifetime, Germany) 450Me 435Me

Tab. 7.2: Comparison of two wind power plants (further assumptions: electricity sales price 0.05 e/kWh,
20 years of life time, 1000 newly constructed wind power plants per year in Germany)
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Linear power conversion

u2(t)u1(t)

R1

R2

Fig. 7.13: Adjustable resistive voltage divider as step-down converter

With Kirchhoff’s voltage law, the output voltage u2(t) is

u2(t) = u1(t)
R2

R1 +R2
. (7.4)

By adjusting the resistance R2, the output voltage can be controlled. However, this method is
inefficient as the power loss is independent of the output power and given by

Pl(t) =
u21(t)

R1 +R2
. (7.5)
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Linear power conversion (cont.)

u2(t)u1(t)

i2(t)

Linear amplifier u∗2(t)

uCE(t)

Fig. 7.14: Transistor-based step-down converter

For a transistor-based step-down converter, the
output voltage is u2(t) = u1(t)− uCE(t) leading to
the power losses

Pl(t) = uCE(t)i2(t). (7.6)

UGE

Linear region

Saturation

region

UCE

I C

Fig. 7.15: Output characteristics of an
insulated-gate bipolar transistor (IGBT)
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Switching power conversion
Alternative idea: switch either fully on or off. The average output voltage u2 is controlled by
the duty cycle (assuming that u1(t) = u1 is constant)

D =
Ton
Ts

, u2 =
1

Ts

∫ Ts

0
u2(t)t = Du1. (7.7)

As the switching losses are typically small, the overall efficiency is (much) higher compared to
linear power conversion.

u2(t)u1(t)

Fig. 7.16: Ideal switch-based step-down converter
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Fig. 7.17: Switching output voltage from Fig. 7.16
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Switching power conversion: switching losses
Switching process is not free
of power loss:

P l =
1

Ts

∫ Ts

0
us(t)is(t)t.

u0

i0

is

us

Fig. 7.18: Idealized switching
loss model
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Switching power conversion: soft switching
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(a) Zero-voltage switching (ZVS)
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(b) Zero-current switching (ZCS)

Fig. 7.19: Soft switching: reducing switching losses by turning on or off the switch when it does not
transfer any power (note: above’s voltage and current shapes are heavily idealized and require an

appropriate circuit design besides the actual switch to enable soft switching)
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Switching power conversion: passive components as filters / energy buffers

u2(t)u1(t)

L

Cus(t)
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Fig. 7.20: Exemplary voltage signals for a switched power conversion system with output filter
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Feasible and infeasible filter topologies

(a) Feasible filter topology (b) Infeasible filter topology

Fig. 7.21: Basic filter topologies for switched power conversion

Short and open circuit situations

Prevent the following situations as they can lead to sparkover and damage:

▶ Short circuit of capacitor: current peak,

▶ Open circuit of inductor: voltage peak.
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Important power electronic devices and idealized characteristics

Diode Thyristor
TRIAC (triode for
alternating current)

GTO (gate turn-off
thyristor)
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Important power electronic devices and idealized characteristics (cont.)

Bipolar junction
transistor

MOSFET 1 (with
body diode)

IGBT
IGBT (with series

diode)
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1metal-oxide-semiconductor field-effect transistor
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Important power electronic devices and idealized characteristics (cont.)

4Q switch Capacitor Inductor Transformer

i

u
u

i

u

i
u1

i1 i2

u2

active
gate

disabled
gate

u

i

i(t) = C d
dt
u(t) u(t) = L d

dt
i(t) u(t) = L d

dt
i(t)
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Important power electronic devices and idealized characteristics (cont.)
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Fig. 7.22: Power electronic devices and their typical operating ranges
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Internal device resistance
Besides the switching losses, power electronic devices have an internal resistance Ri that
causes conduction losses. Designing such components for a low resistance is crucial, however,
there is typically a conflict with weight and volume constraints.

Ri

i

u

Ri

i

u

Ri

i

u

1
Ri

uD

i D

Fig. 7.23: Qualitative diode characteristic
in the forward direction
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Why is knowledge about power electronics important?

Power electronics are an essential pillar of the modern society

Power electronics are the key technology for the efficient conversion of electrical energy.
They are used in a wide range of applications, such as renewable energy systems,
electric vehicles, industrial automation, computing and communication systems as well
as a wide range of consumer electronics. Hence, power electronics are an essential
pillar of the modern society.

Energy efficiency and sustainability is key

Electricity as a share of primary energy is current at 20% and is expected to further in-
crease (source: Ember and Energy Institute). Power electronics convert a major share
of the worldwide electrical energy as they are used on the generation, transmission,
storage and load side. Increasing the conversion and resource efficiency of power elec-
tronics direct reduces the primary energy consumption and the environmental impact
of the energy system.
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Learning objectives

▶ Understand the electrical energy conversion principles of power electronics.
▶ Differentiate the main converter application types:

▶ DC-DC converters.
▶ DC-AC inverters.
▶ AC-DC rectifiers.
▶ AC-AC converters.
▶ And their plentiful realization variants . . .

▶ Analyze the operation of power electronics:
▶ in steady state and
▶ in transient conditions.

▶ Understand modulation techniques for switching actuators.

▶ Have fun learning about power electronics.

Bikash Sah Power Electronics 314



Necessary prior knowledge for this course

You should have a basic understanding of the following topics:

▶ Linear differential equations (modeling, solution techniques),

▶ Linear algebra basics (e.g., vector and matrix operations),

▶ Basic signal theory knowledge (e.g., signal properties like root mean square),

▶ Basic knowledge of electrical circuit theory,

▶ Basic knowledge of semiconductor physics.

What we will not cover, that is, you do not need to know (covered in separate courses):

▶ Control engineering (design converter controllers),

▶ Specific load characteristics (e.g., electric drives or batteries).
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Recommended reading

▶ R. Erickson and D. Maksimovic, Fundamentals of Power Electronics, Vol. 3, Springer, 2020,
https://doi.org/10.1007/978-3-030-43881-4

▶ J. Kassakian et al, Principles of Power Electronics, Vol. 2, Cambridge University Press,
2023, https://doi.org/10.1017/9781009023894

▶ J. Specovius, Grundkurs Leistungselektronik (in German), Vol. 10, Springer, 2020,
https://doi.org/10.1007/978-3-658-21169-1

▶ F. Zach, Leistungselektronik (in German), Vol. 6, Springer, 2022,
https://doi.org/10.1007/978-3-658-31436-1

▶ D. Schröder and R. Marquardt, Leistungselektronische Schaltungen (in German), Vol. 4,
Springer, 2019, https://doi.org/10.1007/978-3-662-55325-1

Bikash Sah Power Electronics 316

https://doi.org/10.1007/978-3-030-43881-4
https://doi.org/10.1017/9781009023894
https://doi.org/10.1007/978-3-658-21169-1
https://doi.org/10.1007/978-3-658-31436-1
https://doi.org/10.1007/978-3-662-55325-1


Table of contents

8 DC-DC converters
Step-down converter
Step-down converter: output capacitor
Step-down converter: circuit realization and operation modes
Step-up converter
Buck-boost converter
Inverting buck-boost converter
Component requirements
Further converter topologies

Bikash Sah Power Electronics 317



Step-down converter: overview and assumptions

We consider the following assumptions:

▶ The switch is ideal, that is, infinitely fast.

▶ The input voltage is constant: u1(t) = U1.

▶ The output voltage is constant: u2(t) = U2.

▶ The input voltage is greater than the output voltage: U1 > U2.

u2(t)u1(t)

i1(t) iL(t) L

uL(t)

i2(t)

us(t)

Fig. 8.1: Step-down converter (aka buck converter, ideal switch representation)
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Step-down converter: switch states
The voltage at the switch is given by

us(t) =

{
U1, t ∈ [kTs, kTs + Ton],

0, t ∈ [kTs + Ton, (k + 1)Ts]
(8.1)

with k ∈ N being the k-th switching period, Ts the switching period time interval, and Ton the
switch-on time.

U2U1

i1(t) = iL(t) L i2(t)

Us = U1

(a) Switch-on time

U2U1

i1 = 0 iL(t) L i2(t)

Us = 0

(b) Switch-off time

Fig. 8.2: Switch states of the step-down converter
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Basic terms and definitions

Ton Switch-on time Toff Switch-off time

Ts = Ton + Toff Switching period fs = 1/Ts Switching frequency

D = Ton/Ts Duty cycle
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Steady-state analysis
The inductor current from Fig. 8.1 is represented by the differential equation

L
diL(t)

dt
= uL(t) = us(t)− U2. (8.2)

During the switch-on period we have

iL(t) = iL(kTs) +
1

L

∫ t

kTs

uL(τ)dτ

= iL(kTs) +
U1 − U2

L
(t− kTs), t ∈ [kTs, kTs + Ton]

(8.3)

and during the switch-off period we receive

iL(t) = iL(kTs + Ton) +
1

L

∫ t

kTs+Ton

uL(τ)dτ = iL(kTs + Ton)−
U2

L
(t− kTs − Ton)

= iL(kTs) +
U1 − U2

L
Ton −

U2

L
(t− kTs − Ton), t ∈ [kTs + Ton, (k + 1)Ts].

(8.4)
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Steady-state analysis (cont.)
In steady state the inductor current is periodic with period Ts, that is,

iL(t) = iL(t+ Ts).

From (8.4) we obtain for t = kTs

Start of period︷ ︸︸ ︷
iL(kTs) =

End of period︷ ︸︸ ︷
iL(kTs) +

U1 − U2

L
Ton −

U2

L
(Ts − Ton)

⇔ 0 =
U1 − U2

L
Ton −

U2

L
(Ts − Ton)

⇔ 0 = U1Ton − U2Ts.

(8.5)

Rewriting delivers the output voltage as

U2 =
Ton
Ts

U1 = DU1. (8.6)
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Step-down converter: steady-state time-domain behavior
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Current ripple

Due to the switching operation of the step-down converter, the inductor current exhibits an
inherent ripple. The peak-to-peak current ripple is given by

∆iL = max{iL(t)} −min{iL(t)} = iL(t = Ton)− iL(t = Ts)

=
U1 − U2

L
Ton =

U2

L
Toff

=
D(1−D)Ts

L
U1.

(8.7)

The current ripple has two main implications:

▶ The output power is not constant but varies with the current ripple.

▶ The root mean square (RMS) current is higher than the average current.

The latter point should be investigated in more detail as it influences the design and loss
characteristics of the converter.
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Current ripple (cont.)
We define

∆IL =

√
1

Ts

∫ Ts

0

(
iL(t)− iL

)2
dt (8.8)

as the RMS deviation of the inductor current from its average value. As the average-corrected
inductor current has a triangular shape (cf. Fig. 8.3) we can calculate the RMS current as

∆IL =
1√
3

∆iL
2

=
D(1−D)TsU1

2
√
3L

. (8.9)
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i L
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−
i L

Fig. 8.3: Inductor current ripple
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Current ripple (cont.)
The (total) RMS value of the inductor current (triangular signal with offset) is given by

IL =

√
i
2
L +∆I2L. (8.10)

Considering the internal resistance Ri of the inductor, the ohmic power loss in the inductor is

PL = RiI
2
L = Ri

(
i
2
L +∆I2L

)
. (8.11)

The power loss in the inductor is thus composed of a constant part PL = Rii
2
L, which is

related to the power transfer from input to output, and a ripple part ∆PL = Ri∆I
2
L.

Current ripple and power losses

The current ripple produces additional losses in the inductor. From (8.9) it seems
tempting to increase the switching frequency fs to reduce the ripple, but this will
increase switching losses (compare Fig. 7.18). Hence, there is a trade-off decision
between switching and conduction losses.
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Current ripple and duty cycle
Rewriting the current ripple expression

∆iL =
D(1−D)Ts

L
U1 = (D −D2)

TsU1

L

and calculating the derivative with respect to the duty cycle D delivers

d∆iL
dD

=
TsU1

L
− 2D

TsU1

L
. (8.12)

Setting the derivative to zero, we find the duty cycle Dmax as

d∆iL
dD

= 0 ⇔ Dmax =
1

2
(8.13)

which is associated with the maximum current ripple since the second derivative

d2∆iL
dD2

= −2TsUon

L
(8.14)

is negative.
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Current ripple and duty cycle (cont.)
From (8.13) we can conclude that the maximum current ripple is given by

∆iL,max =
1

4

TsU1

L
⇒ ∆iL = 4D(1−D)∆iL,max. (8.15)

0 0.25 0.5 0.75 1
0

∆iL,max/2

∆iL,max

Dmax

D

∆
i L

Fig. 8.4: Inductor current ripple as a function of the duty cycle
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Step-down converter with output capacitor: overview and assumption

We consider the following assumptions:

▶ The switch is ideal, that is, infinitely fast.

▶ The input voltage is constant: u1(t) = U1.

▶ The output current is constant: i2(t) = I2.

▶ The input voltage is greater than the output voltage: U1 > u2(t).

u2(t)u1(t)

i1(t) iL(t) L

uL(t)

i2(t)

us(t) C

iC(t)

Fig. 8.5: Step-down converter (ideal switch representation) with output capacitor
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Steady-state analysis
From (8.3) we know that the inductor current during the switch-on period is given by

iL(t) = iL(kTs) +
U1 − uC(t)

L
(t− kTs), t ∈ [kTs, kTs + Ton].

Note that the inductor current is now dependent on uC(t):

▶ Formally, we need to consider the impact of the varying output capacitor voltage.

▶ This would lead to a second-order differential equation which is more complex to solve.

▶ We will simplify the analysis by assuming that the impact of the output capacitor voltage
variation on the inductor current is negligible: uC(t) ≈ U2 = uc.

Simplification comment

The above assumption is valid for sufficiently large output capacitors with only small
voltage ripples. Otherwise, the output voltage ripple and the inductor current ripple
will be significantly coupled and require a more thoughtful analysis.
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Steady-state analysis (cont.)

The capacitor’s voltage differential equation is given by

C
duC(t)

dt
= iC(t) = iL(t)− I2. (8.16)

While I2 is considered a known constant, we first need to determine the inductor current iL(t).
Combining (8.3) and (8.7) we obtain

iL(kTs) = I2 −
∆iL
2

= I2 −
U1 − U2

L

Ton
2

(8.17)

and

iL(kTs + Ton) = I2 +
∆iL
2

= I2 +
U1 − U2

L

Ton
2

(8.18)

as the initial conditions for the inductor current in steady state.
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Steady-state analysis (cont.)

The capacitor’s current during the switch-on period is given by

iC(t) = iL(t)− I2 =
U1 − U2

L
(t− Ton

2
− kTs)

= −∆iL
2

+
U1 − U2

L
(t− kTs), t ∈ [kTs, kTs + Ton]

(8.19)

and during the switch-off period we receive

iC(t) = iL(t)− I2 =
U1 − U2

L

Ton
2

− U2

L
(t− kTs − Ton)

=
∆iL
2

− U2

L
(t− kTs − Ton), t ∈ [kTs + Ton, (k + 1)Ts].

(8.20)
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Steady-state analysis (cont.)
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Current ripples through the capacitor and inductor

Based on the made assumptions, the capacitor’s current is raising and falling linearly
during the switch-on and switch-off periods, that is, it corresponds to the previously
considered inductor current ripple.

Bikash Sah Power Electronics 334



Output voltage ripple: via charge balance
If one is not interested in the specific signal
shape uC(t), the output voltage ripple can be
derived from the charge balance over half a
period (cf. Fig. 8.6):

∆Q =
1

2

∆iL
2

Ts
2
. (8.21)

From

1

C

∫
iC(t)dt = uC(t) + uC(0)

we receive

∆uC =
∆Q

C
=

∆iLTs
8C

. (8.22)
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i C
(t
)

Fig. 8.6: Voltage ripple derivation via charge balance

Bikash Sah Power Electronics 335



Average and initial capacitor voltage

The initial voltage uC(kTs) at the beginning of a period is still unknown. We can derive it
from the capacitor’s average voltage over one period. For simplicity, we consider k = 0:

uc =
1

Ts

∫ Ts

0
uC(t)dt =

1

Ts

(∫ Ton

0
uC(t)dt+

∫ Ts

Ton

uC(t)dt

)
!
= DU1. (8.23)

Inserting (??) we receive for the first part∫ Ton

0
uC(t)dt =

[
uC(0)t+

∆iL
2C

t2

2
+
U1 − U2

LC

t3

6

]Ton
0

= . . .

= uC(0)Ton −
∆iL
C

T 2
on

12
.

(8.24)
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Average and initial capacitor voltage (cont.)
Inserting (??) into the second part of (8.23) delivers∫ Ts

Ton

uC(t)dt =

[
uC(0)t+

∆iL
2C

(
t2

2
− Tont)−

U2

LC
(
t3

6
− Ton

t2

2
+
T 2
on

2
t)

]Ts
Ton

= . . .

= uC(0)Toff +
∆iL
C

T 2
off

12
.

(8.25)

Combining both parts results in

uc =
1

Ts

(
uC(0)Ts +

∆iL
C

T 2
off − T 2

on

12

)
= uC(0) +

∆iL
12C

Ts(1− 2D)
!
= DU1.

(8.26)

Solving for uC(0) we receive the initial capacitor voltage as

uC(0) = DU1 −
∆iL
12C

Ts(1− 2D). (8.27)
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Circuit realization

▶ The ideal (mechanical) switch cannot be operated with high frequency in practice.

▶ It must be replaced with semiconductor devices to allow for a practical realization.

▶ In Fig. 8.7 the simplest realization is shown utilizing one transistor and one diode.

▶ However, this configuration can only provide positive voltages and currents.

▶ Hence, the converter can operate in the first quadrant only.

u2(t)u1(t)

i1(t) L

uL(t)

i2(t)

D us(t)T

Fig. 8.7: Step-down converter with real components (single quadrant type)
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Discontinous conduction mode (DCM)

0

U1

U2
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off T ′′

off
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u
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t)

0

iL
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Switch states DCM
In contrast to the previous continuous conduction mode (CCM), the converter traverses three
states in the discontinuous conduction mode (DCM):

▶ Transistor on-time: Ton = DTs,

▶ Transistor off-time (conducting diode): T ′
off = D′Ts,

▶ Transistor off-time (no conduction): T ′′
off = Ts − Ton − T ′

off .

U2U1

i1(t) = iL(t)
L i2(t)

Us = U1

(a) Switch-on time Ton

U2U1

i1 = 0 iL(t)
L i2(t)

Us = 0

(b) Switch-off time T ′
off

U2U1

i1 = 0 L i2 = 0

Us = U2

(c) Switch-off time T ′′
off

Fig. 8.8: Switch states of the step-down converter including DCM
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DCM operation characteristics

The operation in CCM and DCM can be distinguished by the inductor current ripple

iL = i2

{
≥ ∆iL

2 = 2D(1−D)∆iL,max : CCM,

< ∆iL
2 = 2D(1−D)∆iL,max : DCM

(8.28)

with

∆iL,max =
U1Ts
4L

.

Hence, the operation mode directly depends on the duty cycle D and average load current i2,
that is, it can change during runtime. While we have already discussed the operation in CCM,
we will now focus on the operation in DCM. Here, it must be noted that

U2 ̸= U1D (DCM operation)

applies due to the non-conducting diode during T ′′
off .
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DCM operation characteristics (cont.)
To find the input-to-output voltage ratio in DCM, we can utilize the current ripple balance:

∆iL =
U1 − U2

L
Ton = iL =

U1 − U2

L
DTs (rising edge),

∆iL =
U2

L
T ′
off =

U2

L
D′Ts (falling edge).

(8.29)

Solving for D′ results in

D′ =
L∆iL
U2Ts

=
U1 − U2

U2
D =

(
U1

U2
− 1

)
D. (8.30)

The average load current is

i2 = iL =
1

2
∆iL

Ton + T ′
off

Ts
=

1

2
∆iL(D +D′) (8.31)

which is derived from the area under the triangular-shaped current during Ton and T ′
off .
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DCM operation characteristics (cont.)
Inserting (8.30) into (8.31) yields

i2 =
1

2
∆iLD

U1

U2
=
U1 − U2

2L
DTsD

U1

U2

= 2D2

(
U1

U2
− 1

)
∆iL,max.

(8.32)

Solving for the DCM input-to-output voltage ratio results in

U2

U1
=

1

1 + i2
2∆iL,maxD2

. (8.33)

Since ∆iL,max also depends on U1, cf. (8.15), the relation (8.33) only holds for a given U1.
Alternatively, we can utilize (8.32) and solve for U2 to receive

U2 =
D2TsU

2
1

D2TsU1 + 2Li2
. (8.34)
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Step-down converter load curves
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Fig. 8.9: Step-down converter load curves for CCM and DCM
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Boundary conduction mode (BCM)
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BCM operation characteristics

In the boundary conduction mode (BCM), the average inductor current load is exactly half of
the current ripple, that is,

iL = i2 =
∆iL
2

= 2D(1−D)∆iL,max. (8.35)

▶ Diode current becomes zero and then the transistor turns on again.
▶ The diode is not hard turned-off but its current naturally decays to zero.
▶ Also known as zero current switching (ZCS) or generally soft switching.

▶ Requires adaptive switching frequency control if load changes. From (8.7) and (8.35) the
BCM switching frequency results in

fs =
1

Ts
=
D(1− 2)U1

L∆iL
=
D(1− 2)U1

2Li2
. (8.36)

Bikash Sah Power Electronics 347



Motivation for BCM: diode reverse recovery
np

iD

+
+

+
+

+
+

-
-

-
-
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-

Forward mode

np

iD = 0

+
+
+
+
+
+

-
-
-
-
-
-

Blocking mode

Qrr

High current
turn-off

t

iD(t)

Qrr

Low current
turn-off t

iD(t)

Fig. 8.10: Qualitative and simplified representation of the reverse recovery effect
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BCM operation characteristics: comments

Advantages of BCM:

▶ Reduces the reverse recovery effect, that is, ZCS of the diode during turn on.

