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What is an electrical machine?

Terminal g 7
box < R Nameplate

Electrical machine

An electrical machine is a device that con-
verts electrical energy into mechanical en-
ergy or vice versa.

» Electrical energy is routed via machine's
external wiring connected to the terminal
box.

» Mechanical energy is transferred via the

shaft (if it is a rotatory machine). i S Stator
@ (winding)

» Historic timetable of the electrical machine

development: KIT article (by Fig. 1.1: Example of an electrical machine (source:
M. Doppelbauer) derived from Wikimedia Commons, public domain)
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Some exemplary electrical machines

(a) DC machine (source: Wikimedia Commons, (b) Induction machine (source: Wikimedia Commons,
Marrci, CC BY-SA 3.0) Zureks, CC BY-SA 4.0)

(c) Permanent magnet machine (source: Wikimedia (d) Linear permanent magnet machine (source:
Commons, Andrez, CC BY-SA 4.0) Wikimedia Commons, Zureks, CC BY-SA 4.0)
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The machine as an electrical-mechanical converter

i(t) i(t)
> > F(t)
u(t) 1 u(t) 1 —
T(t) w(t) (1)

Load convention Generator convention Load convention Generator convention
(arrows pointing in (arrows pointing in (arrows pointing in (arrows pointing in
the same direction) the opposite direction) the same direction) the opposite direction)

(a) Rotational converter (b) Translational converter

Fig. 1.3: Electrically and mechanically free body diagrams of motors as energy converters with variable
notation: time ¢, voltage w, current %, force F', displacement x, torque T and rational speed w (adapted
from J. Bocker, Elektrische Antriebstechnik, Paderborn University, 2020)
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Some basic mechanical terms
Translational converter Rotational converter

Kinematic quantities

Displacement / angle x €

Velocity v=2a w=E¢€
Acceleration a=0=2x a=w=2=¢

Jerk j=a=9=12 p=a=0=§€

Dynamical quantities

Force / torque F T
Mass / inertia m J
Mechanical power Pre = Fo Pope =Tw
t t
Work Wlto, t] = [, Pme(T)dT Wito,t] = [, Pme(r)dr
Momentum / rotational momentum p = mv L=wJ
Kinetic energy Eyin = %va Eyin = %JwQ

Tab. 1.1: Basic mechanical terms for translational and rotational converters
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Work vs. energy

Work is the integral of the power over a Energy is the capacity to do work, that is, a
time integral (or force over distance) and is quantity depending on the state of a system
a measure of the energy transfer. at a given point of time.

Work

Fig. 1.4: lllustration addressing the work vs. energy terminology (simplified Sankey diagram)

Heat
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Power balance of an electrical machine

Change of stored energy
LB

Electrical
machine

Mechanical
power

Electrical

ower
P A(t)

Dissipated
power (losses)

Fig. 1.5: Power balance of an electrical machine (illustrated in motoric operation)

The power balance
d
Pa(t) = Pue(t) + A(t) +  Ei(t) (1.1)

must hold for any point in time as energy is conserved, that is, not created or destroyed.
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Four quadrants of machine operation

Braking + w Driving
(generating) (motoric)
For the steady state (Eji(t) = 0), we define the T
machine efficiency as the ratio of the converted
energy to the input energy: T
Prne R Pue <0 II| T  Pue>0
Mnot = — =1 — —, (1.2) >
Pel Pel PmeZOIII IV PmeSO
Po P T
=% =-1- . 1.3
e =g, T R 1Y
T
Hence, we need to consider in which quadrant
the machine operates as this will influence the Driving v Braking
(motoric) (generating)

power flow direction.

Fig. 1.6: Machine quadrants (derived from
Wikimedia Commons, K. Pitter, CC BY-SA 3.0)
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What is an electrical drive ?

