

# Mock-up Exam

# Electrical Machines and Drives

Summer 2024

First name:

Last name:

Matriculation number:

Study program:

Instructions:

- You can only take part in the exam, if you are registered in the campus management system.
- Prepare your student ID and a photo ID card on your desk.
- Label each exam sheet with your name. Start a new exam sheet for each task.
- Answers must be given with a complete, comprehensible solution. Answers without any context will not be considered. Answers are accepted in German and English.
- Permitted tools are (exclusively): black / blue pens (indelible ink), triangle, a non-programmable calculator without graphic display and two DIN A4 cheat sheets.
- The exam time is 90 minutes.

Evaluation:

| Task           | 1 | 2  | 3 | 4  | Σ  |
|----------------|---|----|---|----|----|
| Maximum score  | 8 | 12 | 9 | 13 | 42 |
| Achieved score |   |    |   |    |    |



#### Task 1: Fundamentals

[8 Points]

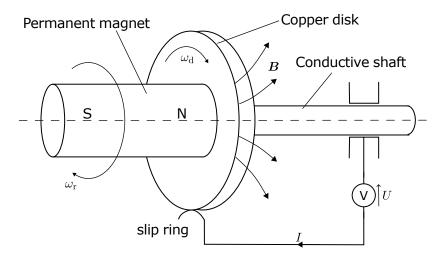



Figure 1: Faraday's disk (rotating copper disk in a homogenous magnetic field)

1.1 The disc from Fig. 1 has a diameter of d = 60 cm and is rotating with the circumferential speed  $v_{\rm d} = 100 \frac{\rm m}{\rm s}$ . What is the rotational speed and angular velocity of the copper disk? [2 Points]

1.2 Assuming that the permanent magnet is not rotating ( $\omega_r = 0$ ) while delivering a homogenous and constant magnetic field with B = 1.8 T, what is the measured induced voltage U? [2 Points]

1.3 Assume that the volt meter is exchanged for a resistor with  $R = 1 \ \Omega$ . How big are the resulting current I and electrical power P? Is the disc operating as a motor or generator? [2 Points]

1.4 Discuss the three following cases regarding the presence of an induced voltage: [2 Points]

- The disc is at standstill, but the permanent magnet is rotating.
- The disc and the permanent magnet are rotating, but with different speeds.
- The disc and the permanent magnets are at standstill, but the electrical circuit is rotating.

## Task 2: DC machine

2.1 What are the three main connection types for DC machines? Draw the equivalent circuit diagrams and add the respective current and voltage equations in the steady state. [3 Points]

2.2 Now consider a DC machine with the parameters given in Tab. 1. To which of the above connection type can the parameter set belong? [1 Point]

| Symbol             | Description              | Values                |
|--------------------|--------------------------|-----------------------|
| $U_{\rm a,n}$      | Nominal armature voltage | 230 V                 |
| $I_{\mathrm{a,n}}$ | Nominal armature current | 20 A                  |
| $U_{\rm f,n}$      | Nominal field voltage    | 230 V                 |
| $I_{\rm f,n}$      | Nominal field current    | 1.1 A                 |
| $R_{\mathrm{a}}$   | Armature resistance      | $1.2 \ \Omega$        |
| $R_{\mathrm{f}}$   | Field resistance         | $42.0 \ \Omega$       |
| $P_{\rm n}$        | Nominal power            | 4.1  kW               |
| $n_{ m n}$         | Nominal speed            | $1500 \frac{1}{\min}$ |

Table 1: Characteristics of the given DC machine.

2.3 Calculate the nominal torque  $T_{\rm n}$ .

| 2.4 Determine the nominal efficiency $\eta_n$ of the entire machine. | [2  Points] |
|----------------------------------------------------------------------|-------------|
|----------------------------------------------------------------------|-------------|

2.5 Calculate the armature starting current  $I_{a,0}$  and the resulting starting torque  $T_0$ . [2 Points]

2.6 Discuss potential operation issues of the found starting torque and current values compared to the machine's nominal operation. Propose potential remedies to address these issues. [2 Points]

## [12 Points]

[2 Points]

#### Task 3: Induction machine

3.1 Draw and label the stationary equivalent circuit diagram of the general induction machine. What simplification can you make if the machine is at standstill ( $\omega_r = 0 \frac{1}{s}$ )? [1 Point]

3.2 From now on consider a squire cage induction machine with the parameters from Tab. 2. Calculate the no-load speed  $n_0$ . [2 Points]

| Symbol                   | Description               | Values                  |
|--------------------------|---------------------------|-------------------------|
| Un                       | Nominal voltage           | 400 V                   |
| $f_{\rm s,n}$            | Nominal frequency         | 60  Hz                  |
| $P_{\rm n}$              | Nominal power             | 20  kW                  |
| $n_{ m n}$               | Nominal speed             | $1700 \ \frac{1}{\min}$ |
| p                        | Pole pair number          | 2                       |
| $R_{\rm s}$              | Stator resistance         | 0 Ω                     |
| $R'_{ m r}$              | Rotor resistance          | $2 \Omega$              |
| M                        | Mutual inductance         | $70 \mathrm{mH}$        |
| $L_{\sigma,s}$           | Stator leakage inductance | $2 \mathrm{mH}$         |
| $L'_{\sigma,\mathrm{r}}$ | Rotor leakage inductance  | $2 \mathrm{mH}$         |

Table 2: Characteristics of the given induction machine.

3.3 Calculate the nominal torque  $T_{\rm n}$  and nominal slip  $s_{\rm n}$ .

3.4 Determine the nominal electrical power  $P_{\rm el,n}$  and the efficiency  $\eta_{\rm n}$ . For this purpose neglect the impact of the stator leakage inductance. [2 Points]

3.5 Determine the maximum possible torque  $T_{\text{max}}$  of the machine. Which speed  $n_{\text{max}}$  corresponds to that operating point? [2 Points]

[9 Points]

[2 Points]

#### Task 4: Synchronous machine

[13 Points]

Universität

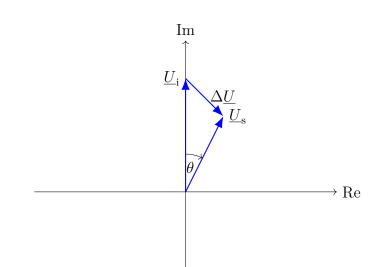



Figure 2: Phasor diagram of a synchronous machine with scaling 1 kV = 1 cm and 1 kA = 1 cm.

4.1 Determine the operating mode of the machine characterized by Fig. 2. [2 Points]

4.2 An experiment revealed the short-circuit current  $I_{s,sc} = 1.33$  kA for a nominal field excitation current  $I_f = 100$  A. Insert the short-circuit current into the above sketch and calculate the synchronous reactance  $X_s$ . [2 Points]

4.3 Determine the stator current  $\underline{I}_{s}$ , the power factor  $\cos(\varphi)$  and the corresponding angle  $\varphi$ . Add those into the above diagram. The nominal active power is P = -4 MW while the ohmic stator resistance can be neglected. [3 Points]

4.4 Determine the apparent power S and the reactive power Q. [2 Points]

4.5 What torque T is associated with the above operating point for a pole pair number p = 3? What is the theoretical maximum torque  $T_{\text{max}}$  for the given stator voltage operating at a grid frequency of f = 50 Hz? [2 Points]

4.6 Determine a modified field excitation current  $I_{\rm f}$  which delivers the same active power but reduces the reactive power to zero. Which load angle  $\theta$  results? [2 Points]