▶ Also allows ZCS transistor turn on.

Limitations of BCM:

▶ Transistor turn off and diode turn on cannot be soft switched due to topology constraints.
▶ Ripple current increases with load current: ∆iL = 2i2.

▶ May negatively affects load.
▶ Increases conduction losses due to higher RMS current – compare (8.11).
▶ High switching frequency required at low loads (switching losses).
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Step-up converter: overview and assumptions

We consider the following assumptions:

▶ The switch is ideal, that is, infinitely fast.

▶ The input voltage is constant: u1(t) = U1.

▶ The output voltage is constant: u2(t) = U2.

▶ The input voltage is lower than the output voltage: U1 < U2.

u2(t)u1(t)

i1(t) L

uL(t)

iL(t) i2(t)

us(t)

Fig. 8.11: Step-up converter (aka boost converter, ideal switch representation)
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Step-up converter: switch states
The voltage at the switch is given by

us(t) =

{
0, t ∈ [kTs, kTs + Ton],

U2, t ∈ [kTs + Ton, (k + 1)Ts].
(8.37)

Note: switch on/off definition is reversed compared to the step-down converter.

U2U1

i1(t) L iL(t) i2 = 0

Us = 0

(a) Switch-on time

U2U1

i1(t) L iL(t) = i2(t)

Us = U2

(b) Switch-off time

Fig. 8.12: Switch states of the step-up converter
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Step-up converter: steady-state time-domain behavior
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Step-up converter: voltage and current transfer ratios during steady state
In steady state, the absolute voltage-time integral over the inductor must be identical for the
switch-on and switch-off interval, that is,∫ Toff

0
|uL(t)| dt

!
=

∫ Toff+Ton

Toff

|uL(t)| dt (8.38)

resulting in
(U2 − U1)Toff = U1Ton ⇔ (U2 − U1)(1−D)Ts = U1DTs (8.39)

and finally delivering the voltage transfer ratio

U2

U1
=

1

1−D
. (8.40)

Assuming a lossless converter (Pin = Pout), the current transfer ratio is

i1

i2
=

1

1−D
. (8.41)
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Step-up converter: current ripple
The inductor current ripple can be found considering the positive slope during Ton with

∆iL =
U1

L
Ton =

U1

L
DTs (8.42)

or alternatively evaluating the negative slope during Toff with

∆iL =
U2 − U1

L
Toff =

U2 − U1

L
(1−D)Ts =

D(1−D)Ts
L

U2. (8.43)

In addition, one can find that the output current and power is changing step-like within the
step-up converter, while this is the case for the input side in the step-down converter:

step-down: i1(t) =

{
iL(t), switch on,

0, switch off,
step-up: i1(t) =

{
iL(t), switch on,

iL(t), switch off,

step-down: i2(t) =

{
iL(t), switch on,

iL(t), switch off,
step-up: i2(t) =

{
0, switch on,

iL(t), switch off.
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Step-up converter: current ripple (cont.)
In contrast to the step-down converter, cf. (8.13), the worst-case current ripple of the step-up
converter occurs for

∆iL =
U1

L
DTs ⇒ Dmax → 1. (8.44)

This corresponds to the case of an infinitely large output voltage U2:

lim
D→1

U2 = lim
D→1

1

1−D
U1 = ∞. (8.45)

The maximum current ripple is then

∆iL,max =
1

L
U1Ts. (8.46)

Consequently, we can express the current ripple as:

∆iL = D∆iL,max. (8.47)
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Step-up converter with output capacitor: overview and assumptions
We consider the following assumptions:

▶ The switch is ideal, that is, infinitely fast.

▶ The input voltage is constant: u1(t) = U1.

▶ The output current is constant: i2(t) = I2.

▶ The inductor current iL(t) is unaffected by the output voltage ripple (remains triangular).

▶ The output voltage is greater than the output voltage: u2(t) > U1.

u2(t)u1(t)

i1(t) L

uL(t)

iL(t) i2(t)

us(t) C

iC(t)

Fig. 8.13: Step-up converter (ideal switch representation) with output capacitor
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Step-up converter: capacitor voltage analysis
In contrast to the step-down converter, the capacitor current is changing step-like during the
switching event:

iC(t) =

{
iL(t)− I2, t ∈ [kTs, kTs + Toff ],

−I2, t ∈ [kTs + Toff , (k + 1)Ts].
(8.48)

The steady-state inductor current during the switch-off interval is

iL(t) = iL +
∆iL
2

− ∆iL
Toff

(t− kTs)

=
1

1−D
I2 +∆iL

Toff − 2(t− kTs)

2Toff
, t ∈ [kTs, kTs + Toff ].

(8.49)

which follows from the triangular signal shape. Inserting into (8.48) yields

iC(t) =

{
D

1−DI2 +∆iL
Toff−2(t−kTs)

2Toff
, t ∈ [kTs, kTs + Toff ],

−I2, t ∈ [kTs + Toff , (k + 1)Ts].
(8.50)
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Step-up converter: capacitor voltage analysis (cont.)
The capacitor voltage during the switch-off period is then

uC(t) = uC(kTs) +
1

C

∫ t

kTs

iC(τ)dτ, t ∈ [kTs, kTs + Toff ]

= uC(kTs) +
1

C

(∫ t

kTs

D

1−D
I2 +∆iL

Toff − 2(τ − kTs)

2Toff
dτ

)
= uC(kTs) +

[
Dτ

(1−D)C
I2 +

∆iL
2ToffC

(
Toffτ − τ2 + 2τkTs

)]t
kTs

= uC(kTs) +
D(t− kTs)

(1−D)C
I2 +

∆iL
2ToffC

(
Toff(t− kTs)− t(t− 2kTs)− (kTs)

2
)
.

(8.51)

The capacitor voltage at the end of the switch-off period is

uC(kTs + Toff) = uC(kTs) +
DI2

(1−D)C
Toff . (8.52)
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Step-up converter: capacitor voltage analysis (cont.)

The capacitor voltage during the switch-on period is then

uC(t) = uC(kTs + Toff) +
1

C

∫ t

kTs+Toff

iC(τ)dτ, t ∈ [kTs + Toff , (k + 1)Ts]

= uC(kTs + Toff) +
1

C

∫ t

kTs+Toff

−I2dτ

= uC(kTs + Toff)−
I2
C
(t− kTs − Toff)

= uC(kTs) +
DI2

(1−D)C
Toff︸ ︷︷ ︸

=uC(kTs+Toff)

−I2
C
(t− kTs − Toff).

(8.53)

Here, uC(kTs) is the (yet unknown) initial capacitor voltage at the beginning of a period,
which will be derived later.
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Step-up converter: capacitor voltage analysis (cont.)

In steady state, the capacitor voltage at the
end of the switch-on period is identical to the
voltage at the beginning of the switch-off
period, that is,

uC(kTs) = uC((k + 1)Ts).

Hence, we can identify the voltage ripple from
(8.53) as

∆uC =
I2
C
Ton =

DI2
(1−D)C

Toff

=
I2
C
DTs =

∆Q

C

(8.54)

with the charge ripple ∆Q = DI2Ts.

0.8

1

1.2

∆uC

u
C
(t
)/
u
C

0 0.2 0.4 0.6 0.8 1
−1

−0.5
0

0.5 ∆iL

∆Q ∆Q

Toff Ton

t/Ts

i C
(t
)/
I 2

Fig. 8.14: Step-up converter voltage ripple
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Step-up converter: capacitor voltage analysis (cont.)
To calculate the initial capacitor voltage uC(kTs), we can utilize

uc =
1

Ts

∫ Ts

0
uC(t)dt

!
= u2 =

U1

1−D
(8.55)

since the average capacitor voltage must be equal to the average output voltage. This yields

uc =
1

Ts

(∫ Toff

0
uC(t)dt+

∫ Ts

Toff

uC(t)dt

)
= . . .

= uC(kTs) +
∆uC
2

+
∆iLTs
12C

(1−D)2

(8.56)

and finally delivers

uC(kTs) =
U1

1−D
− ∆uC

2
− ∆iLTs

12C
(1−D)2

=
U1

1−D
− I2

2C
DTs −

U1T
2
s

12LC
D(1−D)2.

(8.57)
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Circuit realization

▶ In Fig. 8.15 the simplest realization is shown utilizing one transistor and one diode.

▶ This configuration can only provide positive voltages and currents (first quadrant).

▶ The previously made step-up converter’s switch-on definition (cf. Fig. 8.12) results from the
transistor position in the circuit – difference to the step-down converter.

u2(t)u1(t)

i1(t) L

uL(t)

iL(t)
D i2(t)

T us(t)

Fig. 8.15: Step-up converter with real components (single quadrant type)
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Step-up converter: DCM

0
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off T ′′

off
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Step-up converter: switch states in DCM

The step-up converter in DCM has three different switch states:

▶ Transistor on-time: Ton = DTs,

▶ Transistor off-time (conducting diode): T ′
off = D′Ts,

▶ Transistor off-time (no conduction): T ′′
off = Ts − Ton − T ′

off .

U2U1

i1(t)
L iL(t) i2 = 0

Us = 0

(a) Switch-on time Ton

U2U1

i1(t)
L iL(t) = i2(t)

Us = U2

(b) Switch-off time T ′
off

U2U1

i1 = 0 L i2 = 0

Us = U1

(c) Switch-off time T ′′
off

Fig. 8.16: Switch states of the step-up converter including DCM
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Step-up converter: DCM operation characteristics
In DCM operation

iL = i1 <
∆iL
2

⇒ U2 ̸= U1
1

1−D

applies due to the non-conducting diode during T ′′
off . To find the input-to-output voltage ratio

in DCM, we again utilize the current ripple balance:

∆iL =
U1

L
Ton =

U1

L
DTs (rising edge),

∆iL =
U2 − U1

L
T ′
off =

U2 − U1

L
D′Ts (falling edge).

(8.58)

Solving for D′ yields

D′ =
U1

U2 − U1
D. (8.59)

The average load current is

i2 =
∆iL
2

T ′
off

Ts
=

∆iL,maxD

2
D′ =

∆iL,max

2

U1

U2 − U1
D2. (8.60)
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Step-up converter: DCM operation characteristics (cont.)

Solving (8.60) delivers the step-up converter voltage gain in DCM as

U2

U1
= 1 +

D2

2

∆iL,max

i2
. (8.61)

Since ∆iL,max also depends on U1, cf. (8.46), the relation (8.61) only holds for a given U1.
Hence, we can insert (8.46) in (8.61) and solve for U2 to receive

U2 = U1 +
D2

2

Ts

Li2
. (8.62)

Finally, the step-up converter operates in BCM if

iL = i1 =
∆iL
2

⇔ i2 = (1−D)
∆iL
2
. (8.63)
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Step-up converter load curves
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Fig. 8.17: Step-up converter load curves for CCM and DCM (note: logarithmic ordinate)
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Buck-boost converter: combining step-up and step-down stages

BoostBuck

u0(t) u2(t)

L2 iL2(t) i2(t)

us2(t)

S2,off
S2,onu1(t)

i1(t) iL1(t)
L1

us1(t)

S1,on
S1,off

u2(t)

i2(t)

us2(t)u1(t)

i1(t)

us1(t)

L

uL(t)

iL(t)

S1,on
S1,off

S2,off
S2,on

Fig. 8.18: Buck-boost converter (ideal switch representation)
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Buck-boost converter: switching states
The buck-boost converter switches are operated synchronously, that is, S1 and S2 are either on
or off at the same time. Thus, the converter has only two switch states:

{S1,on, S2,on} → us1(t) = U1, us2(t) = 0,

{S1,off , S2,off} → us1(t) = 0, us2(t) = U2.
(8.64)

U2U1

i1(t) L iL(t) i2 = 0

Us2Us1

(a) Switch-on time

U2U1

i1 = 0 iL(t) L i2(t)

Us1 Us2

(b) Switch-off time

Fig. 8.19: Switch states of the (synchronous) buck-boost converter
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Buck-boost converter: CCM voltage transfer ratio
In CCM, we can derive the voltage transfer ratio directly by the serial connection of the buck
and boost stages from Fig. 8.18

U0

U1
= D,

U2

U0
=

1

1−D
, (8.65)

leading to
U2

U1
=

D

1−D
. (8.66)

Alternatively, we can derive this result from the voltage balance of the inductor L:

uL(t) =

{
U1, t ∈ [kTs, kTs + Ton],

−U2 t ∈ [kTs + Ton, (k + 1)Ts].
(8.67)

In steady state, the average inductor voltage per period must be zero, yielding

U1Ton = U2Toff ⇔ U1DTs = U2(1−D)Ts ⇔ U2

U1
=

D

1−D
. (8.68)
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Buck-boost converter: steady-state time-domain behavior
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U1/L −U2/L

i L
(t
)
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0

i1

i1(t)

t/Ts

i 1
(t
) i2(t)
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Buck-boost converter: current ripple

The peak-to-peak current ripple of the buck-boost converter is given by

∆iL = max{iL(t)} −min{iL(t)} = iL(t = Ton)− iL(t = Ts)

=
U1

L
Ton =

U2

L
Toff

= D
Ts
L
U1 = D∆iL,max.

(8.69)

The buck-boost converter current ripple characteristic matches the previous boost converter
behavior – compare (8.44):

▶ Its minimal for D → 0 since the output voltage becomes zero and the inductor is connected
to the output voltage over the entire switching period.

▶ Its maximal for D → 1 since the inductor is connected to the (non-zero) input voltage over
the entire switching period.
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Buck-boost converter: output capacitor and voltage ripple
With the usual simplifying assumptions (cf. Fig. 8.13), in particular, a constant output current
i2(t) = I2, the capacitor’s current during the switch-on time is given by

iC(t) = −i2(t) = −I2, t ∈ [kTs, kTs + Toff ].

This is identical to the step-up converter, leading to the same voltage ripple

∆uC =
I2
C
Ton =

I2
C
DTs.

u2(t)

i2(t)

us2(t)u1(t)

i1(t)

us1(t)

L

uL(t)

iL(t)

S1,on
S1,off

S2,off
S2,on C

iC(t)

Fig. 8.20: Buck-boost converter with output capacitor
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Buck-boost converter: circuit realization

▶ In Fig. 8.21 the buck-boost converter realization is a direct series circuit combination of
Fig. 8.7 and Fig. 8.15.

▶ This configuration can only provide positive voltages and currents (first quadrant).

▶ It should be noted that this circuit requires two diodes and two transistors.

u2(t)
D2

i2(t)

T2u1(t)

i1(t)

D1T1

L

uL(t)

iL(t)

Fig. 8.21: Buck-boost converter with real components (single quadrant type)
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Buck-boost converter: switch states in DCM

The buck-boost converter in DCM has three different switch states:

▶ Transistor on-time: Ton = DTs,

▶ Transistor off-time (conducting diode): T ′
off = D′Ts,

▶ Transistor off-time (no conduction): T ′′
off = Ts − Ton − T ′

off .

U2U1

i1(t)
L iL(t) i2 = 0

(a) Switch-on time Ton

U2U1

i1 = 0 iL(t)
L i2(t)

(b) Switch-off time T ′
off

U2U1

i1 = 0 L i2 = 0

(c) Switch-off time T ′′
off

Fig. 8.22: Switch states of the (synchronous) buck-boost converter including DCM
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Buck-boost converter: DCM operation characteristics
In DCM operation

iL <
∆iL
2

⇒ U2 ̸= U1
D

1−D

applies due to the non-conducting diode during T ′′
off . To find the input-to-output voltage ratio

in DCM, we again utilize the current ripple balance:

∆iL =
U1

L
Ton =

U1

L
DTs (rising edge),

∆iL =
U2

L
T ′
off =

U2

L
D′Ts (falling edge).

(8.70)

Solving for D′ yields

D′ =
U1

U2
D. (8.71)

The average load current is

i2 =
∆iL
2

T ′
off

Ts
=

∆iL,maxD

2
D′ =

∆iL,max

2

U1

U2
D2. (8.72)
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Buck-boost converter: DCM operation characteristics (cont.)

Solving (8.72) delivers the buck-boost converter voltage gain in DCM as

U2

U1
=
D2

2

∆iL,max

i2
. (8.73)

Since ∆iL,max also depends on U1, the relation (8.73) only holds for a given U1. Hence, we
can insert (8.69) in (8.73) and solve for U2 to receive

U2 = U2
1

D2

2

Ts

Li2
. (8.74)

Finally, the buck-boost converter operates in BCM if

iL =
∆iL
2

⇔ i2 = ∆iL,max
1

2

D

1−D
. (8.75)
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Buck-boost converter load curves
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Fig. 8.23: Buck-boost converter load curves for CCM and DCM (note: logarithmic ordinate)
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Recap: buck-boost converter switching states

Key characteristic of (synchronous) buck-boost converter

The switching scheme of the (synchronous) buck-boost converter from Fig. 8.19 is
realized by two switches and characterized by:

▶ During switch-on: inductor is connected to u1(t),

▶ During switch-off: inductor is connected to u2(t).

U2U1

i1(t) L iL(t) i2 = 0

Us2Us1

(a) Switch-on time

U2U1

i1 = 0 iL(t) L i2(t)

Us1 Us2

(b) Switch-off time
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Inverting buck-boost converter: overview

▶ Voltage change at the inductor can be also achieved by a single switch which input is
connected to the inductor.

▶ Assuming an ideal, infinitely fast switch, the inductor current iL(t) remains well-defined (no
open switch at inductor).

i2(t)

u2(t)

i1(t)

u1(t)

Son Soff

uL(t)

iL(t)

Fig. 8.25: Inverting buck-boost converter (ideal switch representation)
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Polarity change of inverting buck-boost converter

▶ One side of the inductor remains connected to the common connection rail between input
and output side.

▶ The other inductor side switches between the upper input and output rail.

▶ Consequence: voltage and current directions are inverted between the two switch states.

U2U1

i1(t) L

uL(t)

iL(t) i2 = 0

(a) Switch-on time

U2U1

i1 = 0 iL(t) L

uL(t)

i2(t)

(b) Switch-off time

Fig. 8.26: Voltage and current definitions of the inverting buck-boost converter
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Inverting buck-boost converter: voltage transfer ratios
In CCM, the voltage balance of the inductor L delivers:

uL(t) =

{
U1, t ∈ [kTs, kTs + Ton],

U2 t ∈ [kTs + Ton, (k + 1)Ts].
(8.76)

In steady state, the average inductor voltage per period must be zero, yielding

U1Ton = −U2Toff ⇔ U1DTs = −U2(1−D)Ts ⇔ U2

U1
= − D

1−D
. (8.77)

Likewise, the analysis of the DCM mode reveals

U2

U1
= −D

2

2

∆iL,max

i2
⇔ U2 = −U2

1

D2

2

Ts

Li2
. (8.78)

Hence, the inverting buck-boost converter has a negative voltage transfer ratio in CCM and
DCM, but the same absolute voltage gain as the synchronous buck-boost converter.
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Inverting buck-boost converter: circuit realization

▶ Energy transfer takes place solely indirect by intermediate storage within inductor.

▶ Further characteristics (current and voltage ripple, operation modes) are analogous to the
synchronous buck-boost converter.

▶ Transistor needs to block up to |u1(t)|+ |u2(t)|, in contrast to step-down/up converter
where only the input or output voltage is blocked by the transistor.

D i2(t)

u2(t)

i1(t)

u1(t) uL(t)

iL(t)

T

Fig. 8.27: Inverting buck-boost converter with real components (single quadrant type)
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Semiconductor utilization

We define the semiconductor utilization as the ratio of the average output power to the
transistor (peak) power:

P2

PT
=

U2I2
max{uT} ·max{iT}

. (8.79)

Background and interpretation:

▶ Transistor needs to withstand the peak voltage and current (rating requirement).

▶ The lower the semiconductor utilization, the more costly / bulky the transistor for a given
converter power (key parameter for the selection of the power stage).

Assumptions for following calculations:

▶ Lossless operation in CCM,

▶ Current and voltage ripple are marginal and can be neglected,

▶ Given a constant P2, the duty cycle D is adjusted to achieve the desired output power.
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Semiconductor utilization: step-down converter

The step-down converter’s transistor peak
voltage and current are (cf. Fig. 8.2)

max{uT} = U1,

max{iT} =
i1
D

=
I1
D
.

(8.80)

The transistor must block the (constant) input
voltage U1 and step-like changing current
i1(t) = iT(t). The semiconductor utilization is

P2

PT
=
U2I2

U1
i1
D

=
U1I1

U1
I1
D

= D.

(8.81)

0

U1

u
T
(t
)

0 0.2 0.4 0.6 0.8 1
0

i1/D

i1 = I1

Ton Toff

t/Ts

i T
(t
)

Fig. 8.28: Voltage and current at the step-down
converter transistor (w/o current ripple)
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Semiconductor utilization: step-up converter

The step-up converter’s transistor peak voltage
and current are (cf. Fig. 8.12)

max{uT} = U2,

max{iT} = max{iL} = I1.
(8.82)

The transistor must block the (constant)
output voltage U2 and (constant) input current
i1(t) = iT(t), which is filtered by the inductor.
The semiconductor utilization is

P2

PT
=
U2I2
U2I1

=
I2
I1

= 1−D.

(8.83)

0

U2

u
T
(t
)

0 0.2 0.4 0.6 0.8 1
0

i1 i1 = I1

Ton Toff

t/Ts

i T
(t
)

Fig. 8.29: Voltage and current at the step-up
converter transistor (w/o current ripple)
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Semiconductor utilization: inverting buck-boost converter
The inv. buck-boost converter’s transistor peak
voltage and current are (cf. Fig. 8.26)

max{uT} = U1 − U2,

max{iT} =
i1
D

=
I1
D
.