Electrical drive

An electrical drive is a system that
controls the torque, speed or posi-
tion of an electrical machine con-
nected to some mechanical pro- Sensors

Converter Machine
YAC, UAC

Mechanical
process

Electrical
energy
source

iDC,uDC 4

Ccess. Reference <
- — Readings
Higher “

level
control

Response

Fig. 1.7: Block diagram of an electrical drive (adapted from
. J. Bocker, Elektrische Antriebstechnik, Paderborn University,
» The energy source and mechanical 2020)

process ('load") are not part of the
drive system.

Drive controller

» Integrates the 'stupid’ electrical
machine into an 'intelligent’
controlled system.
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Examples of electrical machine and drive applications (1)

(a) Electric cars (source: Wikimedia Commons, (b) Wind turbine generators (source: pxhere.com,
M. Movchin and F. Mueller, CC BY-SA 3.0) public domain)

(c) Factory robots (source: Wikimedia Commons, (d) Electric tools (source: flickr.com, M. Verch, CC
A. Reinhold, CC BY-SA 4.0) BY 2.0)
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Examples of electrical machine and drive applications (2)

(e) High-speed trains (source: Wikimedia Commons, (f) Electric aircraft (source: Wikimedia Commons,

P. Elektro, CC BY-SA 3.0) M. Weinold, CC BY-SA 4.0)

(g) Pumps (source: Wikimedia Commons, (h) Cranes (source: Wikimedia Commons, Belfast
Hammelmann, CC BY-SA 3.0) Dissenter, CC BY-SA 4.0)
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A broad range of nominal power ratings

100 000 000 W

10 000 000 W

1 000 000 W

100 000 W

10 000 W

1000 W

100 W

— 10w

1w

Ship generator,...

Pumps, mixers, e-bikes,...
Appliances, roller blind drives,...
PC fans, printer drives,...

Toys, mini actuators,... T

Fig. 1.9: Power range overview (inspired from A. Binder, Elektrische Maschinen und Antriebe (lecture
slides), Darmstadt University, 2022 with additional figure sources: A. Wolf, Asurnipal, M. Williams, R.
Spekking, Foxcorner, A. Tredz and J. Halicki under varying CC licenses)
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Why is knowledge about electric machines and drives important?

Electric machines and drives are an essential pillar of the modern society

Without electric machines and drives, our todays society would not be possible. Starting
from providing electricity via electrical generators to powering electric vehicles, tools
and entire factory production lines, electric machines and drives are everywhere, that
is, they enable our today's living standard.

Energy efficiency and sustainability is key

Electric machines and drives utilize approx. 50 % of the global electricity with about 8
billion electric motors in use in the EU (source: European Commission and International
Energy Agency). Therefore, improving their efficiency is an essential factor to reduce
the global energy consumption and the associated CO5 emissions.
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Learning objectives

» Understand the generation of magnetic fields, force formation and voltage induction in
electrical machines.
» Differentiate the main types of electrical machines and drives:
» DC machines,
» Induction machines,
» Synchronous machines,
» And their plentiful variants ...
» Understand their basic design and operation principles.

» Analyze the operation of electrical machines and drives:

» in steady state and
» in transient conditions.

» Have fun learning about electrical machines and drives.

Oliver Wallscheid Electrical machines and drives
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Necessary prior knowledge for this course

You should have a basic understanding of the following topics:

» Analysis basics (e.g., complex analysis and differential equations),
» Linear algebra basics (e.g., vector and matrix operations),

» Basic knowledge of electrical circuit theory and components.

What we will not cover, that is, you do not need to know (covered in separate courses):

» Control engineering (design drive controllers),

» Power electronics (design switchable actuators).

Oliver Wallscheid Electrical machines and drives
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Recommended reading

» A. Binder, Elektrische Maschinen und Antriebe (in German), Vol. 2, Springer, 2017

» D. Schroder and R. Kennel, Elektrische Antriebe: Grundlagen (in German), Vol. 7, Springer
Vieweg, 2021

» A. Huges and B. Drury, Electric Motors and Drives: Fundamentals, Types and Applications,
Vol. 5, Newnes, 2019

» S. Chapman, Electric Machinery Fundamentals, Vol. 5, McGraw-Hill, 2011
» |. Boldea and S. Nasar, Electric Drives, Vol. 3, CRC Press, 2022
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Ampere's circuital law: magnetic field strength

Relates the circulation of a magnetic field H around
a closed loop to the electric current passing through
the loop:

Integral form: H -ds=I, (2.1)
as

Differential form: V x H = J;. (2.2)

Here, J; is the free current density, and I is the
free current enclosed by the loop 0S.