(8.84)

The transistor must block the (combined)
input and output voltage and step-like
changing current i1(t) = iT(t). The
semiconductor utilization is

P2

PT
=

U2I2

(U1 − U2)
i1
D

=
U1I1

U1
1

1−D
I1
D

= (1−D)D.

(8.85)

0

U1 − U2

u
T
(t
)

0 0.2 0.4 0.6 0.8 1
0

i1/D

i1 = I1

Ton Toff

t/Ts

i T
(t
)

Fig. 8.30: Voltage and current at the inv.
buck-boost converter transistor (w/o current ripple)
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Semiconductor utilization: summary

▶ The converters’ semiconductor
utilization is generally the highest
if the input and output voltages
are similar:
▶ Step-down: D → 1,
▶ Step-up: D → 0,
▶ Inv. buck-boost: D → 0.5.

▶ Inverting buck-boost has generally
a lower utilization.

▶ Finding indicates that the inv.
buck-boost should be only
considered if an application truly
requires both step-up and
step-down operation.

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

step-down step-up

inv. buck-boost

D
P
2

P
T

Fig. 8.31: Comparison of the semiconductor utilization for the
step-down, step-up, and inv. buck-boost converter
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Filter component requirements: step-down converter
Open question regarding filter dimensioning:

▶ How large do the filter components need to be sized to ensure sufficiently smooth input and
output signals?

To answer this, we consider the following assumptions:

▶ The input and output current are constant: i1(t) = I1, i2(t) = I2.
▶ Additional input capacitor necessary to buffer the pulsating input current.
▶ Voltage and current ripples do not influence each other (simplified superposition).

u2(t)u1(t)

i1(t) iL(t) L

uL(t)

i2(t)

us(t) C2

iC2(t)

C1

iC1(t)

Fig. 8.32: Step-down converter with filter components
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Filter component requirements: step-down converter (cont.)
The input voltage ripple is

∆uC1 =
I1(1−D)Ts

C1
(8.86)

assuming that the input capacitor is loaded with the input current I1 during the off-time
Toff = (1−D)Ts. Assuming that there is an input voltage ripple requirement on ∆uC1 , that is,
an upper limit ripple, the minimum input capacitance is

C1 ≥
I1(1−D)Ts

∆uC1

= C1,min. (8.87)

The stored input capacitor energy yields

EC1 =
1

2
C1,min

(
U1 +

1

2
∆uC1

)2

=
1

2
(1−D)

P2

fs

(
1 +

εuC1
2

)2
εuC1

(8.88)

with the normalized ripple factor εuC1
= ∆uC1/U1.
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Filter component requirements: step-down converter (cont.)
We already know from (8.7) the inductor current ripple being

∆iL =
(1−D)U2Ts

L
.

Assuming that there is an inductor current ripple requirement on ∆iL, that is, an upper limit
ripple, the minimum inductance is

L ≥ (1−D)U2Ts
∆iL

= Lmin. (8.89)

The stored inductor energy is

EL =
1

2
Lmin

(
I2 +

1

2
∆iL

)2

=
1

2
(1−D)

P2

fs

(
1 +

εiL
2

)2
εiL

(8.90)

with the normalized ripple factor εiL = ∆iL/I2.
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Filter component requirements: step-down converter (cont.)
We already know from (??) the output capacitor voltage ripple being

∆uC2 =
D(1−D)T 2

s U1

8LC2
=

(1−D)

8LC2

U2

f2s
.

Inserting the inductor sizing (8.89) delivers

∆uC2 =
1

8C2

∆iL
fs

=
εiL
8C2

I2
fs
. (8.91)

Assuming that there is an output voltage ripple requirement on ∆uC2 , that is, an upper limit
ripple, the minimum output capacitance is

C2 ≥
εiLI2

8fs∆uC2

= C2,min. (8.92)

The stored output capacitor energy yields

EC2 =
1

2
C2,min

(
U2 +

1

2
∆uC2

)2

=
1

16
εiL

P2

fs

(
1 +

εuC2
2

)2
εuC2

. (8.93)
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Filter component requirements: step-down converter interpretation

The stored energy in the filter components is a good proxy for the filter size and weight. All
three step-down converter filter components share the following characteristics:

▶ The stored energy is proportional to the output power P2.

▶ The stored energy is inversely proportional to the switching frequency fs.
▶ The stored energy is minimal at εuC1

= εiL = εuC2
= 1/2 (i.e., large signal ripples).

▶ εiL = 1/2 refers to BCM mode.
▶ Increased input voltage ripple and inductor current ripple also increases the transistor

requirements, see (8.80).

In addition, EL and EC1 also scale with

(1−D),

that is, are small if the converter’s input and output voltage are similar. In the following, we do
not analyze the step-up converter in detail, since the findings are analogous.
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Filter component requirements: inverting buck-boost converter
Again, we assume the following:

▶ The input and output current are constant: i1(t) = I1, i2(t) = I2.

▶ Additional capacitors necessary to buffer the pulsating input / output currents.

▶ Voltage and current ripples do not influence each other (simplified superposition).

C2

iC2(t)

i2(t)

u2(t)C1

iC1(t)

i1(t)

u1(t)

Son Soff

uL(t)

iL(t)

Fig. 8.33: Inverting buck-boost converter with filter components
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Filter component requirements: inverting buck-boost converter (cont.)
We further assume an identical normalized input and output voltage ripple requirement

εuC1
=

∆uC1

U1
= εuC2

=
∆uC2

U2
= εuC .

Following the same derivation as for the step-down converter, the stored filter energies are

EC = EC1 + EC2 =
1

2

P2

fs

(
1 +

εuC
2

)2
εuC

, EL =
1

2

P2

fs

(
1 +

εiL
2

)2
εiL

. (8.94)

Compared to the step-down converter we can find:

▶ Same dependence on P2, fs, and εuC or εiL .

▶ Missing (1−D) scaling factor.

▶ Result: The inverting buck-boost converter’s passive components are generally larger due to
the pulsating input and output current which needs to be filtered.
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Recap: (inverting) buck-boost converter switching states

Key characteristic drawback of (inverting) buck-boost converter

The switching scheme of the (inverting) buck-boost converter utilizes an indirect in-
ductive energy transfer resulting in pulsating input and output currents which need to
be filtered. This leads to larger filter components.

U2U1

i1(t) L iL(t) i2 = 0

Us2Us1

(a) Switch-on time

U2U1

i1 = 0 iL(t) L i2(t)

Us1 Us2

(b) Switch-off time
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Ćuk converter: the boost-buck converter with capacative energy transfer

Boost Buck

u1(t)

i1(t) L1 iL1(t)

us1(t)

S1,off

S1,on u2(t)

iL2(t)
L2 i2(t)

us2(t)

S2,on

S2,off

C

uC(t)

L2 i2(t)

u2(t)

L1i1(t)

u1(t)

Son Soff

Fig. 8.35: Ćuk converter (ideal switch representation)
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Ćuk converter: switching states

▶ The Ćuk converter uses the capacitor C to transfer energy between the input and output.

▶ The polarity of C is changed between the two switch states (inverting voltage gain).

▶ In contrast to the previous topologies, there is no pulsating output or input current thanks
to the outer two inductors.

U1

i1(t)

L1 uC(t)

L2 i2(t)

U2

(a) Switch-on time

U1

L1i1(t)

uC(t) L2

i2(t)

U2

(b) Switch-off time

Fig. 8.36: Switch states of the Ćuk converter
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Ćuk converter: voltage gain

In periodic steady-state operation, the voltage balance during a switching period of the two
inductors must be fulfilled:

L1 : DU1 + (1−D)(U1 − UC) = 0, L2 : D(U2 + UC) + (1−D)U2 = 0. (8.95)

Above, U1, U2, and UC are considered constant.From those we can derive:

L1 : UC =
U1

1−D
, L2 : UC = −U2

D
. (8.96)

Combining both equations delivers the voltage gain of the Ćuk converter:

U2

U1
= − D

1−D
. (8.97)

This is the same finding as for the inverting buck-boost converter, which seems quite obvious,
as the Ćuk converter just flips the order of the buck and boost parts.
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Ćuk converter: circuit realization

▶ Like the inverting buck-boost, the Ćuk converter only requires one diode and transistor.

▶ Transistor T needs to block uC(t) during the off-time, while it covers both the input and
output current during the on-time: semiconductor utilization is also P2/PT = (1−D)D as
for the inverting buck-boost (cf. Fig. 8.31).

C

uC(t) D

L2 i2(t)

u2(t)

L1i1(t)

u1(t) T

Fig. 8.37: Ćuk converter with real components (single quadrant type)
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Single ended primary inductance converter (SEPIC)

▶ Output inductor and diode change places compared to the Ćuk converter.

▶ Output current becomes pulsating (compared to Ćuk).

▶ Input to output gain becomes non-inverting (cf. next slides).

C

uC(t)
L2

iL2(t)

D i2(t)

u2(t)

L1i1(t)

u1(t) T

Fig. 8.38: SEPIC with real components (single quadrant type)
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SEPIC: switching states

▶ During switch on-time, the transistor is conducting and the diode is blocking (causing the
output current pulsation).

▶ During switch off-time, the diode is conducting and the transistor is blocking.

U1

i1(t)

L1 uC(t) L2

iL2(t)

i2(t)

U2

(a) Switch-on time

U1

L1i1(t)

uC(t)
L2

iL2(t)

i2(t)

U2

(b) Switch-off time

Fig. 8.39: Switch states of the SEPIC
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SEPIC: voltage gain
In periodic steady-state operation, the voltage balance during a switching period of the two
inductors must be fulfilled:

L1 : DU1 + (1−D)(U1 − U2 − UC) = 0, L2 : −DUC + (1−D)U2 = 0. (8.98)

Above, U1, U2, and UC are considered constant.From those we can derive:

L1 : UC =
U1

1−D
− U2, L2 : UC =

(
1

D
− 1

)
U2. (8.99)

Combining both equations delivers the voltage gain of the SEPIC:

U2

U1
=

D

1−D
. (8.100)

Similar to the synchronous buck-boost, the SEPIC comes with a positive voltage gain, but with
the advantages of a single transistor and diode as well as non-pulsating input currents (at the
cost of more filter components).
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Buck/boost converter for both current polarities

▶ Previous buck/boost realizations
allowed only unidirectional current flow
(cf. Fig. 8.7 and Fig. 8.15).

▶ Right realization with two transistors
and body diodes enables both current
polarities (two quadrant type).

▶ No discontinuous current flow (no
DCM mode).

▶ Transistors must be switched
complementary to prevent a DC-link
short-circuit:
▶ T1: on, T2: off,
▶ T1: off, T2: on.

u1(t)

i1(t)

i2(t)

u2(t)

T1

T2

Fig. 8.40: DC-DC converter realization for both
current polarities (w/o filter components, aka

half-bridge)
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Buck/boost converter for both voltage polarities

▶ Required constraints are:
▶ u1 > 0: otherwise DC link short-circuit,
▶ i2 > 0: to meet semiconductor

capabilities.

▶ Possible switching states:

T1 T2 u2 i1

on off +u1 +i2
off on −u1 −i2
on on 0 0
off off 0 0

u1(t)

i1(t)

i2(t)

u2(t)

T1

T2

T3

T4

Fig. 8.41: DC-DC converter realization for both voltage
polarities (w/o filter components, aka asymmetrical

half-bridge)
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Buck/boost converter for both current and voltage polarities

▶ For achieving full four quadrant
operation (4Q), we combine the
previous half-bridge variants.

▶ Also requires complementary switching
of {T1, T2} and {T3, T4} to prevent a
DC-link short-circuit.

▶ Possible (allowed) switching states:

T1 T2 T3 T4 u2 i1

on off off on +u1 +i2
off on on off −u1 −i2
on off on off 0 0
off on off on 0 0

u1(t)

i1(t)

i2(t)

u2(t)

T1

T2

T3

T4

Fig. 8.42: DC-DC converter realization for both current
and voltage polarities (w/o filter components, aka

full-bridge)
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Buck/boost converter for both current and voltage polarities (cont.)
Define duty cycle as relative on-times

D =
Ton
Ts

, for T1, T4,

and conversely

D′ =
Ton
Ts

= (1−D), for T2, T3.

This leads to the average output voltage of

U2 = (2D − 1)U1. (8.101)

▶ Also holds 2Q converter from Fig. 8.41.

▶ Boost mode follows analogously.

0 0.25 0.5 0.75 1
−1

−0.5

0

0.5

1

D

U
2

U
1

Fig. 8.43: Voltage gain for a buck converter with
two voltage polarities
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Section summary
This section introduced non-isolated DC-DC converters. The key takeaways are:

▶ Buck converter: step-down voltage conversion, voltage gain 0 ≤ D ≤ 1,

▶ Boost converter: step-up voltage conversion, voltage gain 1 ≤ 1
(1−D) .

From those basic topologies, we could derive all others:

▶ (Inverting) buck-boost converter: voltage gain (−) D
(1−D) ,

▶ (Inverting) boost-buck / Ćuk converter and SEPIC: voltage gain (−) D
(1−D) .

Finally, we discussed the realization of converters for both current and voltage polarities by
using bridge-type switch realizations. Also, we have emphasized the trade-off decisions between

▶ semiconductor utilization

▶ filter requirements / sizing,

▶ applied voltage gain as well as voltage and current signal quality.
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Galvanic isolation

A definition

Galvanic isolation is a principle of decou-
pling functional sections of electrical cir-
cuits to prevent a direct current flow from
input to output, that is, enabling different
ground potentials for the circuit sections.

Typical reasons for requiring galvanic isolation
are:

▶ Safety (prevention of electric shock),

▶ Noise reduction,

▶ contact corrosion reduction.

u1 u2

current through ground

(a) Lack of galvanic isolation

u1 u2

output u2 can ’float’

(b) Galvanic isolation via inductive separation

Fig. 9.1: Why galvanic isolation can be useful
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Galvanic isolation: technical realization

Capacative Optical Inductive

source: Wikimedia Commons,

H. Grobe, CC BY 3.0

source: Wikimedia Commons,

R. Spekking, CC BY-SA 4.0

source: Wikimedia Commons,

S. Riepl, public domain
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Galvanic isolation via transformer

▶ In power electronics, transformers
are mostly used to provide galvanic
isolation.

▶ Reason: the power density per
volume and weight is typically
higher than for capacitive or
optical isolation.

▶ Assumptions for the following
model:
▶ Ideal coupling

(no leakage flux),
▶ no losses,
▶ no saturation.

i1(t)

u1(t)

i2(t)

u2(t)

Fig. 9.2: Simple transformer with primary and secondary
winding
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Simplistic transformer model

N1 : N2i1(t) i2(t)

u1 u2

Transformer

(a) Schematic symbol representation

N1 : N2i′1(t)

Lm

im(t)

i1(t) i2(t)

u1 u2

Transformer

Ideal
transformer

(b) Equivalent circuit model

Fig. 9.3: Transformer model
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Simplistic transformer model (cont.)

Based on Fig. 9.3 we consider the transformer as a combination of an ideal transformer with
the conversion ratios

u1(t)

u2(t)
=
N1

N2
and

i′1(t)

i2(t)
=
N2

N1
(9.1)

and an inductor with the magnetizing inductance Lm:

u1(t) = Lm
dim(t)

dt
and i1(t) = i′1(t) + im(t). (9.2)

▶ Lm models the magnetic energy stored in the transformer.

▶ Above model is a significant simplification (very first principle approach).

▶ More details on the transformer model can be found in the Electrical Machines and Drives
course material.
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Topology derivation based on the inverting buck-boost converter

D i2(t)

u2(t)

i1(t)

u1(t) T

D i2(t)

u2(t)

i1(t)

u1(t) T N1 N2
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Topology derivation based on the inverting buck-boost converter (cont.)

D i2(t)

u2(t)

i1(t)

u1(t) T N1 N2

D i2(t)

u2(t)

i1(t)

u1(t) T N1 N2
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Flyback converter: topology

▶ Flyback converter = non-inverting,
galvanically isolated buck-boost converter.

▶ Polarity change of primary and secondary
transformer windings compensate for the
inverting buck-boost characteristic.

▶ Transistor T is placed below the transformer
to enable a fixed emitter / source potential
(beneficial for driver).

▶ Transformer’s magnetizing inductance serves
as the converter’s energy buffer.

D i2(t)

u2(t)

i1(t)

u1(t)

T

N1 N2

Fig. 9.4: Flyback converter topology
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Flyback converter: switching states in CCM
▶ Switch-on time: rising primary current induces a negative voltage at the transformer’s

secondary winding leading to blocking diode. Energy is stored in Lm.
▶ Switch-off time: primary current is blocked by transistor and an equivalent current is

induced in the secondary winding. Energy is taken from Lm.

i2(t) = 0

u2(t)

i1(t)

u1(t)

Lm

im(t)

N1 N2

(a) Switch-on time

i2(t)

u2(t)

i1(t) = 0

u1(t)

Lm

im(t)

N1 N2

(b) Switch-off time

Fig. 9.5: Switch states of the flyback converter
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Flyback converter: steady-state time-domain behavior in CCM

−U1

0

U1

−U2
N1
N2

Ton Toff

Ts

u
L
m
(t
)

0

im

max{im}

min{im}

U1/Lm
−U2

N1
N2/Lm

i m
(t
)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

i1

i1(t)

t/Ts

i 1
(t
) i2(t)

i2 i 2
(t
)
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Flyback converter: impact of the transformer turns ratio
The transformer scales the peak input and
output current according to the turns ratio
N2/N1 (with ε being a small time period)

i2(t = Ton + ε) =
N1

N2
i1(t = Ton − ε),

i.e., the output side may carry significantly
different peak currents than the input. Also,
when the transistor blocks it must withstand
the voltage

uT(t) = u1(t) +
N1

N2
u2(t), t ∈ [Ton, Ts].

Hence, the turn ratio has a significant impact
on components’ stress factors.

0 Ton Ts

max{i1}

N1
N2

max{i1}

i2(t)

i1(t)

t

Fig. 9.6: Example of the ratio of the input and
output current for N2/N1 = 0.6
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Flyback converter: voltage transfer ratio in CCM

In CCM, the voltage balance of the magnetizing inductor Lm delivers:

uLm(t) =

{
U1, t ∈ [kTs, kTs + Ton],

−N1
N2
U2 t ∈ [kTs + Ton, (k + 1)Ts].

(9.3)

In steady state, the average inductor voltage per period must be zero, yielding

U1Ton =
N1

N2
U2Toff ⇔ U1DTs =

N1

N2
U2(1−D)Ts ⇔ U2

U1
=
N2

N1

D

1−D
. (9.4)

▶ Structurally similar result to the (inverting/synchronous) buck-boost converter.

▶ The voltage transfer ratio is additionally scaled by the turns ratio N2/N1.

▶ The flyback’s tranformer enables additional degrees of freedom to achieve a certain voltage
transfer ratio via D and N2/N1.
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Flyback converter: switch states in DCM
The flyback converter in DCM has three different switch states:

▶ Transistor on-time: Ton = DTs,

▶ Transistor off-time (conducting diode): T ′
off = D′Ts,

▶ Transistor off-time (no conduction): T ′′
off = Ts − Ton − T ′

off .

i2 = 0

u2

i1

u1

Lm

im

N1 N2

(a) Switch-on time Ton

i2

u2

i1 = 0

u1

Lm

im

N1 N2

(b) Switch-off time T ′
off

i2 = 0

u2

i1 = 0

u1

Lm

im

N1 N2

(c) Switch-off time T ′′
off

Fig. 9.7: Switch states of the flyback converter including DCM
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Flyback converter: steady-state time-domain behavior in DCM

−U1

0

U1

−U2
N1
N2

Ton T ′
off T ′′

off
Ts

u
L
m
(t
)

0

max{im} U1/Lm −U2
N1
N2/Lm

i m
(t
)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

i1

i1(t)

t/Ts

i 1
(t
) i2(t)

i2 i 2
(t
)
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Flyback converter: DCM operation characteristics
In DCM operation

im <
∆im
2

⇒ U2 ̸= U1
N2

N1

D

1−D

applies due to the non-conducting diode during T ′′
off . To find the input-to-output voltage ratio

in DCM, we again utilize the current ripple balance:

∆im =
U1

Lm
Ton =

U1

Lm
DTs (rising edge),

∆im =
N1

N2

U2

Lm
T ′
off =

N1

N2

U2

Lm
D′Ts (falling edge).

(9.5)

Solving for D′ yields

D′ =
N2

N1

U1

U2
D. (9.6)

The average load current is

i2 =
N1

N2

∆im
2

T ′
off

Ts
=
N1

N2

∆im,maxD

2
D′ =

N1

N2

∆im,max

2

U1

U2
D2N2

N1
=

∆im,max

2

U1

U2
D2. (9.7)
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Flyback converter: DCM operation characteristics (cont.)
Solving (9.7) delivers the flyback converter voltage gain in DCM as

U2

U1
=
D2

2

∆im,max

i2
. (9.8)

Since ∆im,max also depends on U1, the relation (9.8) only holds for a given U1. Hence, we can
insert ∆im,max = Ts·U1/L in (9.7) and solve for U2 to receive

U2 = U2
1

D2

2

Ts

Lmi2
. (9.9)

▶ Interestingly, the voltage gain in DCM seems independent of the turns ratio N2/N1.

▶ Reason: output voltage U2 depends on the (average) output current i2 which is inversely
scaled by the turns ratio – cf. cancelation of N2/N1 in (9.7).

▶ However, the transformer’s magnetizing inductance is actually a function of the turns ratio
Lm(N1, N2) (compare Electrical Machines and Drives course material).
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Outlook: multi-port (flyback) converter

i1(t)

u1

i2(t)

u2

i3(t)

u3

N1 N2

N3

(a) Schematic symbol representation

i′1(t)

Lm

im(t)

i1(t)

u1

i2(t)

u2

i3(t)

u3

N1 N2

N3

(b) Equivalent circuit model

Fig. 9.8: Multi-port (flyback) transformer: add multiple secondary windings to a common core to enable
different input-to-output voltage ratios
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Topology derivation based on the buck converter

i1(t) L i2(t)

u2(t)u1(t) DT

Buck filterTransformed input stage

i1(t)

u1(t) D2us

L i2(t)

u2(t)

D1

up
T N1 N2
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Forward converter: topology

▶ Forward converter = galvanically
isolated buck converter.

▶ Main energy buffer: inductor L.

▶ Transformer: galvanic isolation
plus voltage scaling:

us(t) =
N2

N1
up(t)

with up(t) = u1(t), t ∈ [0, Ton].

▶ Different to flyback, where the
transformer’s purpose is to provide
both energy storage and galvanic
isolation.

i1(t)

u1(t)

D2us

L i2(t)

u2(t)

D1

up

T

N1 N2

Fig. 9.9: Forward converter topology
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Forward converter: steady-state time-domain behavior (ideal transformer)

0

N2
N1
U1

U2

Ton Toff

Ts

u
s(
t)

0

iL

max{iL}

min{iL}

(
N2
N1

U1−U2)/L −U2/L

i L
(t
)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

i1

t/Ts

i 1
(t
)
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Forward converter: idealized steady-state operation

Assumption:

▶ The transformer is ideal and does not exhibit a magnetizing inductance.

Consequence:

▶ The transformer’s secondary output voltage us(t) is a N2/N1 scaled version of the standard
buck converter’s switch voltage (compare Fig. 8.7).

▶ The (idealized) forward converter characteristics are analogous to the buck converter.

Hence, the voltage input-to-output voltage ratios for the (idealized) forward converter are:

CCM:
U2

U1
=
N2

N1
D, DCM: U2 =

N2
2

N2
1

D2TsU
2
1

D2Ts
N2
N1
U1 + 2Li2

. (9.10)
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Forward converter: magnetizing inductance issue

Magnetizing inductance

With every switching cycle the pri-
mary magnetizing current im(t) in-
creases (i.e., transformer saturates
and takes damage).

0 1 2
0

1 U1
Lm
Ton

2 U1
Lm
Ton

im(t)

t/Ts

i1(t)

u1(t)

D2

L i2(t)

u2(t)

D1

Lm

im(t)

T

N1 N2

Fig. 9.10: Forward converter topology with primary
magnetizing inductance
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Forward converter: demagnetization via negative input voltage

u1(t)

i1(t)

D3

D4

up(t)

T1

T2

D2us(t)

L i2(t)

u2(t)

D1

Lm

im(t)

N1 N2

Fig. 9.11: Forward converter topology with an asymmetrical half-bridge
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Forward converter: steady-state time-domain behavior (asym. half-bridge)

−U1

0

U1

DTs DTs

Ts

u
p
(t
)

0

N2
N1
U1

U2

Ton Toff

u
s(
t)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

t/Ts

i m
(t
)
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Forward converter with asym. half-bridge input stage
To demagnetize the transformer, the input voltage up(t) is modulated as follows:

up(t) =


U1, t ∈ [kTs, kTs +DTs], T1 = T2 = on,

−U1, t ∈ [kTs +DTs, kTs + 2DTs], T1 = T2 = off,

0, t ∈ [kTs + 2DTs, kTs + Ts], T1 = on, T2 = off.

(9.11)

Consequently, we have

uLm =
1

Ts

∫ Ts

0
up(t)dt = 0 (9.12)

and, therefore, the transformer’s magnetizing current im(t) does not increase during a pulse
period.However, this also limits the applicable duty cycle to

D ≤ 1

2

since otherwise (9.12) cannot be fulfilled.
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Forward converter: demagnetization via negative input voltage (cont.)

u1(t)

i1(t)

up(t)

T1

T2

T3

T4

D2us(t)

L i2(t)

u2(t)

D1

Lm

im(t)

N1 N2

Fig. 9.12: Forward converter topology with a full-bridge

Bikash Sah Power Electronics 442



Forward converter: steady-state time-domain behavior (full-bridge)

−U1

0

U1

DTs

DTs

Ts

u
p
(t
)

0

N2
N1
U1

U2

Ton Toff

u
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t)

0 0.5 1 1.5 2 2.5 3 3.5 4

0

t/Ts
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Forward converter: hysteresis curves of the transformer

H

B

(a) Asym. half-bridge: utilizes only the upper half
of the hysteresis curve due to non-negative

magnetizing currents

H

B

(b) Full-bridge: utilizes both positive and negative
hysteresis curve parts due the four-quadrant input

stage

Fig. 9.13: Hysteresis curves of the forward converter’s transformer with different input stages
(qualitative and simplified representation)
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Forward converter with full-bridge input stage
The average input voltage up of the full-bridge forward converter is conceptually identical to
the asym. half-bridge variant and with the constraint

uLm =
1

Ts

∫ Ts

0
up(t)dt = 0

the duty cycle also remains limited to

D ≤ 1

2
.

However, the full-bridge realization comes with distinct differences compared to the asym.
half-bridge:

▶ Utilizes magnetic core more efficiently, i.e., core can be made smaller or less winding turns
are required.

▶ Effective switching frequency is doubled allowing for smaller filter components.

▶ Obvious disadvantage: more complex input stage (costs).
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Forward converter with additional demagnetization winding
Alternative: transfer the idea of the flyback converter and add another winding N3 to the
transformer with reversed polarity. When T blocks, the energy stored in the transformer’s
magnetic field is inherited by N3 and transferred back to the input.

i1(t)

u1(t)

D2us

L i2(t)

u2(t)

D1

i3(t)

D3

up

T

N3

N1 N2

Fig. 9.14: Forward converter with demagnetization winding (aka single-ended forward converter)
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Forward converter: steady-state time-domain behavior (demag. winding)
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Forward converter with additional demagnetization winding (cont.)
The maximum magnetizing current is

max{im(t)} = im(t = (k +D)Ts) =
U1

Lm
DTs (9.13)

which is reached at the end of the turn-on time Ton.After switching off the transistor, the
winding N3 takes over the magnetizing current leading to

max{|i3(t)|} = |i3(t = (k +D)Ts)| =
N1

N3
max{im(t)} =

N1

N3

U1

Lm
DTs. (9.14)

To ensure that im(t = kTs) = 0 holds at the next switch-on event, the voltage balance
regarding the magnetizing inductance must be zero:

uLm =
1

Ts

∫ Ts

0
up(t)dt = U1DTs −

N1

N3
U1Tm = 0. (9.15)

Here, Tm denotes the demagnetization time interval which results in

Tm =
N3

N1
DTs. (9.16)
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Forward converter with additional demagnetization winding (cont.)

Since the transistor switch-on time already covers DTs, the demagnetization time interval Tm
is limited to

Tm ≤ (1−D)Ts. (9.17)

Combining (9.16) and (9.17) yields

N3

N1
≤ 1−D

D
⇔ D ≤ N1

N1 +N3
(9.18)

as a threshold for the turns ratio to enable certain switch-on times.Also, it should be noted
that the turns ratio directly influences the maximum blocking voltage of the transistor:

max{uT(t)} = U1 + U1
N1

N3
= U1

(
1 +

N1

N3

)
. (9.19)

Hence, to allow relatively high duty cycles by a high N1 to N3 ratio, cf. (9.18), the blocking
voltage of the transistor increases.
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Section summary

This section provided a (very) limited introduction to isolated DC-DC converters with the
forward and flyback converters as examples.The key takeaways are:

▶ The forward converter is a buck-derived topology while the flyback converter is a
buck-boost-derived topology.

▶ A transformer is used to provide galvanic isolation between input and output.

▶ Limiting the magnetiziation of the transformer is a key aspect in the operation of these
converters to prevent saturation (nonlinear behavior, extra losses).

In addition, there are many other isolated topologies that are used in practice, e.g.,

▶ Push-pull converter,

▶ Isolated Ćuk / SEPIC variants,

▶ Boost-derived topologies with full-/half bridge input stages,

▶ ...
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High-level view of the rectification task

Assuming that the input voltage is an ideal sinusoidal signal

u1(t) = û1 sin(ωt)

with the angular frequency ω = 2πf and the amplitude û1, the task of a rectifier is to convert
this input into a unidirectional, ideally constant, voltage u2(t) ≈ u2, as shown in Figure 10.1.
A typical application is the grid voltage rectification in power supplies.

π 2π
−û1

û1

ωt

u1(ωt)

u1 u2
π 2π

−û2

û2

ωt

u2(ωt)

Fig. 10.1: Simplified representation of a single-phase rectifier
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Frequency analysis: Fourier series
Often the rectification introduces non-fundamental frequency components, e.g., due to the
output voltage rectification or by a load current feedback towards the input side. To analyze
the frequency spectrum of a periodic signal x(t), the Fourier series is used:

x(t) =
a(0)

2
+

∞∑
k=1

(
a(k) cos(kωt) + b(k) sin(kωt)

)
, k ∈ N,

a(k) =
1

π

∫ 2π

0
u(t) cos(kωt)dωt, k ≥ 0, b(k) =

1

π

∫ 2π

0
u(t) sin(kωt)dωt, k ≥ 1.

(10.1)

π 2π
−û1

û1

ωt

u1(ωt)

u1 u2
π 2π

−û2

û2

ωt

u2(ωt)

Fig. 10.2: Rectification under distorted conditions
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Frequency analysis: Fourier series (cont.)

π 2π 3π 4π 5π 6π

−1

−0.5

0.5

1

k ≤ 1

k ≤ 5

k ≤ 7 k ≤ 13

ωt

u(ωt)

Fig. 10.3: Fourier series example: representation of a square wave signal
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M1U uncontrolled rectifier circuit

Based on Fig. 10.4, the output voltage u2(t) of the M1U rectifier is

u2(t) =

{
u1(t) = û1 sin(ωt), 0 ≤ ωt < π,

0, π ≤ ωt < 2π.
(10.2)

π 2π
−û

û

ωt

u1(ωt)

u1(t)

D i2(t)

R u2(t)
π 2π

−û

û

ωt

u2(ωt)

Fig. 10.4: M1U topology (aka single-pulse rectifier) with typical input and output voltage signals feeding
a resistive load
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M1U uncontrolled rectifier circuit (cont.)

From (10.2), the average output voltage of the M1U rectifier is

u2 =
1

T

∫ T

0
u2(t)dt =

1

2π

∫ 2π

0
u2(ωt)dωt =

1

2π

∫ π

0
û1 sin(ωt)dωt

=
û1
2π

[− cos(ωt)]π0 =
û1
2π

(1 + 1) =
û1
π

=

√
2U1

π

(10.3)

with U1 being the RMS value of the input voltage u1(t). The RMS value of the output voltage
u2(t) results in

U2 =

√
1

2π

∫ π

0
û21 sin

2(ωt)dωt = û1

√
1

2π

[
1

2
ωt− sin(2ωt)

4

]π
0

=
û1
2

=
U1√
2
.

(10.4)
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M1U uncontrolled rectifier circuit (cont.)
The Fourier coefficients of the output voltage u2(t) from (10.2) are

a(0) =
1

π

∫ 2π

0
u2(t)dωt = 2u2 = 2

û1
π
,

a(k) =
1

π

∫ 2π

0
u2(t) cos(kωt)dωt =

1

π

∫ π

0
û1 sin(ωt) cos(kωt)dωt

=
û1
2π

∫ π

0
sin(ωt(1− k)) + sin(ωt(1 + k))dωt = . . . =

{
û1
π

2
1−k2 , k = 2, 4, 6, . . .

0, otherwise.

b(k) =
1

π

∫ 2π

0
u2(t) sin(kωt)dωt =

1

π

∫ π

0
û1 sin(ωt) sin(kωt)dωt

=
û1
2π

∫ π

0
cos(ωt(1− k))− cos(ωt(k + 1))dωt = . . . =

{
û1
2 , k = 1,

0, k ≥ 2.

(10.5)

Above, a(0) represents a DC component, while the a(k) ̸= 0 coefficients indicate harmonics.
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M1U uncontrolled rectifier circuit (cont.)

From (10.5) the Fourier series of u2(t) results in

u2(t) = û1

 1

π
+

1

2
sin(ωt) +

∑
k=2,4,6,...

2

π(1− k2)
cos(kωt)

 . (10.6)

For a resistive load, the output current has the same harmonic spectrum:

i2(t) =
û1
R

 1

π
+

1

2
sin(ωt) +

∑
k=2,4,6,...

2

π(1− k2)
cos(kωt)

 . (10.7)

Resulting observations are:

▶ Non-fundamental current frequency components can distort the input side.

▶ Higher frequency harmonics decrease with ∼ 1/(1− k2).
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Transformer input filtering
To reduce the input side distortion, a transformer can be used to filter out the harmonics:

▶ Impedance of magnetizing inductance Lm is zero for DC components, i.e., the transformer
blocks the DC current from the input (cf. dotted red line for i2 below).

▶ With higher frequency harmonics, the impedance of Lm increases, i.e., filtering out the
harmonics less effectively.

N1 : N2i′1(t)

Lm

im(t)

i1(t) is(t)

u1(t) us(t)

D i2(t)

R u2(t)

i2

Fig. 10.5: M1U topology with input transformer and DC current path (red dotted line)
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Transformer input filtering (cont.)
While the transformer can help out filter unwanted harmonics, the output DC current also
introduces an offset magnetization to the transformer’s core. Issues related with this are:

▶ Core utilization: To prevent core saturation, the transformer must be oversized.
▶ Core losses: The magnetization offset can increase the core losses.

∼ i2

H

B

Fig. 10.6: Shift of the hysteresis curve due to the DC magnetization
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Capacitive output filtering
To smooth the output voltage u2(t), a capacitor C is added. The initial charging voltage is

u2(t) =

{
u1(t) = û1 sin(ωt), 0 ≤ ωt < π/2,

û1, ωt > π/2
(10.8)

with the capacitor current i2(t) being

i2(t) =

{
Cdu2(t)/dt = î2 cos(ωt) = Cωû1 cos(ωt), 0 ≤ ωt < π/2,

0, ωt > π/2.
(10.9)

u1(t)

D i2(t)

C u2(t) π 2π
−x̂

x̂

u1(t)

u2(t)

i2(t)
ωt

Fig. 10.7: M1U topology with output capacitor (unloaded and idealized charging curve)
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Capacitive output filtering (cont.)

If the rectified output is loaded, the capacitor voltage ripples:

▶ If u2(t) ≤ u1(t): diode conducts, capacitor charges (follows input voltage).

▶ If u2(t) > u1(t): diode blocks, capacitor discharges via I0.

u1(t)

i1(t)
D i2(t)

Cu2(t)

iC(t)

I0 π 2π

−x̂

x̂
u2 ≥ u1

u1(t)

u2(t)

iC(t)

i1(t)

ωt

Fig. 10.8: M1U topology with output capacitor and constant load current
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M2U uncontrolled rectifier circuit
The previous M1U topology only rectified half of a cycle resulting in a reduced output voltage
utilization and increased voltage ripple. By adding another diode and utilizing a center-tapped
transformer, the circuit can be extended towards a full-cycle rectifier.

N1 : N2

i1(t)

u1(t)

D1

D2

i2(t)

R u2(t)us,1(t)

us,2(t)

π 2π

−û1

− û1
2
N2
N1

û1
2
N2
N1

û1

u1(t)

u2(t)

ωt

Fig. 10.9: M2U topology (aka two-pulse mid-point rectifier) with center-tapped transformer
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M2U uncontrolled rectifier circuit (cont.)

From Fig. 10.9 we can conclude the following:

▶ During the positive half-cycle of u1(t): D1 conducts, D2 blocks, and u2(t) = us,1(t).

▶ During the negative half-cycle of u1(t): D2 conducts, D1 blocks, and u2(t) = us,2(t).

The output voltages of the center-tapped transformer are

us,1(t) =
1

2

N2

N1
û1 sin(ωt) and us,2(t) = −1

2

N2

N1
û1 sin(ωt). (10.10)

Here, it should be noted that both us,1(t) and us,2(t) are utilizing only half of the secondary
winding turns due to the central tapping.The output voltage results in

u2(t) =
1

2

N2

N1
|u1(t)| =

1

2

N2

N1
û1 |sin(ωt)| . (10.11)
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M2U uncontrolled rectifier circuit (cont.)
From (10.11), the average output voltage of the M2U rectifier is

u2 =
1

T

∫ T

0
u2(t)dt =

1

2π

∫ 2π

0

1

2

N2

N1
û1 |sin(ωt)|dωt =

1

π

∫ π

0

1

2

N2

N1
û1 sin(ωt)dωt

=
1

2π

N2

N1
û1 [− cos(ωt)]π0 =

1

2π

N2

N1
û1 (1 + 1) =

1

π

N2

N1
û1.

(10.12)

Not considering the transformer conversion via N2/N1, this is twice as much as in the M1U
case, compare (10.3). The RMS value of the output voltage u2(t) results in

U2 =

√
1

2π

1

22
N2

2

N2
1

û21

∫ 2π

0
sin2(ωt)dωt =

1

2

N2

N1
û1

√
1

π

∫ π

0
sin2(ωt)dωt

=
1

2

N2

N1
û1

√
1

2π

[
1

2
ωt− sin(2ωt)

4

]π
0

=
N2

N1

û1√
2
=
N2

N1
U1.

(10.13)
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M2U uncontrolled rectifier circuit (cont.)
The Fourier coefficients of the output voltage u2(t) from (10.11) are

a(0) =
1

π

∫ 2π

0
u2(t)dωt = 2u2 =

2

π

N2

N1
û1,

a(k) =
1

π

∫ 2π

0
u2(t) cos(kωt)dωt =

1

2π

N2

N1

(∫ π

0
û1 sin(ωt) cos(kωt)dωt

+

∫ 2π

π
(−1)û1 sin(ωt) cos(kωt)dωt

)
= . . . =

{
û1
π
N2
N1

2
1−k2 , k = 2, 4, 6, . . .

0, otherwise.

b(k) =
1

π

∫ 2π

0
u2(t) sin(kωt)dωt =

1

2π

N2

N1

(∫ π

0
û1 sin(ωt) sin(kωt)dωt

+

∫ 2π

π
(−1)û1 sin(ωt) sin(kωt)dωt

)
= . . . = 0.

(10.14)

These coefficients also indicate significant harmonics, which are in particular scaled by the
transformer turns ratio.
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B2U uncontrolled rectifier circuit
The B2U circuit also allows full-cycle rectification but without the need for a center-tapped
transformer, that is, fully utilizes the input voltage without halving it on the output side.

u1(t)

i1(t)
D1 D3

D2D4

i2(t)

Ru2(t) π 2π

−û1

û1

u1(t)

u2(t)

ωt

Fig. 10.10: B2U topology (aka two-pulse bridge rectifier) with resistive load
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B2U uncontrolled rectifier circuit (cont.)

For a purely resistive load as in Fig. 10.10 the output voltage u2(t) is

u2(t) = |u1(t)| = û1 |sin(ωt)| . (10.15)

Here, following diodes are conducting:

▶ Positive half-cycle: D1 and D2,

▶ Negative half-cycle: D3 and D4.

The average output voltage u2 is

u2 =
1

T

∫ T

0
u2(t)dt =

1

2π

∫ 2π

0
û1 |sin(ωt)|dωt = . . . =

2

π
û1. (10.16)

The Fourier coefficients of the output voltage u2(t) are analogous to the M2U case, compare
(10.14) with appropriate scaling considering the lack of the center-tapped transformer.
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B2U uncontrolled rectifier circuit with capacitive output filtering

u1(t)

i1(t)
D1 D3

D2D4

i2(t)

Cu2(t)

iC(t)

I0

Fig. 10.11: B2U topology with output capacitor and constant load

Bikash Sah Power Electronics 471



B2U uncontrolled rectifier circuit with capacitive output filtering (cont.)

ωt1 π ωt2 2π

−x̂

x̂

α

β

u1(t)

|u1(t)|u2(t)

iC(t)

i2(t)

ωt

Fig. 10.12: Typical signal curves for B2U topology with output capacitor and constant load
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B2U uncontrolled rectifier circuit with capacitive output filtering (cont.)

The filter capacitor current iC(t) is

iC(t) =

{
−I0, i2(t) = 0,

C d
dtu2(t), i2(t) > 0,

(10.17)

that is, if the output current i2(t) is zero, the diode bridge blocks and the capacitor discharges
via the load. Contrary, if the output current is positive, the diodes conduct and the capacitor
voltage is determined by the rectified input voltage.The output current is given by

i2(t) = iC(t) + I0. (10.18)

Inserting (10.17) in (10.18) delivers the output current during the conduction phase:

i2(t) = Cωû1 cos(ωt) + I0, 0 ≤ ωt < ωt1. (10.19)
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B2U uncontrolled rectifier circuit with capacitive output filtering (cont.)
The conduction phase lasts until ωt1 = α which can be determined from (10.19):

α = arccos

(
− I0
Cωû1

)
. (10.20)

For α < ωt < ωt2 the capacitor discharges via the load:

u2(t) = u2(ωt1) +

∫ t

t1

−I0
C
dτ = u2(α) +

∫ ωt

α
− I0
ωC

dωτ

= u2(α)−
I0
ωC

(ωt− α), ωt1 ≤ ωt < ωt2.

(10.21)

The blocking phase lasts until ωt2 = α+ β, that is, the rectified input voltage is equal to the
capacitor voltage (note: not solvable for ωt2 in closed-form, requires numerical methods):

u2(ωt2) = u2(α)−
I0
ωC

(ωt2 − α)
!
= û1| sin(ωt2)| = |u1(ωt2)|. (10.22)
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B2U rectifier with capacitive output filtering and grid impedance

u1(t)

L

uL(t)

i1(t)
D1 D3

D2D4

i2(t)

Cu2(t)

iC(t)

I0

Fig. 10.13: B2U topology considering an output capacitor, constant load, and grid impedance
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B2U rectifier with capacitive output filtering and grid impedance (cont.)