» Free current: current that is not bound to a
material (i.e., without polarization and
magnetization currents).

> Slunits: [H] =2, [J]= 25

m?’

Oliver Wallscheid Electrical machines and drives
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Fig. 2.1: lllustration of the magnetic field
strength H around a simple conductor
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Ampere's circuital law: free current example

What is the free current Iy enclosed by the loop

057

» The current I flows in the direction of the loop
05 (according to right-hand rule).

» The current I; must be counted N times due to
the N turns of wire around the loop 95.

» The current I flows in the opposite direction of
the loop 05 (according to right-hand rule).

» Result:

Fig. 2.2: Arrangement with two electrical

Ig=N-I— I conductors

Oliver Wallscheid Electrical machines and drives
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Ampere's circuital law: simple solenoid example
Ampere’s law for magnetic flux density B in vacuum:

Integral form: B -ds = pol, (2.3)
oS

Differential form: V x B = ppdJ. (2.4)

Here, ug is the permeability of free space, J is the
total current density and [ is the total current
enclosed by the loop 35.

» Sl-unit: [B]=T = % = A

» Example contour 0SS on the right covering N turns
and length [ (flux density within solenoid):

Npuol Fig. 2.3: Magnetic flux density evaluated at
B-ds= Nugl & B = the contour 0S (adapted from: Wikimedia

a5 Commons, Goodphy, CC BY-SA 4.0)
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Shortcomings of the Ampere's circuital law
Applying Ampere’s circuital law to a capacitor with

1
a changing electric field E leads to a contradiction: ¢
> Applying (2.2) to S; yields: s, 09
So
H-ds=1. »
051
. E
» In the case of Sy we receive: ” ‘ m
H -ds=0. |
052 I

Fig. 2.4: Surfaces S; and Sy share the same

» However, both surfaces share the same bounding i e S
bounding contour 9S. However, S is pierced

contour 0S. ) . -
_ by conduction current, while S5 is pierced by
» Issue: The magnetic field strength H is not able displacement current (adapted from:
to describe the displacement current. Wikimedia Commons, public domain).
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The Ampere — Maxwell equation
The charge @ of capacitor is:

Q= D -dSs.
Sa

If the electric flux density D = gge, E changes, a
displacement current results:

d LN~ .
Iy = — D. Displacement
T S5 ds iév | curreP(t

S ==ss=======sy
) . ) Go===docoo- =)
» |s not a classical electric current (moving charges) but S1 lf 98

a term to describe the changing electric field.
. o . Fig. 2.5: lllustration for calculating the
» Above, gg is the vacuum permittivity and &, is the d%splacement current (adapted frim'

relative permittivity of a material. Wikimedia Commons, public domain).
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The Ampere — Maxwell equation (cont.)

Adding the displacement current to (2.2) we receive the Ampére — Maxwell equation:

Integral form: H - -ds= // <Jf + dD> -dS,
as s de

oD

Differential form: V x H = J; + TR

» Sl-unit: [D] = %
» Sl-unit: [E] = %
> cp~8.854-10712 F

Oliver Wallscheid Electrical machines and drives
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Magnetic flux and flux linkage
The magnetic flux ¢ is the surface integral of the

normal component of B over that surface:

gb://SB-dS. (2.7)

As there are no magnetic monopoles, the magnetic
flux through a closed surface (which is covering a
volume without holes) is always zero:

7{ B-dS =0. (2.8)
S

The flux linkage 1 is the product of the magnetic flux
¢ and the number of turns IV of a coil:

Fig. 2.6: Magnetic flux ¢ evaluated at the
— No. 5 surface S (adapted from: Wikimedia
¥ ¢ ( 9) Commons, Goodphy, CC BY-SA 4.0)
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Magnetic leakage flux

» In the scenarios with multiple coils, the
magnetic flux generated by one coil will
influence also the other coils.