For the modified scenario form (10.13) we assume an infinite capacitance capacitor, i.e.,

u2(t) ≈ U2

to keep the analysis simple. Like before, the diode bridge conduction is determined by the
output current i2(t):

▶ i2(t) > 0: diode bridge conducts, uL(t) = |u1(t)| − U2,

▶ i2(t) = 0: diode bridge blocks, uL(t) = max{0, |u1(t)| − U2}.

Hence, the B2U rectifier behavior is driven by the grid impedance current and the dynamics
introduced by L. Similar to the previous analysis on DC-DC converters, the discontinuous
conduction mode (DCM) and the boundary conduction mode (BCM) will be differentiated in
the following.
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B2U rectifier with capacitive output filtering and grid impedance (cont.)

ωt1 π
2

ωt2 ωt3 π 3
2π

2π

−x̂

x̂

α
β

u1(t)

|u1(t)|

i2(t) i2

U2

ωt

Fig. 10.14: Typical signal curves for B2U topology feeding a constant load from the grid and an infinite
output capacitance in DCM

Bikash Sah Power Electronics 477



B2U rectifier with capacitive output filtering and grid impedance (cont.)
In steady-state DCM the output current is zero for

i2(ωt) = 0, 0 ≤ ωt < ωt1. (10.23)

Until then the diode bridge is in blocking mode and disconnects the input from the output. At
ωt1 = α the diodes start conducting since the input voltage exceeds the output voltage:

u1(ωt1 = α) = û1 sin(α)
!
= U2 ⇔ α = arcsin

(
U2

û1

)
. (10.24)

At this point, the output current is rising due to the positive inductor voltage:

i2(ωt) =
1

L

∫ t

t1

u1(t)− U2dτ =
1

ωL

∫ ωt

ωt1

u1(ωτ)− U2dωτ =
1

ωL

∫ ωt

ωt1

û1 sin(ωτ)− U2dωτ

=
û1
ωL

(
cos(α)− cos(ωt)− U2

û1
(ωt− α)

)
, ωt1 ≤ ωt < ωt3.

(10.25)
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B2U rectifier with capacitive output filtering and grid impedance (cont.)
At ωt2 = α+ β the current reaches zero again and the diode bridge blocks again:

i2(ωt2) =
û1
ωL

(
cos(α)− cos(ωt2)−

U2

û1
(ωt2 − α)

)
!
= 0

⇔ cos(α)− cos(α+ β)− β sin(α) = 0.

(10.26)

For a given α, this equation is not solvable in closed-form w.r.t. β and requires numerical
methods. However, if β is known, α can be determined leading to

α = arctan

(
1− cos(β)

β − sin(β)

)
. (10.27)

The average output current in DCM is

i2 =
1

T

∫ T

0
i2(t)dt =

1

π

∫ α+β

α
i2(ωt)dωt = . . . =

û1
πωL

(
û1
U2

(1− cos(β))− U2

û1

β2

2

)
. (10.28)
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B2U rectifier with capacitive output filtering and grid impedance (cont.)

For a better representation in the following, the average current is normalized:

i
′
2 =

i2
2
π
û1
ωL

=
1

2

(
û1
U2

(1− cos(β))− U2

û1

β2

2

)
. (10.29)

Here, the denominator 2/π · û1/ωL is the absolute average value of the inductor current in case
of a grid short circuit.

Based on the correlations found, the operating characteristics in DCM of the rectifier can be
visualized, which has been implemented in Fig. 10.16 (left part):

▶ In DCM, β ∈ [0, π[ holds, i.e., the diode bridge is conducting for 0 . . . 100% per half cycle.

▶ At β = π the diode bridge is conducting for the full half cycle (i.e., entering BCM).

▶ In order to achieve a commutation of the current between the diode pairs D1/D4 and
D2/D3, the current gets zero (for a short time) so that the rectifier operates in BCM.
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B2U rectifier with capacitive output filtering and grid impedance (cont.)

ωt1 π
2

ωt2 π 3
2π

2π

−x̂

x̂

α′

α′ + π

u1(t)

|u1(t)|

i2(t) i2

U2

ωt

Fig. 10.15: Typical signal curves for B2U topology feeding a constant load from the grid and an infinite
output capacitance in BCM
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B2U rectifier with capacitive output filtering and grid impedance (cont.)

In steady-state BCM, the output current is analogous to the DCM as from (10.25) leading to

i2(ωt) =
û1
ωL

(
cos(α′)− cos(ωt)− U2

û1
(ωt− α′)

)
, α′ ≤ ωt < α′ + π (10.30)

with α′ being the phase angle at which the diodes start conducting in BCM – cf. Fig. 10.15.
After a half cycle, the current reaches zero for a short moment enabling the diode bridge to
commutate the current between the diode pairs:

i2(ωt = α′ + π) = 0 ⇔ cos(α′)− cos(α′ + π)− U2

û1
π = 0 (10.31)

from which
U2

û1
=

2

π
cos(α′) (10.32)

follows after some intermediate calculation steps.
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B2U rectifier with capacitive output filtering and grid impedance (cont.)
The average output current in BCM follows as

i2 =
1

T

∫ T

0
i2(t)dt =

1

π

∫ α′+π

α′
i2(ωt)dωt = . . .

=
2

π

û1
ωL

sin(α′).

(10.33)

Applying the same normalization as (10.29) leads to

i
′
2 =

i2
2
π
û1
ωL

= sin(α′). (10.34)

Combining (10.32) and (10.34) reveals

U2

û1
=

2

π
cos(arcsin(i

′
2)). (10.35)

The resulting load curve for the BCM is also depicted in Fig. 10.16 (right part).
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B2U rectifier with capacitive output filtering and grid impedance (cont.)

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

α
π

α′

π

β
π

U2
û1

BCM limit

i
′
2

Fig. 10.16: Load curve of the B2U rectifier with capacitive output filtering and grid impedance

Bikash Sah Power Electronics 484



B2U rectifier with capacitive output filtering and grid impedance (cont.)
Assuming DCM, the input current of the B2U rectifier is

i1(t) =

{
i2(t), α ≤ ωt < α+ β,

−i2(t), π + α ≤ ωt < π + α+ β.
(10.36)

The minus sign during the second half-cycle results from the conducting diodes D3/D4
reversing the current direction in the inductor – cf. Fig. 10.13. The input current can be
decomposed into its fundamental and harmonic components:

i1(t) = a1 cos(ωt) + b1 sin(ωt)︸ ︷︷ ︸
=i

(1)
1 (t)

+

∞∑
k=2

(
a(k) cos(kωt) + b(k) sin(kωt)

)
︸ ︷︷ ︸

i
(h)
1 (t)

, k ∈ N. (10.37)

As will be discussed in the following, the harmonic components i
(h)
1 (t) are considered

distortions negatively impacting the grid quality.
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B2U rectifier with capacitive output filtering and grid impedance (cont.)

π
2

π 3
2π

2π

−î

−û

û

î
i1(t)

i
(1)
1 (t)

i
(h)
1 (t)

u1(t)

ωt

Fig. 10.17: Input current decomposition of the B2U rectifier with i
(1)
1 (t) being the fundamental and

i
(h)
1 (t) harmonic components
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Recap: active, reactive, and apparent power in sinusoidal steady-state

The complex power is defined as

S = U · I∗ = P + jQ = Sejφ, (10.38)

with the active power P , the reactive power Q, and the apparent power S as well as U and I
being the complex voltage and current phasors.From (10.38) directly follows:

S = |S| =
√
P 2 +Q2. (10.39)

The power factor λ is defined as

λ = cos(φ) =
P

S
. (10.40)

Typically, one tries to operate power converters with a unity power factor λ ≈ 1 to avoid
reactive power transfer (i.e., additional reactive currents leading to more losses in the grid).
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Active power transfer considering harmonics
The active power can be alternatively expressed as the average of the instantaneous power:

P =
1

T

∫ T

0
p(t)dt =

1

2π

∫ 2π

0
u(ωt)i(ωt)dωt. (10.41)

To generalize the analysis for arbitrary voltage and current harmonics, we consider both Fourier
decompositions

u(ωt) = u+

∞∑
k=1

û(k) cos(kωt− φ(k)
u ), i(ωt) = i+

∞∑
k=1

î(k) cos(kωt− φ
(k)
i ) (10.42)

with u and i being the DC components, û(k) and î(k) the amplitudes of the k-th harmonic and

φ
(k)
u and φ

(k)
i the phase angles of the voltage and current harmonics.This amplitude-phase

representation is analogous to (10.1) with the relations:

x̂(k) =
√
(a(k))2 + (b(k))2, φ(k)

x = − arccos

(
a(k)

x̂(k)

)
· sign

(
b(k)
)
. (10.43)
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Active power transfer considering harmonics (cont.)
Substituting the Fourier series of u1(ωt) and i1(ωt) into the instantaneous power expression
delivers:

p(t) = u(ωt)i(ωt)

=

(
u+

∞∑
k=1

û(k) cos(kωt− φ(k)
u )

)(
i+

∞∑
m=1

î(m) cos(mωt− φ
(m)
i )

)
.

Expanding this product yields:

p(t) = ui+ u

∞∑
m=1

î(m) cos(mωt− φ
(m)
i ) + i

∞∑
k=1

û(k) cos(kωt− φ(k)
u )

+

∞∑
k=1

∞∑
m=1

û(k)î(m) cos(kωt− φ(k)
u ) cos(mωt− φ

(m)
i ).
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Active power transfer considering harmonics (cont.)
Using the trigonometric identities the last term becomes:

∞∑
k=1

∞∑
m=1

û(k)î(m) cos(kωt− φ(k)
u ) cos(mωt− φ

(m)
i )

=

∞∑
k=1

∞∑
m=1

û(k)î(m) 1

2

[
cos((k −m)ωt+ φ

(k)
i − φ(m)

u ) + cos((k +m)ωt− φ(k)
u − φ

(m)
i )

]
.

Hence, we receive integral terms of the form∫ 2π

0
cos(nωt+ φ)dωt =

{
2π cos(φ), n = 0,

0 n ̸= 0

with n = k −m ∈ Z or n = k +m ∈ Z, respectively. Due to the periodicity and symmetry of
the cosine function, the integral over a full period is zero for n ̸= 0.

Conclusion: Cross-frequency terms (k ̸= m) cancel due to their oscillatory nature, leaving only
contributions from voltage and current harmonics of the same order (k = m).
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Active power transfer considering harmonics (cont.)
Summarizing the previous considerations, the active power can be expressed as:

P =
1

T

∫ T

0
p(t) dt =

∞∑
k=1

û(k)î(k)

2
cos(φ

(k)
i − φ(k)

u ). (10.44)

Inserting the B2U ideal input voltage assumption u(t) = u1(t) = û1 sin(ωt), this boils down to:

P =
û1î

(1)
1

2
cos(φ

(1)
i − φ(1)

u ) = U1I
(1)
1 cos(φ

(1)
i − φ(1)

u ) (10.45)

with U1 and I
(1)
1 being the RMS values of the fundamental voltage and current component and

φ
(1)
i the phase angle between the fundamental voltage and current component. The power

factor results in

λ =
P

S
=
U1I

(1)
1

U1I1
cos(φ

(1)
i − φ(1)

u ) =
I
(1)
1

I1
cos(φ

(1)
i − φ(1)

u ). (10.46)

i.e., the harmonics increase the apparent power S but do not contribute to the active power P .
Consequently, the B2U’s power factor is typically limited to 70% or lower.
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Total harmonic distortion (THD)
Another important measure for the quality of the input current is the total harmonic distortion
(THD):

THD(i1) =

√∑∞
k=2

(
I
(k)
1

)2
I
(1)
1

=
I
(h)
1

I
(1)
1

. (10.47)

The THD quantifies the ratio of the RMS value of the harmonic components to the RMS value
of the fundamental component.Rewriting the decomposition (10.37) in the RMS form

I21 =
(
I
(1)
1

)2
+
(
I
(h)
1

)2
, (10.48)

and inserting (10.47) in the power factor expression (10.46) leads to

λ =
1√

1 + THD2(i1)
cos(φ

(1)
i − φ(1)

u ). (10.49)

Hence, the larger the THD, the more the power factor deviates from unity.
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B2U rectifier: THD and power factor
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Fig. 10.18: THD and power factor of the B2U rectifier with capacitive output filtering and grid
impedance
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B2U rectifier impact on the grid voltage

u1(t)

Li1(t) PCC LA i1A(t)
D1 D3

D2D4

i2(t)

Cu2(t)

iC(t)

I0

LB i1B(t)
Load B

u1B(t)u1PCC(t)

u1A(t)

Fig. 10.19: B2U rectifier and a second load connected to the grid
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B2U rectifier impact on the grid voltage (cont.)

In Fig. 10.19 the B2U rectifier and a second load are connected to the grid u1(t) with

▶ L being the grid inductance (at the point of common coupling – PCC),

▶ LA being the inductance of the cable connecting the B2U rectifier to the PCC,

▶ LB being the inductance of the cable connecting the second load to the PCC.

Assuming i1B(t) = 0 for the sake of simplicity, the inductive voltage divider rule yields

u1(t)− u1PCC(t)

u1(t)− u1A(t)
=

L

L+ LA
(10.50)

and, therefore, the voltage at the second load’s PCC u1PCC(t) is

u1PCC(t) = u1(t)−
L

L+ LA
(u1(t)− u1A(t)). (10.51)
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B2U rectifier impact on the grid voltage (cont.)

Assuming again a constant output voltage u2(t) = U2 (due to an infinite filter capacitance),
the B2U’s input voltage is

u1A(t) =

{
u1(t), i1A(t) = 0

sign(i2(t)) · U2, i1A(t) ̸= 0.
(10.52)

Hence, the voltage at the second load’s PCC is

u1PCC(t) =

{
u1(t), i1A(t) = 0

u1(t)
(
1− L

L+LA

)
+ L

L+LA
sign(i2(t)) · U2, i1A(t) ̸= 0.

(10.53)

As on can see on the next slide, the B2U rectifier operation leads to a distorted grid voltage
u1PCC(t) which might impair the operation of the second load. Increasing the input inductance
LA by an explicit filter inductor can mitigate this issue, however, at the expense of volume,
weight and cost as well as voltage drop associated with the input filter inductor.
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B2U rectifier impact on the grid voltage (cont.)

ωt1 π
2

ωt2 ωt3 π 3
2π

2π

−x̂

x̂

α
β

u1(t)

i1(t)

U2

u1PCC(t)

u1a(t)

ωt

Fig. 10.20: Relevant signals of the scenario from (10.19) with B2U in DCM
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B2U rectifier impact on the neutral line in three-phase grid

u1a
i1a(t)

u1b

i1b(t)

u1c

i1c(t)

iN(t) N

B2U

B2U

B2U

Fig. 10.21: Three-phase grid with single-phase rectifiers connected to neutral
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B2U rectifier impact on the neutral line in three-phase grid (cont.)

π
2

π 3
2π

2π

u1a(t) u1b(t) u1c(t)

i1a(t) i1b(t) i1c(t)

U2

ωt

Fig. 10.22: Relevant signals of the scenario from (10.21) assuming identical operation conditions for all
single-phase rectifiers
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B2U rectifier impact on the neutral line in three-phase grid (cont.)
The neutral conductor current is the sum of the phase currents:

iN(t) = i1a(t) + i1b(t) + i1c(t). (10.54)

In the example from Fig. 10.22 the neutral conductor current corresponds to the enveloping
curve over the phase currents shown in the figure:

▶ The B2U rectifier represents a nonlinear load such that the three-phase currents do not
cancel each other out.

▶ The neutral conductor current leads to power losses in the neutral conductor and can cause
overheating.

Need for grid-friendly rectification

The shown analysis of the B2U rectifier highlights its negative impact on the grid,
especially if multiple B2U rectifiers are connected to the same grid. Therefore, grid-
friendly rectification alternatives are essential to ensure the stable operation of the grid
and the connected loads.
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General PFC circuit structure

u1(t)

i1(t)
D1 D3

D2D4

u2
u′

= m(d(t))

i2
i′

= m(d(t))−1

DC/DC

i′(t)

u′(t)

i2(t)

Cu2(t)

iC(t)

I0

Controller

d(t)
i′(t)

u′(t)

u2(t)

Fig. 10.23: Rectifier with power factor correction (PFC) realized as a combination of a single-phase
diode bridge and a cascaded DC/DC converter with voltage / current transfer ratio m(t)
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Idealized PFC rectifier signals in the time domain (steady state)

0
u
1
(t
)/
i 1
(t
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m
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Operation concept and assumptions for the PFC rectifier
Main idea: utilize a DC/DC converter to control the input current i1(t) such that it follows the
input voltage u1(t) in phase:

i1(t) = î1 sin(ωt) ∼ û1 sin(ωt) = u1(t). (10.55)

Assumptions for the following PFC rectifier analysis:

▶ The input voltage u1(t) is an ideal sinusoidal signal with amplitude û1 and frequency ω.

▶ The output voltage is considered constant: u2(t) ≈ U2.
▶ The grid impedance is neglected for the sake of simplicity.

▶ The grid impedance as in Fig. 10.13 would (mainly) introduce a phase shift between |u1(t)| and
u′(t) which can be compensated by the control setup.

Based on these assumptions and the objective (10.55), the voltages and currents in front of the
DC/DC converter must be proportional to each other (to achieve unity power factor):

u1(t)

i1(t)
=
u′(t)

i′(t)
. (10.56)
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Voltage transfer ratio
Considering an ideal DC/DC converter with a voltage transfer ratio m(t), the converter must
deliver a rectified-sinusoidal u′(t) given some constant U2:

u′(t) =
U2

m(t)
⇔ û1| sin(ωt)| =

U2

m(t)
. (10.57)

Hence, the voltage transfer ratio m(t) is given by

m(t) =
U2

u′(t)
=

U2

û1| sin(ωt)|
(10.58)

which varies between

max
u′

{m(t)} = ∞, argmax
u′

{m(t)} = 0,

min
u′

{m(t)} =
U2

û1
=M, argmin

u′
{m(t)} = û1.

(10.59)

One can conclude that the DC/DC converter must be able to deliver a voltage transfer ratio of

m(t) ∈ [M, . . . ,∞].
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Voltage transfer ratio (cont.)
The above voltage transfer ratio range restricts the possible topologies accordingly, e.g.:

▶ Standard boost converter: m(t) = 1/(1−d(t)),
▶ Buck-boost converter or SEPIC: m(t) = d(t)/(1−d(t)).

Due to its simplicity and low component count, the boost converter is the most common
choice for PFC applications leading to the reference duty cycle (assuming CCM operation):

d(t) =
U2 − û1| sin(ωt)|

U2
= 1− 1

M
| sin(ωt)|. (10.60)

Remark on nomenclature and steady state

In contrast to the previous DC/DC converter section, the duty cycle d(t) is now a
function of time and not a constant (small d instead of capital D). However, the
voltage transfer to duty cycle ratio was derived in steady state, i.e., (10.60) only holds
approximately for fs >> f = ω/2π (so-called quasi steady state).
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PFC rectifier with boost converter

u1(t)

i1(t)
D1 D3

D2D4

DC/DC

i′(t)

u′(t)

L D5

T

i2(t)

Cu2(t)

iC(t)

I0

Controller

i′(t)

u′(t)

u2(t)

Fig. 10.24: PFC rectifier realized as a combination of a single-phase diode bridge and a cascaded
DC/DC boost converter
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PFC rectifier with boost converter (cont.)
The duty cycle from (10.60) does not consider the inner voltage demand of the boost
converter, in particular of its filter inductor L:

uL(t) = L
d

dt
i′(t) = L

d

dt

(
î1| sin(ωt)|

)
= î1ωL cos(ωt)sgn(sin(ωt)).

(10.61)

Within one switching period of the boost converter the voltage balance must hold:

u′(t) = uL(t) + U2(1− d(t))

⇔ û1| sin(ωt)| = î1ωL cos(ωt)sgn(sin(ωt)) +Mû1(1− d(t)).
(10.62)

Rearranging towards the duty cycle d(t) yields

d(t) = 1− 1

M
| sin(ωt)|+ î1ωL

Mû1
cos(ωt)sgn(sin(ωt)). (10.63)
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PFC rectifier with boost converter (cont.)

Evaluating (10.63) for ωt = ε with ε ∈ R > 0 being an infinitesimally small value, one obtains

d(ε/ω) = 1− sin(ε) +
î1ωL

Mû1
cos(ε)sgn(sin(ε)) ≈ 1 +

î1ωL

Mû1
> 1.

Hence, the additional voltage demand of the boost converter inductor L leads to a duty cycle
exceeding unity, that is, exceeding the feasible range and, therefore, the boost converter is not
able to deliver the required voltage transfer ratio m(t):

▶ The boost converter is not able to exactly track the input current reference
i1(t) = î1 sin(ωt) (especially at the beginning and end of a half period).

▶ The lower L the less the negative impact of the inductor voltage demand.