» Exception: two coils are perfectly
perpendicular to each other.

» However, the magnetic flux typically does
not fully couple with the other coils

Fig. 2.7: The magnetic flux ¢, generated by the
> The difference is the leakage flux ¢;-. current I does only partly couple with the second
coil, while the difference ¢1 — ¢ is the leakage
flux (adapted from: Wikimedia Commons, M.
Wacenovsky, public domain)
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Inductance
The inductance L describes the ratio between the magnetic flux linkage 1 (t) to the current

i(t):
P(t) = Li(t). (2.10)

Example: From the solenoid in Fig. 2.6 we know that the magnetic flux linkage v is:
1
) = N// B.-dS = 7N2/,L017rr2
S

with r being the radius of the solenoid. Hence, the inductance L is:

;oY Noporr®
1 l
» Sl-unit: [L]=H = %
» The inductance is an important parameter describing inductive systems.
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Self and mutual inductance
Based on the inductive coupling between
the two coils from Fig. 2.8, we can define
the magnetic flux matrix:

b= [¢11 ¢12] .

P21 P22 (2.11)

» ¢11: magnetic flux component of coil 1
due to its own current 71

» ¢12: magnetic flux component of coil 1
due to the current i5 in coil 2

» ¢91: magnetic flux component of coil 2
due to the current 77 in coil 1

» 9o: magnetic flux component of coil 2
due to its own current 7o

Oliver Wallscheid

Primary
winding & Secondary
Niturns | winding
. N,turns
Uy
4

Fig. 2.8: Two coils coupled via a common core
(adapted from: Wikimedia Commons, Bill C.,
CC BY-SA 3.0)

Electrical machines and drives
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Self and mutual inductance (cont.)

Utilizing the permeance definition (“magnetic conductance™)

¢
A= — 2.12
o 1)
we can represent (2.11) as:
¢11 = A1 Nvin,  ¢12 = M1aNaia,  ¢21 = Aa1 Nidy, ¢z = AgaNoia. (2.13)
The resulting flux linkage per coil is then:
Y1 = N1 (¢11 + 21 + ¢12) , g = Na (22 + P12 + P21)
= (A1 N + Aoy N?) iy + Ao N1 Na i, = (A22N3 + A2 NT) o + Agr N1 No iy
~— ~—
L1 M2 Lo Moy
(2.14)

Above, L1 and Lo are the self-inductances, M7 and Ms; are the mutual inductances.
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Self and mutual inductance (cont.)
Hence, we can define the flux linkages of both coils using the following inductance matrix:

wl] [L1 M12:| [21] .
¥ [7112 Msy Lo | [i2 (2.15)
Due to the symmetry of the inductive coupling, the mutual inductances are identical:

Miy = Moy = M. (2.16)

Based on (2.14), we can also split the self-inductance L; of the i-th coil into the sum of the
leakage inductance L; ; and the magnetizing inductance L; m:

Li=Liy+ Lim = AiyN? + AjN?  with i # j. (2.17)
Finally, we can define the coupling coefficient k as:
M
k= —x= 0<k<1, (2.18)

VIiLsy'

which indicates how strong or week the inductive coupling between the coils is.
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Boosting the magnet field with ferromagnetic materials

Leakage fluxy By

While H depends on the currents applied to an
object, B depends on the material properties of the
object. In free space (vacuum), the relation is linear
and represented by the magnetic constant pg:

B = poH with po=4r-1077 . (2.19)

To boost B for a given H, ferromagnetic materials
are typically used. These materials have a high relative
magnetic permeability u,:

B =uH = pouH. (2.20)

Note that u, is a dimensionless quantity and that Fig. 2.9: Simplified magnetic field lines of

(2.20) assumes linear and isotropic material behavior. 2" '"" yoke with a coil (adapted from:
Wikimedia Commons, public domain)
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Relative permeability and magnetic saturation

Material e (range)
. . ' max 1, (H)
Air / copper / aluminum (~)1 Nonlineaf
Iron (99.8 % pure) 5000 behavior .
Electrical steel 2000 - 35000 Pl
Ferrite 200 - 20000 . NLinear
- behavior

Tab. 2.1: Typical relative permeabilities of materials

Hr<H)

Linear magnetic behavior (u, = const.) is only a local H
approximation. When considering larger H ranges, the , o

. . . . . Fig. 2.10: lllustrative magnetization curves

(differential) permeability becomes nonlinear: .
for ferromagnets (and ferrimagnets) and
dB corresponding permeabilities (adapted from:
we(H) = i (2.21)  Wikimedia Commons, public domain)
37
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Magnetic domains (1)

» Magnetic domains are regions within a
material where the magnetic moments of
atoms are aligned (“mini magnets”).

» The magnetization within each domain

points in a uniform direction, but the
magnetization of different domains may

Fig. 2.11: Animation of moving domain walls (source:

point in different directions. Wikimedia Commons, Zureks, CC BY-SA 3.0)

P AR A4 _ _
Praaeraead Fig. 2.12: Change of magnetic

ot SRR R UEE: domains due to an external

Ceo [PREEEREEAY magnetic field (adapted from:
YN N Wikimedia Commons, M. Run, CC
LSS IRER! BY-SA 4.0)
IR EERRER
T T I
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Magnetic domains (2)

> A large region of material with a constant magnetization throughout creates a large
magnetic field (diagram a) below). This requires a lot of magnetostatic energy stored in the
field.

» To reduce this energy, the sample can “split” into two domains, with the magnetization in
opposite directions in each domain which reduces the overall field (diagram b) below).

» To reduce the field energy further, each of these domains can split also, resulting in smaller
parallel domains with magnetization in alternating directions, with smaller amounts of field
outside the material (diagram c) below).

a) b) m c)

Fig. 2.13: Simplified representation of the

| T formation of magnetic domains on the
T l basis of energy minimization (source:
| - Wikimedia Commons, public domain)

"
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Hysteresis

» Material defects lead to small, random jumps in B
magnetization called Barkhausen jumps.

Saturation

» Domain walls move irregularly.

Elementary magnets
™ - rotate in domains
_—

H

/= Domain walls
I/ shift /" Barkhausen
d jumps

» Process also depends on the history of the
magnetization process (dynamic system).

Y

Fig. 2.15: Simplified hysteresis curve in first
H quadrant with magnetic domains illustration
(adapted from: Wikimedia Commons,
Fig. 2.14: Animation of the Barkhausen jump (source: Fralama, CC BY-SA 3.0)
Wikimedia Commons, public domain)
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Hysteresis curve and losses

» With an external and varying field H, a
closed hysteresis curve is obtained.

» Traversing through the curve requires to
move the domain walls and rotate the
elementary magnets within the domains.

» This process requires work and leads to heat
dissipation (losses).

» The area enclosed by the hysteresis curve is
identical to the relative remagnetization

work (per volume, that is, [wy] = #)

Fig. 2.16: Exemplary hysteresis curve with B;
being the remanence field density and H, the

wy = j{H -dB. (2.22) coercivity field strength
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How can we model the hysteresis losses?

@ Data look-up table: Measure the
hysteresis curve and its losses directly on a
test bench (cf. MagNet project data hub).

@ Loss-fitted models: Use empirical models
to fit the hysteresis losses (e.g., Steinmetz
model):

Py = ky f* max{B}®.