▶ Consequently, one wants to keep the inductance L as low as possible which on the other
hand requires a high switching frequency fs to keep the current ripple within acceptable
bounds.
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Pulse width modulation (PWM)
As seen on the previous slides, the duty cycle d(t) is a function of time. To generate a
switching signal s(t) for the boost converter, a pulse width modulation (PWM) scheme is used:

s(t) =

{
1 (transistor T on), if d(t) > c(t),

0 (transistor T off), otherwise
(10.64)

with a (high frequency) carrier signal c(t), e.g., a triangular or sawtooth signal.

d(t)

c(t)

−

1 s(t)
T

Fig. 10.25: Pulse width modulation with triangular carrier to actuate a transistor
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PWM-based switching signals
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d(t) c(t)

0 1
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π
0

1
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Fig. 10.26: Qualitative illustration of a PWM-based switching signal with a triangular carrier signal
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PWM-based switching signals (cont.)
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Fig. 10.27: Qualitative illustration of a PWM-based switching signal with a sawtooth carrier signal
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PWM-based open-loop control of the boost converter PFC rectifier
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PWM-based PFC rectifier current ripple
Due to the switching behavior of the boost converter, the input current i1(t) exhibits a current
ripple. The boost inductor voltage during a switching period is:

uL(t) =

{
û1 sin(ωt), 0 < t ≤ dTs

û1 sin(ωt)− U2, dTs < t ≤ Ts.
(10.65)

We assume that
Ts << 2π/ω

such that the input voltage and duty cycle are approximately constant within one switching
period.The ripple current envelope ∆i1(t) is then defined as the moving difference between the

actual input current i1(t) and its fundamental component i
(1)
1 (t):

∆i1(t) = ±1

2
max

τ∈[t±Ts
2
]
|i1(τ)− i

(1)
1 (τ)|. (10.66)

One should note that this ripple definition is different from the one used in the previous
DC/DC converter section.
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PWM-based PFC rectifier current ripple (cont.)

Assuming CCM operation and a sufficiently small switching time interval Ts, the ripple current
can be approximated by the current rise during the on-time of the boost converter:

∆i1(t) = ± 1

2L

∫ dTs

0
uL(τ)dτ = ± 1

2L

∫ dTs

0
û1 sin(ωt)dτ

≈ ± û1 sin(ωt)
2L

∫ dTs

0
1dτ = ± û1 sin(ωt)

2L
dTs.

(10.67)

Inserting d(t) from (10.63) in a quasi steady-state fashion yields

∆i1(t) = ± û1Ts sin(ωt)
2L

(
1− 1

M
| sin(ωt)|+ î1ωL

Mû1
cos(ωt)sgn(sin(ωt))

)
. (10.68)

Due to the varying input voltage and duty cycle, the ripple current is not constant but also
varies with time (cf. next slide).
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PWM-based PFC rectifier current ripple (cont.)
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PFC rectifier with boost converter: closed-loop control structure

u1(t)

i1(t)
D1 D3

D2D4

DC/DC

i′(t)

u′(t)

L D5

T

i2(t)

Cu2(t)

iC(t)

I0
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u2

−
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u2 ctrl
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i′ ctrl

d(t)

s(t)i′

i
′−

∆i′

u′

i′∗

p2∗G∗
u2∗2/û21

Fig. 10.28: Control structure of PFC rectifier with boost DC/DC converter
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PFC rectifier with boost converter: closed-loop control structure (cont.)
Reasons for closed-loop control:

▶ Mismatches between the actual system and the plant model behavior result in
(steady-state) control errors.

▶ Faster transient response to load changes.

▶ Robustness against further disturbances (e.g., input voltage variations).

Central idea of the closed-loop control: given some required load power

p2(t) = u2(t)i2(t) = u2(t) (I0 + iC(t))

operate the boost converter such that the load power is represented by a (virtual) conductance
at the input of the boost converter:

g(t) =
p1(t)

û21
=
p2(t)

û21
=
U2 (I0 + iC(t))

û21
.
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PFC rectifier with boost converter: closed-loop control structure (cont.)
The required conductance g(t) is calculated by the outer voltage controller:

▶ If u2(t) < U∗
2 : increase p2(t) by increasing the conductance g(t).

▶ If u2(t) > U∗
2 : decrease p2(t) by decreasing the conductance g(t).

With
î′(t) = û1g(t)

the required reference input current for the inner current controller can be calculated.

i1(t)

g(t)u1(t)

i2(t)

U2

p1 = p2

Fig. 10.29: Interpretation of the closed-loop control of a PFC rectifier as a variable conductance tuning
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PFC rectifier with boost converter: capacitor sizing
Based on the previous assumption u2(t) ≈ U2 the question is raised how the output capacitor
C of the boost converter must be sized to keep the output voltage ripple within acceptable
bounds justifying the assumption. For a lossless converter, the instantaneous power is:

p2(t) = p1(t) = u1(t)i1(t).

Assuming that the input voltage and current are both ideally sinusoidal and in phase (i.e., the
PFC rectifier operates perfectly), the instantaneous power is:

p2(t) = û1î1 sin(ωt) sin(ωt) =
û1î1
2

(1− cos(2ωt)) . (10.69)

Hence, we can decompose the instantaneous power into a constant term and a harmonic term
with twice the frequency of the input voltage/current:

p2(t) =
û1î1
2︸︷︷︸
p2

− û1î1
2

cos(2ωt)︸ ︷︷ ︸
p
(h)
2 (t)

. (10.70)
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PFC rectifier with boost converter: capacitor sizing (cont.)
The resulting harmonic output current component is (approximately)

i
(h)
2 (t) ≈ p

(h)
2 (t)

u2
= − û1î1

2u2
cos(2ωt) = −p2

u2
cos(2ωt). (10.71)

If the load current I0 is (approximately) constant, the harmonic current is entirely flowing into

the output capacitor i
(h)
2 (t) = iC(t) leading to the voltage ripple:

∆u2(t) =
1

C

∫
iC(t)dt = − p2

u2

1

2ωC︸ ︷︷ ︸
∆û2

sin(2ωt). (10.72)

To limit the output voltage ripple to a certain amplitude value ∆û2, the output capacitor C
must exhibit a minimal capacitance value:

C >
p2
u2

1

2ω∆û2
. (10.73)

Bikash Sah Power Electronics 521



PFC rectifier with boost converter: capacitor sizing (cont.)
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Fig. 10.30: Power and voltage oscillations in the PFC rectifier in quasi steady-state operation
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M3U uncontrolled rectifier circuit
The M3U rectifier addresses three-phase systems and typically utilizes an input transformer to
mitigate offset phase currents and further harmonics (compare Fig. 10.5). To simplify things,
we assume that the input transformer delivers an ideal three-phase voltage source:

u1a(t) = û1 sin(ωt), u1b(t) = û1 sin(ωt− 2π/3), u1c(t) = û1 sin(ωt+ 2π/3).

u1a(t)
i1a(t)

u1b(t)
i1b(t)

u1c(t)
i1c(t)

D1

D2

D3

i2(t)

Ru2(t)

Fig. 10.31: M3U topology (aka three-pulse mid-point rectifier) with an input three-phase transformer
and a resistive load
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M3U rectifier resistive load operation
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Fig. 10.32: M3U characteristic voltage and current curves for a resistive load

Bikash Sah Power Electronics 525



M3U rectifier resistive load operation: average output voltage
With a resistive load, the M3U rectifier’s output is always determined by the transformer phase
with the highest voltage:

u2(t) = max {u1a(t), u1b(t), u1c(t)} . (10.74)

▶ Assume u1a(t) has the highest voltage for some time t.

▶ Hence, there is a negative voltage difference between the phases b-a and c-a.

▶ These can be only compensated by the diodes D2 and D3, which are in blocking mode
while D1 is conducting.

The average output voltage can be found by evaluating the conduction interval of one phase,
e.g., u1a(t):

ū2 =
3

2π

∫ 5
6
π

1
6
π
û1 sin(ωt)dωt =

3

2π
[−û1 cos(ωt)]

5
6
π

1
6
π
=

3

2π
û12

√
3

2
=

3
√
3

2π
û1. (10.75)

Bikash Sah Power Electronics 526



M3U rectifier with output filter
To filter both the output voltage and current, an output filter can be added to the M3U
rectifier circuit (Fig. 10.33). The filter consists of a series inductor L and a capacitor C in
parallel. In steady state

uC = u2 =
3
√
3

2π
û1 (10.76)

holds as the average inductor voltage must be zero to prevent a current run away.

u1a(t)
i1a(t)

u1b(t)
i1b(t)

u1c(t)
i1c(t)

D1

D2

D3

i2(t) L iR(t)

Ru2(t) CuC(t)

iC(t)

Fig. 10.33: M3U topology with an input three-phase transformer, a resistive load and output filter
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M3U rectifier with output filter (cont.)
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Fig. 10.34: M3U characteristic voltage and current curves considering an idealized output filter with
uC(t) = u2 = const.

Bikash Sah Power Electronics 528



M3U rectifier with output filter (cont.)
From Fig. 10.34 one can observe that

u2(t) = u1a(t) = û1 sin(ωt), ωt ∈
[
1

6
π,

5

6
π

]
(10.77)

holds. At ωt = ωt1 the phase voltage u1a(t) is equal to the average output voltage u2:

u2 =
3
√
3

2π
û1 = û1 sin(ωt1) ⇔ ωt1 = arcsin

(
3
√
3

2π

)
. (10.78)

Based on this, the current i2(t) can be calculated as

i2(t) = i2(ωt1) +
1

ωL

∫ ωt

ωt1

(u2(ωτ)− u2) dωτ

= i2(ωt1) +
1

ωL

∫ ωt

ωt1

(û1 sin(ωτ)− û1 sin(ωt1)) dωτ, ωt ∈
[
1

6
π,

5

6
π

] (10.79)

with i2(ωt1) being the initial (yet unknown) current at ωt1.
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M3U rectifier with output filter (cont.)

Solving the integral in (10.79) yields

i2(t) = i2(ωt1) +
û1
ωL

[− cos(ωτ)− ωτ sin(ωt1)]
ωt
ωt1

= i2(ωt1) +
û1
ωL

[− cos(ωt) + cos(ωt1)− sin(ωt1) (ωt− ωt1)] .

(10.80)

To determine the initial current i2(ωt1), one can utilize the fact that the average inductor
current must be identical to the average load current since otherwise the output capacitor
would be charged or discharged indefinitely:

i2
!
= iR =

u2
R

=
û1 sin(ωt1)

R
. (10.81)
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M3U rectifier with output filter (cont.)
The average inductor current can be calculated as

i2 =
3

2π

∫ 5
6
π

1
6
π
i2(ωτ)dωτ =

3

2π

∫ 5
6
π

1
6
π
i2(ωt1)dωτ

+
3

2π

∫ 5
6
π

1
6
π

û1
ωL

[− cos(ωτ) + cos(ωt1)− sin(ωt1) (ωτ − ωt1)] dωτ

= . . .

= i2(ωt1) +
û1
ωL

[
cos(ωt1) + sin(ωt1)(ωt1 −

π

2
)
]
.

(10.82)

Inserting into (10.81) and solving for i2(ωt1) yields

i2(ωt1) =
û1
R

sin(ωt1)−
û1
ωL

[
cos(ωt1) + sin(ωt1)(ωt1 −

π

2
)
]
. (10.83)

With this result, the current i2(t) can be calculated using (10.80).
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M3U rectifier with output filter: CCM vs. DCM
The previous analysis only holds for CCM as otherwise all diodes would be blocking
simultaneously. From (10.80) one can find that the minimum current i2(t) is reached when
ωt = ωt1, i.e.,

min{i2(t)} = i2(ωt1) =
û1
R

sin(ωt1)−
û1
ωL

[
cos(ωt1) + sin(ωt1)(ωt1 −

π

2
)
]
. (10.84)

The boundary between CCM and DCM can be found by setting min{i2(t)} = 0 leading to
i2(ωt1) = 0. In this boundary case, the average output current is

i2 =
û1
ωL

[
cos(ωt1) + sin(ωt1)(ωt1 −

π

2
)
]

=
u2
ωL

[
tan(ωt1) + ωt1 −

π

2

]
.

(10.85)

One can also reinterpret this result for designing the filter inductor L to ensure CCM operation:

L ≥ u2

ωi2

[
tan(ωt1) + ωt1 −

π

2

]
. (10.86)
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B6U uncontrolled rectifier circuit

u1a

i1a(t)

u1b

i1b(t)

u1c

i1c(t)

i2(t)

Ru2(t)

u1ab(t)

u1bc(t)

u1ca(t)

Fig. 10.35: B6U topology (aka six-pulse bridge rectifier) with resistive load
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B6U rectifier resistive load operation
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√
3û1
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√
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√
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Fig. 10.36: B6U characteristic voltage and current curves for a resistive load
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B6U rectifier resistive load operation (cont.)

In the B6U bridge with a resistive load the upper output potential is determined by the highest
phase voltage while the lower output potential is determined by the lowest phase voltage. The
output voltage u2(t) is given by

u2(t) = max {u1a(t), u1b(t), u1c(t)} −min {u1a(t), u1b(t), u1c(t)} . (10.87)

Alternatively, we can evaluate the line-to-line voltages

u1ab(t) = u1a(t)− u1b(t) u1bc(t) = u1b(t)− u1c(t) u1ca(t) = u1c(t)− u1a(t)

=
√
3û1 sin(ωt+

1

6
π), =

√
3û1 sin(ωt−

1

2
π), =

√
3û1 sin(ωt+

5

6
π)

and find that the B6U output voltage is given by

u2(t) = max {u1ab(t), u1bc(t), u1ca(t)} . (10.88)
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B6U rectifier resistive load operation (cont.)
The average output voltage u2 is given by

u2 =
3

π

∫ 1
2
π

1
6
π
u1ab(ωt)dωt =

3

π

∫ 1
2
π

1
6
π

√
3û1 sin(ωt+

1

6
π)dωt

=
3
√
3

π
û1

[
− cos(ωt+

1

6
π)

] 1
2
π

1
6
π

=
3
√
3

π
û1.

(10.89)

Compared to the M3U rectifier average voltage from (10.75), the B6U average output voltage
is doubled – this is an analogous finding to the single phase case where the B2U rectifier has a
doubled average output voltage compared to the M2U rectifier.

Impact of further filter elements

The impact of filters elements, e.g., the line impedance from Fig. 10.13 or an LC
output filter as in Fig. 10.33, can be analyzed in a similar manner for the B6U rectifier.
While such filter elements are common in practice, they are not explicitly treated for
the B6U rectifier in the following due to time constraints.
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12-pulse rectifier: B6U-2S topology

u1a(t)
i1a(t)

u1b(t)
i1b(t)

u1c(t)
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i2(t)
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u′1b(t) i′1b(t)

u′1c(t) i′1c(t)

u2(t)

u2,1(t)

u2,2(t)

Fig. 10.37: 12-pulse recitifier with B6U-2S topology: two B6U rectifiers connected in series
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12-pulse rectifier: B6U-2S topology (cont.)
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u
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Fig. 10.38: B6U-2S output voltage characteristic: voltage output ripple is reduced by shifting the phase
of the second rectifier by 1/6 · π utilizing different transformer winding schemes at the input
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12-pulse rectifier: B6U-2P topology

u1a(t)
i1a(t)

u1b(t)
i1b(t)

u1c(t)
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u′1a(t) i′1a(t)
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Fig. 10.39: 12-pulse recitifier with B6U-2P topology: two B6U rectifiers connected in parallel
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12-pulse rectifier: B6U-2P topology (cont.)
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Fig. 10.40: B6U-2P output voltage characteristic: simplified representation as displacement currents
between the transformers are not taken into account

Bikash Sah Power Electronics 542



Comparison of output voltage ripple characteristics
From the previous analyses of the considered three-phase rectifiers one can find

∆u2 = max{u2(t)} −min{u2(t)} =

(
1− cos

(
π

p

))
û2 (10.90)

with p being the number of pulses. For the considered rectifiers, the output voltage is given by

û2 =

{
û1, for M3U,√
3û1, for B6U and B6U-2P,

and u2 =

{
3
√
3

2π û1, for M3U,
3
√
3

π û1, for B6U and B6U-2P

leading to the normalized output voltage ripple being defined as

∆u2
u2

=


2π
3
√
3

(
1− cos

(
π
3

))
= 60.46%, for M3U,

π
3

(
1− cos

(
π
6

))
= 14.03%, for B6U,

π
3

(
1− cos

(
π
12

))
= 3.57%, for B6U-2P.

(10.91)

Takeaway: the higher the recitifier’s pulse number, the lower the output voltage ripple, that is,
there is a trade-off between the number of semiconductors and the filter effort.
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Section summary
This section provided an introduction to diode-based rectifiers. Not considering the active PFC
extension, those are also coined passive rectifiers. The key takeaways are:

▶ All considered rectifiers operate exclusively unidirectional.

▶ There is a complex interaction between semiconductor effort and filter effort to provide a
DC voltage with a certain signal quality.

▶ Without active PFC, any diode-based rectifier will introduce significant distortions at the
primary side due to harmonics and phase shifts between input voltage and current.

▶ Active PFC can be used to provide a near-unity power factor, which is required in many
applications due to industrial / legal regulations.

In addition, there are further topologies that are not covered in this course, such as

▶ M6U rectifier,

▶ very high pulse number rectifiers (e.g., 18 or 24-pulse rectifiers) requiring more complex
transformer winding schemes to achieve the desired phase shift on the secondary side,

▶ three-phase rectifiers with an integrated PFC stage (e.g., Vienna rectifier).
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Thyristor: an externally switchable power electronic component

▶ Can block voltage in both directions (when off)
▶ Different to diode (only blocks reverse voltage)

▶ Can conduct current in only one direction (when on)
▶ Identical to diode

▶ Turn-on: via gate signal

▶ Turn off: via current drop below holding current
(i.e., depends on load characteristics and input voltage)

Application area

While transistors are used for high-frequency converters
due to their favorable turn-on/off characteristics and have
replaced thyristors in many cases, the latter are still used
in low switching frequency applications (mostly energy
grid) due to their favorable high voltage / current ratings.

u

i

Gate

Anode Cathode

active
gate

no turn
off

disabled
gate

u

i

Fig. 11.1: Idealized thyristor
characteristics and circuit symbol
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Thyristor examples

(a) Top left: 1000V/200A (diode); bottom left:
1500V/20A; right: 1500V/120A; 1N4007

(diode) (source: Wikimedia Commons, CC0 1.0)

(b) Left: 800V/100A; right: 800V/13A (source:
Wikimedia Commons, Julo, CC0 BY-SA 3.0)

Fig. 11.2: Thyristor examples with different voltage and current ratings
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M1 rectifier comparison
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M1C rectifier

The average output voltage of the M1C circuit, i.e., the M1 rectifier with a thyristor, for a
resistive load is given by

u2 =
1

2π

∫ π

α
û1 sin(ωt)dωt =

û1
2π

[− cos(ωt)]πα =
û1
2π

(1 + cos(α)) . (11.1)

Here, α denotes the phase angle at which the thyristor is triggered (aka firing angle). In the
M1C case, the feasible range for α is [0, π] as the thyristor requires a positive forward voltage
to start conducting, that is, if uT < 0 a firing impulse would not change its conduction state.
The RMS value of the output voltage is given by

U2 =

√
1

2π

∫ π

α
û21 sin

2(ωt)dωt = . . . =
û1
2

√
π − α+ sin(α) cos(α)

π
. (11.2)

In contrast to the M1U rectifier from (10.3), the M1C rectifier allows for controlling the output
voltage by adjusting the firing angle α.
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M1C rectifier: Fourier series
The Fourier coefficients of the output voltage u2(t) for the M1C converter are

a(0) =
1

π

∫ 2π

0
u2(t)dωt =

1

π

∫ π

α
û1 sin(ωt)dωt = 2u2 =

û1
π
(1 + cos(α)),

a(k) =
1

π

∫ 2π

0
u2(t) cos(kωt)dωt =

1

π

∫ π

α
û1 sin(ωt) cos(kωt)dωt = . . .

=

{
û1
π

2
1−k2 , k = 1

1
2π

(
cos(α(k−1))+cos(kπ)

k−1 − cos(α(k+1))+cos(kπ)
k+1

)
, k ≥ 2.

b(k) =
1

π

∫ 2π

0
u2(t) sin(kωt)dωt =

1

π

∫ π

α
û1 sin(ωt) sin(kωt)dωt = . . .

=

{−α+π+cos(α) sin(α)
2π , k = 1,

1
2π

(
sin(α(k−1))+sin(kπ)

k−1 − sin(α(k+1))+sin(kπ)
k+1

)
, k ≥ 2.

(11.3)

In contrast to the M1U rectifier, one can observe additional harmonic components due to
additional distortion of the output voltage caused by the thyristor switching.
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M2C converter

N1 : N2

i1(t)

u1(t)

i2(t)

R u2(t)us,1(t)

us,2(t)
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−ûs
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2
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t)

0 π 2π 3π 4π
−2ûs

−ûs

0

ûs
uT1 uT2

ωt

u
T
(ω
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Fig. 11.3: M2C topology (aka two-pulse mid-point converter) with center-tapped transformer and a
resistive load
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M2C converter: resistive load
The average output voltage of the M2C converter for a resistive load is given by

u2 =
1

π

∫ π

α
ûs sin(ωt)dωt =

ûs
π

[− cos(ωt)]πα =
ûs
π

(1 + cos(α)) . (11.4)

The RMS value of the output voltage results in

U2 =

√
1

π

∫ π

α
û2s sin

2(ωt)dωt = . . . =
ûs√
2

√
π − α+ sin(α) cos(α)

π
. (11.5)

The primary to secondary voltage ratio of the center-tapped transformer yields

ûs
û1

=
1

2

N2

N1
.

It should be noted that in the case of a resistive load, the M2C’s output voltage is always
positive for the feasible firing angle range α ∈ [0, π].
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M2C converter with an output filter

N1 : N2

i1(t)

u1(t)

L i2(t)
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us,2(t)

T1
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Fig. 11.4: M2C converter with an output filter assuming u2(t) = U2 = const.
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M2C converter with an output filter (cont.)
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Fig. 11.5: M2C topology with an output filter and different average load currents
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M2C converter with an output filter (cont.)
Due to the output filter, the secondary voltage us(t) can become negative since the current
flow is maintained by the inductor and, therefore, a thyristor is remaining in the conducting
state (until the next thyristor is triggered). The average output voltage in CCM (and BCM) is
given by

u2 =
1

π

∫ α+π

α
ûs sin(ωt)dωt =

ûs
π

[− cos(ωt)]α+πα =
ûs
π

(− cos(α+ π) + cos(α))

= ûs
2

π
cos(α).