@ Curve-fitted models: Use empirical models
to describe the hysteresis curve and derive

the losses (e.g., ODE as in the H [A/m]
Jiles-Atherton model): Fig. 2.17: Measured B-H loops for sinusoidal
excitation at different frequencies (source: |IEEE
dB TPEL, Serrano et al., CC BY 4.0)

ﬁ:f(B,H).
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Alternative to boost the magnet field: permanent magnets (PMs)

» Create own persistent magnetic fields.
» Consist of hard ferromagnetic (or
ferrimagnetic) materials.

» Nearly constant magnetiziation offset
Bpy in the usual operating range:

B = pop H =~ poH + Bpy. (2.23) Fig. 2.18: PMs on a rotor (source:
flickr.com, AIDG, CC BY-NC-SA 2.0)

Fig. 2.19: Permanent magnets as
alternatives to current-based
excitation (source: Wikimedia
Commons, M. Run, CC BY-SA 3.0)

Oliver Wallscheid
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Hysteresis curve of permanent magnets

» PM'’s magnetization is nearly
completely saturated and constant in
common operation area.

» The greater the coercivity H, the
greater the resistance of the PM to
demagnetization by external fields.

» Beyond the so-called knee point, PMs
are (partially) demagnetized.

» Important figure of merit is the
so-called energy product:

(BH)max = max{—BH}. (2.24)

» The higher (BH )pax the less PM
material is needed for an application.

Oliver Wallscheid Electrical machines and drives
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Fig. 2.20: Exemplary hysteresis curve of a
permanent magnet
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Hysteresis curve of permanent magnets (temperature dependence)

» Besides pressure and vibrations,
PMs are also sensitive to
temperature.

» The coercivity H. and the
remanence B, decrease with
increasing temperature.

» Hence, with higher temperatures,
a PM gets more susceptible to
demagnetization.

Oliver Wallscheid

Increasing temperature

knee
points

>

H

Fig. 2.21: Qualitative representation of the
temperature dependence of permanent magnets
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Energy product overview of permanent magnets

400 NdFeB
(a2}
E 320
be)
x
£ Sm,(CoFeCuZr),,
E 240
E SmCos B
A 160
—
80 Alnico
KS steel MK steel — Ferrites
0

1920 1930 1940 1950 1960 1970 1980 1990 2000

Fig. 2.22: Historic development of PM materials and their energy product (adapted from: Wikimedia
Commons, Kopiersperre, CC BY-SA 4.0)
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Manufacturing process of NdFeB permanent magnets

Cast Material
Crucible

Strip ,

N\
V/Cooled
Hydrogen Decrepitation
roll [y emmee
L)
Strip Casting
g

. . Cycl . .
Hydrogen Decrepitation e Pressing in

Jet Milling | Mag. field
Typical Electrocoat System
— ” Yo Bake
= i

Magnetize

N
\ | +Hydrogen
- nae

Plating Machining | Sinter and Heat Treat |

Fig. 2.23: Basic process steps for the NdFeB-based magnets (source: Springer JOM, J. Cui et al., CC
BY 4.0)
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Electromagnetic induction (Maxwell — Faraday equation)

98 <0
A changing magnetic field induces an electric field
according to the Maxwell — Faraday equation:
Integral form: E . ds= _4 // B-dS
- Jos dt JJs ’ E
. (2.25) 95 -
Differential form: V x E = 5 (2.26)

Here, E is the electric field strength and S is the surface
enclosed by the loop 9S. E

Fig. 2.24: Representation of the
magnetic and electric field relation

(adapted from: Wikimedia Commons,
Qniemiec, CC BY-SA 3.0)

» Lentz's law: The induced electric field opposes the
change in magnetic field (negative sign above).
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Electromotive force (EMF) and electromagnetic induction

If the integration path 0S is identical to a
conductor loop, the changing magnetic field induces
a voltage u; (electromotive force, EMF) according
to Faraday's law:

uj = E-ds:—d//B-dS. (2.27)
8S dt JJs

» Despite its name, the term EMF does not ur Rotating conductor
describe a force in the physical sense (as v; is ‘ loop
obviously a voltage). A