(11.6)

In DCM the conduction interval β is less than π and the average output voltage is given by

u2 =
1

π

∫ α+β

α
ûs sin(ωt)dωt =

ûs
π

[− cos(ωt)]α+βα =
ûs
π

(cos(α)− cos(α+ β))

= ûs
2

π
sin

(
β

2

)
sin

(
α+

β

2

)
.

(11.7)

Bikash Sah Power Electronics 556



M2C converter with an active load
Analyzing (11.6) for the feasible firing angle range α ∈ [0, π] reveals

u2

{
≥ 0, α ∈ [0, π/2],

< 0, α ∈ (π/2, π],
(11.8)

that is, the output voltage can become negative for α > π/2 in CCM and BCM (analogous
observation can be also made for DCM). Assuming an average output current i2 > 0, which
can be only positive due to the thyristor unipolar current capability, the average output power
is in the range of (for CCM and BCM)

p2

{
≥ 0, α ∈ [0, π/2],

< 0, α ∈ (π/2, π].
(11.9)

Hence, the M2C can transfer energy from the load to the source which requires an active load
(e.g., battery or generator) to maintain this reversed energy flow. Consequently, the M2C can
be used as a bidirectional energy transfer system operating both as a rectifier and an inverter.
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M2C converter with an active load (cont.)
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Fig. 11.6: M2C topology with a negative output voltage delivering energy to the source side
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M2C output voltage overview
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Fig. 11.7: M2C output voltage overview
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M2C: complex power analysis
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Fig. 11.8: Input voltage and current of the M2C converter with idealized filtered, constant output
current (represented by a current source) and an idealized transformer
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M2C: complex power analysis (cont.)
Based on the setup form Fig. 11.8 one can observe that the phase angle φ(1) between the input

voltage u1(t) and the fundamental input current i
(1)
1 (t) is given by the firing angle α:

φ(1) = α.

Considering the center-tapped transformer, the input current fundamental amplitude is

i
(1)
1 =

4

π

1

2

N2

N1
I2 =

2

π

N2

N1
I2, (11.10)

where I2 is constant output current and 4/π represents the first Fourier coefficient of the
square-shaped input current i1(t). The latter is formed by the thyristors applying the positive
and negative output current to the transformer’s secondary side. The RMS value of the

fundamental component I
(1)
1 and the RMS value of the input current I1 are

I
(1)
1 =

√
2

π

N2

N1
I2, I1 =

1

2

N2

N1
I2. (11.11)

The latter can be found by considering that the RMS value of a symmetrical block-shaped
signal is its amplitude.
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M2C: complex power analysis (cont.)
Assuming an ideal sinusoidal input voltage, the active power is only transferred based on its
fundamental component

P1 = P
(1)
1 = I

(1)
1 U1 cos(φ

(1)) (11.12)

with U1 being the RMS value of the input voltage – compare (10.45). Assuming idealized,
lossless components the active input power must be equal to the average output power

P1 = p2 = I2u2 = I2ûs
2

π
cos(α) = I2ûs0 cos(α) (11.13)

with ûs0 = ûs · 2/π being the maximum reachable output voltage (for α = 0). From (11.12) the
fundamental reactive power can be determined as

Q
(1)
1 = I

(1)
1 U1 sin(φ

(1)) = I2ûs0 sin(α) (11.14)

and the fundamental apparent power is given by

S
(1)
1 = I

(1)
1 U1 = I2ûs0 = const. (11.15)

Bikash Sah Power Electronics 563



M2C: reactive power diagram

Rewriting the fundamental apparent power in terms of the active and reactive power yields:

(
S
(1)
1

)2
=
(
P1

)2
+
(
Q

(1)
1

)2
= I22 û

2
s0 ⇔

(
Q

(1)
1

I2ûs0

)2

+

(
P 2
1

I2ûs0

)2

= 1. (11.16)

Inserting P1 = I2ûs0 cos(α) from (11.13) finally yields the following circular equation(
Q

(1)
1

I2ûs0

)2

+

(
cos(α)

)2

= 1 ⇔

(
Q

(1)
1

S
(1)
1

)2

+

(
u2
ûs0

)2

= 1 (11.17)

which can be visualized as a reactive power diagram of the M2C converter – compare the
upcoming Fig. 11.9.
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M2C: reactive power diagram (cont.)
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Commutation
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Q
(1)
1

S
(1)
1

Fig. 11.9: Fundamental reactive power demand at some constant output current
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M2C: complex power analysis incl. harmonics
Extending the previous analysis of the complex power fundamental components to the total
complex power, one can determine the total apparent power as

S1 = I1U1 =
1

2

N2

N1
I2U1 =

π

2
√
2
S
(1)
1 ≈ 1.11 · S(1)

1 . (11.18)

Interestingly, the apparent power is independent of the firing angle α. The total reactive power
is given by

Q1 =
√
S2
1 − P 2

1 = S
(1)
1

√
π2

8
− cos2(α) =

√
2

π

N2

N1
I2U1

√
π2

8
− cos2(α). (11.19)

Alternatively, one could also determine the harmonic reactive power

Q
(h)
1 =

√(
S1

)2
−
(
S
(1)
1

)2
= S

(1)
1

√
π2 − 8

8
=

√
2

π

N2

N1
I2U1

√
π2 − 8

8
. (11.20)

first and then determine the total reactive power as

Q1 =

√(
Q

(1)
1

)2
+
(
Q

(h)
1

)2
= S

(1)
1

√
sin2(α) +

π2 − 8

8
=

√
2

π

N2

N1
I2U1

√
sin2(α) +

π2 − 8

8
.
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Commutation
Idealized, instantaneous commutation

us,1(t) T1
iT1(t)

i2

us,2(t)
T2

iT2(t)

0 1
16π

1
8π

3
16π

1
4π

0

i2

iT2(t)

iT1(t)α

ωt

i(
t)

Actual commutation (with overlap)

us,1(t)
Lc

T1
iT1(t)

i2

us,2(t)

Lc T2
iT2(t)

0 1
16π

1
8π

3
16π

1
4π

0

i2

iT2(t)

iT1(t)α

ωt

i(
t)
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Commutation (cont.)

So far we have considered an idealized, instantaneous commutation of the thyristors. In
practice, the commutation process is not instantaneous and the thyristors overlap for a certain
period due to the commutation inductance Lc, which can originate from:

▶ Stray inductance of the feeding transformer,

▶ Parasitic inductance of the thyristor package,

▶ Parasitic inductance of the circuit layout.

Kirchhoff’s voltage law for the commutation loop yields

uc(t) = us,1(t)− us,2(t) = 2Lc
d

dt
iT2(t) = −2Lc

d

dt
iT1(t) (11.21)

with the commutation voltage uc(t) and the thyristor currents iT1(t) and iT2(t).
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Commutation (cont.)

From (11.21) the thyristor currents can be expressed as

iT1(t) = iT1(kπ + α)− 1

2Lcω

∫ ωt

kπ+α
uc(τ)dτ = iT1(kπ + α) +

us
Lcω

(cos(kπ + α)− cos(ωt)) ,

iT2(t) = iT2(kπ + α) +
1

2Lcω

∫ ωt

kπ+α
uc(τ)dτ = iT2(kπ + α)− us

Lcω
(cos(kπ + α)− cos(ωt)) .

Here, iT1(kπ + α) and iT2(kπ + α) are the thyristor currents at the beginning of the
commutation process during the k-th half cycle. One can distinguish two cases:

iT1(kπ + α) = 0, iT2(kπ + α) = i2, commutation from T2 to T1,

iT1(kπ + α) = i2, iT2(kπ + α) = 0, commutation from T1 to T2.

The commutation process ends when the thyristor currents reach i2 and zero, respectively.
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Commutation: overlap angle and feasible firing angle range
To determine the commutation overlap angle κ, we consider k = 0 and the commutation from
T2 to T1, that is, iT1(α) = 0. The commutation ends when iT1(α+ κ) = i2, which yields

iT1(α+ κ) = i2
!
=

us
Lcω

(cos(α)− cos(α+ κ)) . (11.22)

Solving for the overlap angle κ results in

κ = arccos

(
cos(α)− i2Lcω

us

)
− α. (11.23)

To ensure a successful commutation α+ κ < π must hold: Otherwise the commutation voltage
changes its sign and the commutation fails. Hence, the achievable firing angle is determined by

α+ κ < π ⇔ arccos

(
cos(α)− i2Lcω

us

)
< π (11.24)

leading to

α < arccos

(
i2Lcω

us
− 1

)
. (11.25)
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Commutation: successful and unsuccessful examples

−ûs

0

ûs
us,2

us,1u2(t)

u
(t
)

0 1
4π

1
2π

3
4π

π 5
4π

0

i2/2

i2

Failed commutation

iT2(t)

iT1(t)

κ κ κ

ωt

i(
t)

Fig. 11.10: Commutation process for different firing angles α
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Commutation: output voltage deviation
As seen in Fig. 11.10, the output voltage of the thyristor stage is zero during the commutation
process as the transformer’s secondary side is temporarily short-circuited during the overlap
period (since both thyristors are conducting):

us(ωt) = 0, ωt ∈ [kπ + α, kπ + α+ κ]. (11.26)

The output voltage loss due to commutation corresponds to

∆u =
1

π

∫ α+κ

α
ûs sin(ωt)d(ωt) =

ûs
π

[− cos(ωt)]α+κα =
ûs
π

[cos(α)− cos(α+ κ)] . (11.27)

Inserting (11.23) for κ yields

∆u =
ûs
π

[
cos(α)− cos

(
α+ arccos

(
cos(α)− i2Lcω

ûs

)
− α

)]
=
i2Lcω

π
.

(11.28)

Hence, the average output voltage is deviating by ∆u due to the commutation process.
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M3C converter

The previous diode-based rectifiers with higher-pulse numbers can be directly transferred to
their controlled counterparts using thyristors, such as the 3-pulse converter shown in Fig. 11.11.

u1a(t)
i1a(t)

u1b(t)
i1b(t)

u1c(t)
i1c(t)

i2(t) L iR(t)

Ru2(t) CuC(t)

iC(t)

Fig. 11.11: M3C topology with an input three-phase transformer, a resistive load and output filter
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M3C converter (cont.)

The M3C converter’s firing angle α starts at
the crossing of two adjacent input voltages,
that is, where the voltage over the next
thyristor becomes positive. For CCM and
neglecting commutation and other parasitic
effects, the M3C’s average output voltage is

u2 =
3

2π

∫ 5
6
π+α

1
6
π+α

û1 sin(ωt)dωt

=
3

2π
û1 [− cos(ωt)]

5
6
π+α

1
6
π+α

= . . .

=
3
√
3

2π
û1 cos(α).

(11.29)

0 1
3π

2
3π π 4

3π
5
3π 2π

−û1

0

û1

u2

u2(t)

α α α

ωt

u
(t
)

Fig. 11.12: Examplary firing angle for the M3C
converter
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B6C converter

u1a

i1a(t)

u1b

i1b(t)

u1c

i1c(t)

i2(t)

Ru2(t)

u1ab(t)

u1bc(t)

u1ca(t)

Fig. 11.13: B6C topology with line chokes and a resistive load
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Output voltage of a thyristor bridge converter with p pulses
The average output voltage (under idealized
CCM operation) of a thyristor bridge converter
with p pulses is given by

u2 =
p

2π

∫ α+π
p

α−π
p

û cos(ωt)dωt

= û
p

2π

[
sin

(
α+

π

p

)
− sin

(
α− π

p

)]
= û

p

π
sin

(
π

p

)
cos(α). (11.30)

Here, the maximum achievable voltage

max
α

u2 = û
p

π
sin (π/p) (11.31)

increases with the number of pulses p.

0 2π
p

4π
p

6π
p

8π
p

10π
p

12π
p

−û

0

û

u2

u2(t)α 2π/p

ωt

u
(t
)

Fig. 11.14: Generalized firing angle representation
for a thyristor bridge converter with p pulses and û

being the line-to-line voltage amplitude
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Section summary
This section provided an introduction to thyristor-based converters. The key takeaways are:

▶ In contrast to diode-based rectifiers:
▶ Are controllable by varying the firing angle α (within its feasible range).
▶ Can transfer power in both directions (rectifier and inverter operation).

▶ Likewise diode-based rectifiers:
▶ Introduce harmonics in the output voltage and input current (i.e., require filters).
▶ Typically, do not operate at unity power factor (require reactive power).
▶ Are line-commutated, as the external grid voltage is required to achieve the commutation.

Previous analyses based on diodes or thyristor-based converters were dealt with in varying
detail level, but as they can be transferred analogously they are not explicitly shown due to
time constraints. In addition, there are further interesting thyristor-based applications such as

▶ four quadrant thyristor converters (e.g., cycloconverters) covering both voltage and current
polarities,

▶ specialized stacked topologies for high-voltage DC transmission.
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Transistor-based AC/DC converters: self-commutated converters

Up to now:

▶ Diode-based converters
▶ Rectification only
▶ No control

▶ Thyristor-based converters
▶ Rectification and inversion
▶ Limited control / line commutation

Extension in this section:

▶ Transistor-based converters
▶ Rectification and inversion
▶ Fully controllable / self-commutated

i1

u1

I
P ≥ 0

(recitifier)

II
P ≤ 0

(inverter)

III
P ≥ 0

(recitifier)

IV
P ≤ 0

(inverter)

Thyristors

Diodes

i1

DC u1

i2

u2 AC
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Idealized switch representation of a single-phase AC/DC bridge converter
Define switching function:

si(t) =

{
+1 upper position,

−1 lower position.

(12.1)
Output voltage considering a voltage
source at the input is:

u2(t) =
1

2
(s1(t)− s2(t))︸ ︷︷ ︸

s(t)

u1(t).

(12.2)
Input current assuming a current
source at the output results in:

i1(t) = s(t)i2(t). (12.3)

i2(t)

u2(t)

i1(t)

u1(t)

s1(t)

s2(t)

Fig. 12.1: Idealized switch representation of a single-phase
AC/DC bridge converter

Bikash Sah Power Electronics 582



Circuit realization

▶ Remember: complementary switching
of {T1, T2} and {T3, T4} to prevent a
DC-link short-circuit.

▶ Possible (allowed) switching states:

T1 T2 T3 T4 s1 s2 s

on off off on +1 −1 +1
off on on off −1 +1 −1
on off on off +1 +1 0
off on off on −1 −1 0

u1(t)

i1(t)

i2(t)

u2(t)

T1

T2

T3

T4

Fig. 12.2: Full-bridge single-phase AC/DC converter
(identical to the one used in the DC/DC section in

Fig. 8.42)
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Pulse width modulation (PWM) options

s∗(t)

c(t)

−

1

−1

-1 s2(t)

s1(t)

Fig. 12.3: PWM with complementary switching

s∗(t)

−

−
c(t) −

1

−1

1

−1

s1(t)

s2(t)

Fig. 12.4: PWM with interleaved switching
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PWM example with complementary switching
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PWM example with interleaved switching

−1
0

1
s∗
(t
),
c(
t)

s∗(t) c(t)
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PWM approximation error analysis

−1

0

1
s∗

Ts(1−s∗)
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s 1
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s 2
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)

0 Ts
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0

1
u2
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t1 t2

t

u
2
(t
)/
U
1

Fig. 12.5: Pulse pattern for complementary PWM
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u
2
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Fig. 12.6: Pulse pattern for interleaved PWM
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PWM approximation error analysis (cont.)
To evaluate the error between the reference s∗(t) and the switched output voltage u2(t), we
introduce the following normalized integral difference:

e(t) =
1

Ts

∫ t

t0

(s∗(τ)− s(τ)) dτ. (12.4)

This error can be interpreted as the resulting current ripple assuming a pure inductive load L
at a constant input voltage u1(t) = U1:

∆i2(t) =
TsU1

2L
|e(t)| . (12.5)

For a constant reference s∗(t) = s∗, the biggest error corresponds to the integral over the time
interval [t1, t2] as can be seen in Fig. 12.5 and Fig. 12.6:

complimentary switching (cs): max
t
ecs(t) =

1

Ts
(s∗ + 1) (t2 − t1) =

1

2
(s∗ + 1) (1− s∗) ,

interleaved switching (is): max
t
eis(t) =

1

Ts
|s∗| (t2 − t1) =

1

2
|s∗| (1− |s∗|) .

(12.6)
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PWM approximation error analysis (cont.)
Further, analyzing (12.6)

d

ds∗

(
max
t
ecs(t)

)
= −2s∗,

d

ds∗

(
max
t
eis(t)

)
= sgn(s∗)− 2s∗ (12.7)

reveals the worst case deviation at a switching reference of:

argmax
s∗

{
max
t
ecs(t)

}
= 0, argmax

s∗

{
max
t
eis(t)

}
= ±1

2
. (12.8)

Inserting this finding into (12.5) delivers

∆i2,cs = (1− s∗)(1 + s∗)∆i2,cs,max with ∆i2,cs,max =
TsU1

2L
,

∆i2,is = 4 |s∗| (1− |s∗|)∆i2,is,max with ∆i2,is,max =
TsU1

8L
.

(12.9)

Hence, the current ripple of the interleaved PWM is only 1/4 of the complementary PWM.
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PWM approximation error analysis (cont.)

Reasons for current ripple reduction of
interleaved vs. complimentary PWM:

▶ Effective pulse number doubled:
▶ CS: fp = fs
▶ IS: fp = 2fs

▶ Output voltage steps halved:
▶ CS: ∆u2 = ±2U1

▶ IS: ∆u2 = ±U1

Note on applicability

This analysis only holds for s∗ = const.
and can be transferred only approxi-
mately for s∗(t) = f(ω) if Ts <<

2π
ω .

−1 −0.5 0 0.5 1
0

0.25

0.5

0.75

1

s∗

∆
i 2
/
∆
i 2
,c
s,
m
a
x

cs
is

Fig. 12.7: Current ripple as a function of the single-phase
AC/DC normalized reference output voltage s∗
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Overmodulation
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Overmodulation (cont.)
Considering a normalized input reference

s∗(t) = m sin(ωt) =
û∗2
U1

sin(ωt)

with the modulation ratio m one can
distinguish two PWM operation areas:

▶ m ≤ 1: linear modulation,

▶ m > 1: overmodulation.

Harmonics

While the normalized output voltage
fundamental can be increased beyond
unity via overmodulation, increased
voltage harmonics must be accepted.

0 0.5 1 1.5 2 2.5 3
0

0.25

0.5

0.75

1

4/π

linear mod. overmodulation

Fundamental freq. mod. (fs = ω/2π)

m

û
(1
)

2
/U

1

Fig. 12.8: Reference amplitude to output voltage
fundamental amplitude
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Overmodulation (cont.)
Due to the converter’s constraints, the
reference voltage is limited to

s∗lim(t) =


1 if s∗(t) > 1,

s∗(t) if − 1 ≤ s∗(t) ≤ 1,

−1 if s∗(t) < −1.

Hence, from ωt0 to ωt1 the converter’s
output voltage is clipped for m > 1. With

m sin(ωt0)
!
= 1

one can find

ωt0 = arcsin

(
1

m

)
. (12.10)

0 1
2π

π0

0.25

0.5

0.75

1

1.25
s∗(t)

s∗lim(t)

ωt0 ωt1

ωt

s∗
(t
)

Fig. 12.9: Exemplary time series between average
reference and actual voltage in the overmodulation range
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Overmodulation (cont.)
To calculate the resulting fundamental output voltage during overmodulation, a Fourier
analysis is performed while utilizing the quarter-wave symmetry of the output voltage signal:

u
(1)
2

U1
=

1

π

∫ 2π

0
s∗lim(ωτ) sin(ωτ)dωτ

=
4

π

(∫ ωt0

0
m sin2(ωτ)dωτ +

∫ π
2

ωt0

1 sin(ωτ)dωτ

)

=
4

π

[
m

2

(
ωt0 −

1

2
sin(2ωt0)

)
+ cos(ωt0)

]
.

(12.11)

Inserting ωt0 from (12.10) and applying trigonometric identities yields:

u
(1)
2

U1
=

2

π

[
m arcsin

(
1

m

)
+

√
1− 1

m2

]
∈
[
1,

4

π

]
for m ≥ 1. (12.12)
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Fundamental frequency modulation (aka square wave modulation)
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1
s 1
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−1

0
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Fundamental frequency modulation (cont.)
The fundamental frequency modulation leads to a pulse pattern synchronized with the

fundamental output voltage û
(1)
2 (t), i.e., the switching frequency matches the fundamental

voltage frequency

fs =
ω

2π
.

The fundamental output voltage amplitude can be derived from the corresponding Fourier
coefficient

u
(k)
2

U1
=

1

π

∫ α+π

α

u2(t)

U1
sin(k(ωt− α))dωt =

2

π

∫ π/2

0
sin(kωt)dωt

=
2

π

[
−1

k
cos(kωt)

]π/2
0

=
2

π

[
1

k

(
cos(0)− cos(k

π

2
)
)]

=
4

π

1

k
, k = 1, 3, 5, 7, . . .

(12.13)

The fundamental output voltage amplitude is thus given by û
(1)
2 = 4/π · U1 which is fixed due

to fundamental frequency modulation while only the phase angle α can be adjusted.
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Blanking / interlocking time

When the i-th half bridge is actuated, i.e.,
changes it switching state, an interlocking
/ blanking time t0 is introduced to avoid
short-circuiting the DC link:

▶ First: turn off conducting transistor,

▶ Second: wait t0
(ensure safe turn off),

▶ Third: turn on the other transistor.