> The term remains a historical artifact from the gjg 5 25: Induced voltage / EMF in a rotating
early days of electrical engineering, but is still conductor loop (adapted from: Wikimedia
frequently used in today's literature. Commons, M. Lenz, CCO 1.0)
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Intermediate wrap up: electromagnetic principles and magnetic materials

fasE'dSZ_c?tffsB'dSB

Induction law

u

Material property
B = popH
Ampere's law (simple version)

Fig. 2.26: lllustration of the connections between the phenomena discussed previously (derived from:
Wikimedia Commons, M. Lenz, CCO 1.0)
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Magnetic networks

» Motivation: Model magnetic systems with a
simplified lumped-parameter approach and apply

analysis techniques analogous to electric networks. ] A,
> Assumption: magnetic field is homogenous within : /
a lumped element (cf. Fig. 2.27). e —
i . ( © .) op—>| | ————— | TPk
» The magnetic flux per element is: e ——
o = ApBy. (2.28) I
» The magnetic voltage (magnetomotive force — Fig. 2.27: Magnetic element with
MMF) per element is: homogenous magnetic field (adapted from
J. Bocker, Mechatronics and Electrical
0r = 1, Hy. (2.29) Drives, CC BY-NC-ND)
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Magnetic networks (cont.)

» The magnetic reluctance per element is:

O Uk
Ry=—=—"—. 2.30
T 0k pomnkAr (2:30)
» The magnetic conductivity (or permeance) per H. B
element is: k] F Ap
1 poperAg : /
Ay = — = DOPIRR 2.31 e —
" R Ik (2:31) op—> | —————— | T %%
» As the magnetic field is free of sources /
(V- B =0), it follows (node rule — analogous to 7
k

Kirchhoff's first law):
> ¢ =0. (2.32)
k
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Magnetic networks (cont.)

Considering magnetostatic situations where the displacement current can be neglected,
Ampere's law reads:

H-ds=IT;=NI=)Y 0p=> ItH. (2.33)
oS L L

So far, the equation has not the structure of the second Kirchhoff's law (loop rule). However,
we can force this desired format by placing the term with the electric currents on the left-hand
side of the equation:

D 0 —0=0 with 6= NI (MMF term). (2.34)
k
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Comparison: electric and magnetic network quantities
Electric network Magnetic network
Voltage u= [E-ds V Magnetomotive force 6= [H-ds A
Electric field E Y Magnetic field H A
Current i A Magnetic flux ¢ Vs
Resistance R Q0 Reluctance R ﬁ
Conductance G S Permeance A H
Conductivity o % Permeability 7 %
Ohm’s law u = Ri Hopkinson's law 0= Ro
Kirchoff's first law i =0 Equivalent first law Yor=0
Kirchoff's second law > up =0 Equivalent second law ) 6y — 6y =0

Oliver Wallscheid

Tab. 2.2: Electric and magnetic network quantities and their analogies
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Magnetic network example: simple magnetic actuator

03
| S|
Rs L
R1 1‘91
—— 94 R Varyi
Iron B ’ aiarrélanf? I
. ®a MMF / 05
AN . source R, (x) " Constant
e —F o=t P
’J/ l—P Oy
NI— | ][/° (t) ‘ T(”
/. 9101
7 Tes
Winding T

RZS

(a) Simple magnetic actuator (b) Magnetic network representation of the actuator

Fig. 2.28: Example for a simple magnetic actuator and its magnetic network representation (adapted
from J. Bocker, Mechatronics and Electrical Drives, CC BY-NC-ND)
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Lorentz force

The force F' acting on a particle of electric charge g with
instantaneous velocity v, due to an external electric field
E and magnetic field B, is given by

F=q(E+vxB). (2.35)

» The term ¢FE is called the electric force.
» The term ¢ (v x B) is called the magnetic force.