Background

Signal delays or component tolerances
lead to varying switch on/off times,
which is why the interlock ensures an
orderly switching process.

i2(t)

si,1(t)

si,2(t)

T1

T2
Driver

si(t)

i1(t)

u1(t)

u2(t)

Fig. 12.10: Actuation of one half-bridge branch
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Current paths depending on the switching state and current flow direction

i > 0

si,1 = 1

si,2 = 0

i < 0

si,1 = 1

si,2 = 0

(a) Upper transistor on

i > 0

si,1 = 0

si,2 = 1

i < 0

si,1 = 0

si,2 = 1

(b) Lower transistor on

i > 0

si,1 = 0

si,2 = 0

i < 0

si,1 = 0

si,2 = 0

(c) Both transistors off
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Blanking / interlocking time: positive load current
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Blanking / interlocking time: negative load current

−1
0

1
s i
(t
)

−1
0

1

s i
,1
(t
)

−1
0

1 t0

s i
,2
(t
)

0

i 2
(t
)

0 1/4 1/2 3/2 1
0

1
∆u

t/Ts

u
2
(t
)/
U
1

Bikash Sah Power Electronics 600



Blanking / interlocking time: discontinuous conduction
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Blanking / interlocking time (cont.)

For the continuous conduction case, the voltage error ∆u due to the interlocking time t0 is
given by

∆u = u2 − U1s
∗ = −sgn(i2)

t0
Ts
U1 = −sgn(i2)t0fsU1. (12.14)

Hence, the error depends on the relative duration of the interlocking time t0 compared to the
switching period Ts which is a device-specific parameter (cf. below).

Device type t0 fs

GTO 10 µs – 30 µs 200Hz – 500Hz
IGBT 2 µs – 4 µs 5 kHz – 20 kHz

MOSFET ≤1 µs 20 kHz – 1000 kHz

Tab. 12.1: Typical interlocking times and switching frequencies for different power semiconductor devices
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Outlook: multi-level converters
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(a) 2-level half bridge
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(b) 3-level half bridge
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(c) 4-level half bridge
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Rectifier application setup

i2(t)

u2(t)

i1(t) I0

u1(t)

s1(t)

s2(t)

C

iC(t)

L

uL(t)

ug(t)

Fig. 12.13: Single-phase grid rectification: full bidirectional operation possible (e.g., for electrical rail
vehicles with a 15 kV, 16 2

3 Hz grid). Note: converter topology is flipped to align u2 with the AC grid
side while u1 is the DC output. Also known as active front end (AFE) rectifier.
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Steady-state operation
Assuming steady state, the grid side input loop
from Fig. 12.13 can be described with complex
phasors:

û2 = ûg − jωLî2. (12.15)

The converter’s input voltage amplitude is

û2 =

√
û2g +

(
ωLî2

)2
. (12.16)

As the converter boosts the grid voltage
towards the DC-link, the following condition
must apply:

u1(t) ≈ Udc ≥ û2 =

√
û2g +

(
ωLî2

)2
.

(12.17)

Re

Im

ûgîg

ûL

û2

φ2

Fig. 12.14: Steady-state phasor diagram assuming
cos(φ) = 1 operation (enforced via some

supervisory control)
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Steady-state operation (cont.)

With the assumption of cos(φ) = 1 operation and a lossless converter, the following relations
hold:

P = P1 = P2 = Pg = UgIg =
1

2
ûg îg. (12.18)

While there is no reactive power exchange with the grid, the converter needs to supply the
reactive power Q2 to compensate for the line inductance demand:

Q2 = ωLI2g . (12.19)

The resulting apparent power S2 is

S2 =
√
P 2 +Q2

2 =

√
P 2 +

(
ωLI2g

)2
=

√
P 2 +

(
ωL

U2
g

P 2

)2

= P

√
1 +

(
ωL

U2
g

P

)2

. (12.20)
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Steady-state operation (cont.)

Neglecting the switching-induced current and voltage ripples, the instantaneous grid power is

pg(t) = ug(t)ig(t) = ûg îg cos
2(ωt) = P + P cos(2ωt). (12.21)

The instantaneous converter power at its AC input is

p2(t) = u2(t)i2(t) = (ug(t) + uL(t)) ig(t) =

(
ug(t) + L

d

dt
ig(t)

)
ig(t)

= ûg îg cos
2(ωt) + ωLî2g sin(ωt) cos(ωt)

= P (1 + cos(2ωt)) +Q2 sin(2ωt) = P + S2 cos(2ωt− 2φ2)

(12.22)

with φ2 being the phase angle between i2(t) and u2(t). Hence, the converter power oscillates
at twice the grid frequency with an amplitude of S2. As S2 > P applies, the instantaneous
output power gets temporarily negative as a result of the reactive power compensation on the
grid input side.
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Steady-state operation (cont.)
Assuming a nearly constant DC-link voltage u1(t) ≈ Udc, the converter DC-side current i1(t)
oscillates as well:

i1(t) =
p1(t)

Udc
=
p2(t)

Udc
=

P

Udc
+

S2
Udc

cos(2ωt− 2φ2). (12.23)

For a constant load current

I0 =
P

Udc
,

the converter’s output current can be rewritten as

i1(t) = I0

(
1 +

√
1 +

(
ωLUdc

U2
g

)2

cos(2ωt− 2φ2)

)
. (12.24)

Consequently, the DC-link capacitor carries the harmonic current content:

iC(t) = i1(t)− I0 = I0

√
1 +

(
ωLUdc

U2
g

)2

cos(2ωt− 2φ2). (12.25)
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Steady-state operation (cont.)

Assuming that the voltage ripple of the DC-link capacitor does not significantly affect the
output current, the voltage oscillation amplitude can be approximated as:

ûC = û1 ≈
î1

2ωC
=

I0
2C

√
1 +

(
ωLUdc

U2
g

I0

)2

. (12.26)

This relation results from the complex phasor analysis of the capacitor’s impedance given the
current ripple (12.25). From (12.26) one can

▶ derive the required DC-link capacitance for a given voltage ripple,

▶ estimate the voltage ripple for a given DC-link capacitance.
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Steady-state operation (cont.)

0
φ2

x
(t
)

ug(t) ig(t) u2(t)

0 1/2π π 3/2π 2π
0

1

2

S2

S2

ωt

p
(t
)/
P pg(t) p2(t)

Fig. 12.15: Steady-state operation of the single-phase four-quadrant rectifier: (top) individual signals
and (bottom) power oscillations at twice the grid frequency
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Idealized switch representation of a three-phase AC/DC bridge converter

i2c(t)

i2b(t)

i2a(t)

u2ab(t)

u2bc(t)

u2ca(t)

i1(t)

u1(t)

s1(t)

s2(t)

s3(t)

Fig. 12.16: Idealized switch representation of a three-phase two-level AC/DC bridge converter
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Circuit realization

u1(t)
2

u1(t)
2

u1(t)

i1(t)

i2a(t)

i2b(t)

i2c(t)

u2ab(t)

u2bc(t)

u2bc(t)

T1

T2

T3

T4

T5

T6
u2i0(t)

Fig. 12.17: Three-phase two-level AC/DC converter
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Switching states and load-independent output voltages
Reutilizing the switching function definition (12.1), the line-to-line voltages can be expressed as

u2ab(t) =
1

2
(sa(t)− sb(t))u1(t),

u2bc(t) =
1

2
(sb(t)− sc(t))u1(t),

u2ca(t) =
1

2
(sc(t)− sa(t))u1(t).

(12.27)

The line-to-ground voltages are given by

u2a0(t) =
1

2
sa(t)u1(t),

u2b0(t) =
1

2
sb(t)u1(t),

u2c0(t) =
1

2
sc(t)u1(t).

(12.28)
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Three-phase converter with symmetric load in star connection

u1(t)
2

u1(t)
2

u1(t)

i1(t)

i2a(t)

i2b(t)

i2c(t)

u2b(t)

u2c(t)

u2a(t)
T1

T2

T3

T4

T5

T6
u2i0(t) un0(t)

Fig. 12.18: Three-phase two-level AC/DC converter with symmetric load in star connection
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Three-phase converter with symmetric load in star connection (cont.)
Assuming a star-connected load, the three-phase currents sum up to zero:

i2a(t) + i2b(t) + i2c(t) = 0. (12.29)

If the star point is not connected to ground, un0(t) ̸= 0 may occur leading to a load voltage of

u2a(t) = u2a0(t)− un0(t), u2b(t) = u2b0(t)− un0(t), u2c(t) = u2c0(t)− un0(t). (12.30)

To calculate un0(t) one can utilize the load equation (assuming an inductive load):

u2i(t) = L
d

dt
i2i(t) + un0(t) (12.31)

summing up to

3un0(t) + L
d

dt
(i2a(t) + i2b(t) + i2c(t)) = u2a0(t) + u2b0(t) + u2c0(t) (12.32)

and finally delivering the star-to-ground voltage as

un0(t) =
1

3
(u2a0(t) + u2b0(t) + u2c0(t)) . (12.33)
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Three-phase converter with symmetric load in star connection (cont.)

No. sa sb sc
u2a0
u1

u2b0
u1

u2c0
u1

u2a
u1

u2b
u1

u2c
u1

uab
u1

ubc
u1

uca
u1

un0
u1

0 −1 −1 −1 −1
2 −1

2 −1
2 0 0 0 0 0 0 −1

2

1 +1 −1 −1 +1
2 −1

2 −1
2 +2

3 −1
3 −1

3 +1 0 −1 −1
6

2 +1 +1 −1 +1
2 +1

2 −1
2 +1

3 +1
3 −2

3 0 +1 −1 +1
6

3 −1 +1 −1 −1
2 +1

2 −1
2 −1

3 +2
3 −1

3 −1 +1 0 −1
6

4 −1 +1 +1 −1
2 +1

2 +1
2 −2

3 +1
3 +1

3 −1 0 +1 +1
6

5 −1 −1 +1 −1
2 −1

2 +1
2 −1

3 −1
3 +2

3 0 −1 1 −1
6

6 +1 −1 +1 +1
2 −1

2 +1
2 +1

3 −2
3 +1

3 1 −1 0 +1
6

7 +1 +1 +1 +1
2 +1

2 +1
2 0 0 0 0 0 0 +1

2

Tab. 12.2: Switching states and resulting voltages of the three-phase two-level AC/DC converter with
symmetric load in star connection (with 23 = 8 possible switching states)
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Three-phase fundamental frequency modulation (aka six-step mode)

−1/2

1/2
û
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û
(1)
2c0 =

2
πu2c0(t)/U1

−1/6

1/6
Tsu2n0(t)/U1

0 1/2π π 3/2π 2π 5/2π 3π
−2/3

2/3
û
(1)
2a = û
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Three-phase fundamental frequency modulation (cont.)
From the previous figure and voltage equations, we can summarize the following observations:

▶ Due to the fundamental frequency modulation, the switching frequency of the inverter is
identical to the fundamental frequency: fs = ω/2π.

▶ The star-to-ground voltage un0(t) shows a rectangular signal pattern with triple
fundamental frequency.

▶ Consequently, it does not influence the fundamental output voltage, that is, the
fundamental components of the line-to-ground voltage u2i0(t) as well as the load voltage

u2i(t) are identical: û
(1)
2i0 = û

(1)
2i .

Note on the star point

The previous analysis assumed a non-connected star point, which comes with certain
advantages, e.g., on the rejection of current harmonics. If, however, the star point
would be connected, the three-phase converter can be interpreted and analyzed as
three independent single-phase converters (each driven by a half bridge).
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Three-phase pulse width modulation (PWM)

s∗1(t)

c(t)

−

s∗3(t)

s∗2(t)

−

−

1

−1

1

−1

1

−1

s1(t)

s2(t)

s3(t)

Fig. 12.19: Three-phase PWM (note: a distinction between interleaved and complementary PWM is not
relevant here, as the three-phase converter operates on a half-bridge basis while the previously

considered single-phase converter was based on a full bridge. While independent and phase-shifted
carriers per phase could be also used in the three-phase converter, this is typically not utilized due to

increasing current harmonics.)
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Three-phase PWM example (with ref. modulation index m = 0.5)
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Three-phase PWM example (with ref. modulation index m = 1)
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Three-phase PWM example (with ref. modulation index m = 1.18)
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Section summary
This section provided an introduction to transistor-based AC/DC converters. The key
takeaways are:

▶ They render themselves (half/full) bridge topologies as already known from the DC/DC
converter context.

▶ Can transfer power in both directions and handle all four quadrants on the AC side.
▶ Require modulation strategies to generate the desired output voltage:

▶ High switching frequency PWM (low harmonics, below maximum conv. utilization) or
▶ Low switching frequency fundamental modulation (max. utilization, but high harmonics).

▶ The output voltage amplitude and phase angle can be adjusted to achieve arbitrary power
factors for grid operation or to supply various loads such as DC or AC motors.

While this section only covered a very brief overview about these self-commutated converters,
the following aspects are, among other, important for practical applications:

▶ closed-loop control,
▶ Further modulation strategies (e.g., space vector modulation or optimized pulse pattern),
▶ converters with a current source (instead of voltage source) within the DC link.
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English-German dictionary I

AC machine . . . . . . . . . . . . . . . . . . . Wechselstrommaschine

acceleration . . . . . . . . . . . . . . . . . . . . Beschleunigung

active power . . . . . . . . . . . . . . . . . . . Wirkleistung

air gap . . . . . . . . . . . . . . . . . . . . . . Luftspalt

angle . . . . . . . . . . . . . . . . . . . . . . . Winkel

apparent power . . . . . . . . . . . . . . . . . . Scheinleistung

armature . . . . . . . . . . . . . . . . . . . . . Anker / Läufer

autotransformer . . . . . . . . . . . . . . . . . Spartransformator

braking . . . . . . . . . . . . . . . . . . . . . . bremsend

brush . . . . . . . . . . . . . . . . . . . . . . . Bürste

brushless . . . . . . . . . . . . . . . . . . . . . bürstenlos
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English-German dictionary II
capacitance . . . . . . . . . . . . . . . . . . . . Kapazität [Größe]

capacitor . . . . . . . . . . . . . . . . . . . . . Kondensator [Bauelement]

circuit . . . . . . . . . . . . . . . . . . . . . . Schaltkreis

commutation . . . . . . . . . . . . . . . . . . . Kommutierung

compensation winding . . . . . . . . . . . . . . Kompensationswicklung

conductance . . . . . . . . . . . . . . . . . . . Leitwert

conductivity . . . . . . . . . . . . . . . . . . . Leitfähigkeit

control . . . . . . . . . . . . . . . . . . . . . . Regelung

copper . . . . . . . . . . . . . . . . . . . . . . Kupfer

current . . . . . . . . . . . . . . . . . . . . . . Strom

damper winding . . . . . . . . . . . . . . . . . Dämpferwicklung

DC machine . . . . . . . . . . . . . . . . . . . Gleichstrommaschine
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English-German dictionary III
differential equation . . . . . . . . . . . . . . . Differentialgleichung

displacement . . . . . . . . . . . . . . . . . . . Verschiebung

displacement current . . . . . . . . . . . . . . . Verschiebestrom

displacement field . . . . . . . . . . . . . . . . Elektrische Flussdichte

drive . . . . . . . . . . . . . . . . . . . . . . . Antrieb

driving . . . . . . . . . . . . . . . . . . . . . . antreibend

eddy currents . . . . . . . . . . . . . . . . . . . Wirbelströme

efficiency . . . . . . . . . . . . . . . . . . . . . Wirkungsgrad

energy . . . . . . . . . . . . . . . . . . . . . . Energie

equivalent circuit diagram . . . . . . . . . . . . Ersatzschaltbild

excitation . . . . . . . . . . . . . . . . . . . . . Erregung

fan . . . . . . . . . . . . . . . . . . . . . . . . Lüfter
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English-German dictionary IV
fed-in winding . . . . . . . . . . . . . . . . . . Träufelwicklung

field . . . . . . . . . . . . . . . . . . . . . . . Feld

field weakening . . . . . . . . . . . . . . . . . . Feldschwächung

field winding . . . . . . . . . . . . . . . . . . . Erreger(-wicklung)

flux . . . . . . . . . . . . . . . . . . . . . . . . Fluss

flux linkage . . . . . . . . . . . . . . . . . . . . Flussverkettung

force . . . . . . . . . . . . . . . . . . . . . . . Kraft

form-wound winding . . . . . . . . . . . . . . . Formspulenwicklung

frequency . . . . . . . . . . . . . . . . . . . . . Frequenz

friction . . . . . . . . . . . . . . . . . . . . . . Reibung

fundamental wave . . . . . . . . . . . . . . . . Grundwelle

heat . . . . . . . . . . . . . . . . . . . . . . . Wärme
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English-German dictionary V
inductance . . . . . . . . . . . . . . . . . . . . Induktivität [Größe]

induction machine . . . . . . . . . . . . . . . . Asynchronmaschine

inductor . . . . . . . . . . . . . . . . . . . . . Spule [Bauelement]

innere voltage . . . . . . . . . . . . . . . . . . Polradspannung

interpoles . . . . . . . . . . . . . . . . . . . . . Wendepolwicklung

inverter . . . . . . . . . . . . . . . . . . . . . . Wechselrichter

iron . . . . . . . . . . . . . . . . . . . . . . . . Eisen

jerk . . . . . . . . . . . . . . . . . . . . . . . . Ruck

lap winding . . . . . . . . . . . . . . . . . . . . Schleifenwicklung

leakage . . . . . . . . . . . . . . . . . . . . . . Streuung

load . . . . . . . . . . . . . . . . . . . . . . . Last / Belastung

losses . . . . . . . . . . . . . . . . . . . . . . . Verluste
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English-German dictionary VI
machine . . . . . . . . . . . . . . . . . . . . . Maschine

magnetic domain . . . . . . . . . . . . . . . . . Weiss-Bezirk

magnetomotive force . . . . . . . . . . . . . . . magnetische Spannung

mass . . . . . . . . . . . . . . . . . . . . . . . Masse

momentum . . . . . . . . . . . . . . . . . . . . Impuls

nameplate . . . . . . . . . . . . . . . . . . . . Typenschild

oscillation [quantity depending on time] . . . . . Schwingung [Größe in Zeit]

permanent magnet . . . . . . . . . . . . . . . . Permanentmagnet

permeance . . . . . . . . . . . . . . . . . . . . Permeanz

phasor . . . . . . . . . . . . . . . . . . . . . . Zeitunabh. komplexer Zeiger

power . . . . . . . . . . . . . . . . . . . . . . . Leistung

power electronics . . . . . . . . . . . . . . . . . Leistungselektronik
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English-German dictionary VII
power factor . . . . . . . . . . . . . . . . . . . Leistungsfaktor

reactive power . . . . . . . . . . . . . . . . . . Blindleistung

rectifier . . . . . . . . . . . . . . . . . . . . . . Gleichrichter

reluctance . . . . . . . . . . . . . . . . . . . . Reluktanz

resistance . . . . . . . . . . . . . . . . . . . . . Widerstand [Größe]

resistor . . . . . . . . . . . . . . . . . . . . . . Widerstand [Bauelement]

root mean square . . . . . . . . . . . . . . . . . Effektivwert

rotor . . . . . . . . . . . . . . . . . . . . . . . Rotor

salient pole rotor . . . . . . . . . . . . . . . . . Schenkelpolläufer

saturation . . . . . . . . . . . . . . . . . . . . Sättigung

separately excited DC machine . . . . . . . . . . Fremderregte Gleichstrommaschine

series DC machine . . . . . . . . . . . . . . . . Reihenschlussmaschine
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shaft . . . . . . . . . . . . . . . . . . . . . . . Welle

shut DC machine . . . . . . . . . . . . . . . . . Nebenschlussmaschine

slip . . . . . . . . . . . . . . . . . . . . . . . . Schlupf

slip ring . . . . . . . . . . . . . . . . . . . . . Schleifring

slot . . . . . . . . . . . . . . . . . . . . . . . . Nut

slot wedge . . . . . . . . . . . . . . . . . . . . Nutkeil

speed . . . . . . . . . . . . . . . . . . . . . . . Geschwindigkeit

squirrel cage . . . . . . . . . . . . . . . . . . . Käfigläufer

starting torque . . . . . . . . . . . . . . . . . . Anlaufdrehmoment

stator . . . . . . . . . . . . . . . . . . . . . . . Stator

steady state . . . . . . . . . . . . . . . . . . . Stationärer Zustand

steel . . . . . . . . . . . . . . . . . . . . . . . Stahl
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synchronous machine . . . . . . . . . . . . . . . Synchronmaschine

tap . . . . . . . . . . . . . . . . . . . . . . . . Anzapfung

terminal . . . . . . . . . . . . . . . . . . . . . Anschlussfeld

three phase machine . . . . . . . . . . . . . . . Drehstrommaschine

torque . . . . . . . . . . . . . . . . . . . . . . Drehmoment

transformer . . . . . . . . . . . . . . . . . . . . Transformator

transient . . . . . . . . . . . . . . . . . . . . . Transienter Zustand

turn . . . . . . . . . . . . . . . . . . . . . . . Windung

unit . . . . . . . . . . . . . . . . . . . . . . . . Maßeinheit

velocity . . . . . . . . . . . . . . . . . . . . . . Geschwindigkeit

voltage . . . . . . . . . . . . . . . . . . . . . . Spannung

wave [quantity depending on time and space] . . . Welle [Größe in Zeit und Raum]
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wave winding . . . . . . . . . . . . . . . . . . . Wellenwicklung

windage . . . . . . . . . . . . . . . . . . . . . Luftwiderstand

work . . . . . . . . . . . . . . . . . . . . . . . Arbeit

yoke . . . . . . . . . . . . . . . . . . . . . . . Joch
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