» In Cartesian coordinates, the Lorentz force is given by: Fig. 2.29: Lorentz force F on a particle

F, =q(E; +v,B, —v.B,), (of charge ¢) in motion (instantaneous

velocity v) with given E and B fields
Fy = q(By +v:Bs —v:B2), (2.36) (adapted from: Wikimedia Commons,
F, =q(E, +v,:By —vyBy). Maschen, CC0)
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Hand rule of the magnetic Lorentz force

73] Physical current Technical current vV
direction direction

Fig. 2.30: Right and left hand rule for the magnetic Lorentz force ¢ (v x B) (adapted from: Wikimedia
Commons, M. Run, CC BY-SA 3.0)
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Lorentz force density for a continuous charge distribution

For a continuous charge distribution in motion,
the Lorentz force density (force per unit

volume) becomes: J x B

f=pE+JxB. (2.37) & 5
+P (
» p is the charge density (charge per unit v J = pv
volume).
» J = pv is the current density. Fig. 2.31: Lorentz force density f on a continuous

charge distribution (charge density p) in motion
(adapted from: Wikimedia Commons, Maschen,
CC0)
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Power loss types in electrical machines

Electrical
machine losses

—»‘ Stator winding | +{ Hyteresis | |Windage |
— (Rotor winding) -»! Eddy currents | | Friction |
—| (Skin effect) ->{ Excess losses |

L+| (Proximity effect)

Fig. 2.32: Overview of power loss types in electrical machines
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Eddy currents

» A changing magnetic field induces a voltage.

» In bulky conductive materials (e.g.,

=
electromagnetic steel) this voltage drives
currents called eddy currents. g
» Eddy currents lead to losses and heat B -
dissipation.
./ ./

» To reduce eddy currents, laminated cores
are used as they decrease the effective
current path width and, therefore, increase
the effective resistance per sheet.

Fig. 2.33: Eddy current formations in solid and
laminated steel cores (source: Wikimedia
Commons, Chetvorno, CC0)
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Eddy currents: single sheet example

Sheet's thickness d is much smaller than
the sheet's width w and the magnetic flux
density B is homogenous in the normal di-
rection of S and introduces a sinusoidal ex-
citation B(z,y,t) = Bsin(wt).

From (2.25) integrating over S, we get

B
2WE(x,t) = —%wa

with 2w being the effective contour length of
0S5 and 2zw being the effective surface area.

Oliver Wallscheid

External B
magn. field S

d K ] dedtncdifigd /
]

Fig. 2.34: Single sheet and induced eddy currents
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Eddy currents: single sheet example (cont.)

With Ohm's law and the material conductivity o, we get the current density J:

J(z,t) = cE(x,t) = —xaaaf

Inserting the assumed magnetic flux density distribution it follows:
J(z,t) = —zowB cos(wt).

The relative power loss (per volume) density p(z,t) results in:

1 .
p(z,t) = —J(z,t) = 2% 0w’ B% cos? (wt).
o

The average power loss per volume (considering the entire sheet thickness) is:

d/2 L o 99p2 2
ow*d*B* cos”(wt).
d a2 T 12
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Eddy currents: single sheet example (cont.)

The average power loss per volume and time is then:

b o= Lo (i)’

Although this is a simplified model, it shows the significance of

» the sheet’s thickness d,

» and excitation conditions w and B.

This finding motivated empirical fitting approaches, like Bertotti's model for the eddy currents:

Pe ~ ke f2B2.
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Homopolar / unipolar machines

(a) Video of an operating homopolar machine (source:  (b) Electric current, magnetic field and Lorentz force
Wikimedia Commons, Smial, Free Art License) (adapted: Wikimedia Commons, M. Run, CC BY-SA)

Fig. 3.1: Working principle of homopolar machines demonstrated with a simple permanent magnet,
battery and screw design
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Homopolar / unipolar machines (cont.)

Homopolar machines are the simplest form
of electric machines.

They are also true DC machines, as the
current and flux paths are unidirectional.

The general design prevents connecting
multiple rotor turns in series to increase the
voltage, that is, only a relatively low voltage
is induced.

Consequently, homopolar machines require
high currents (in the order of kA or even
MA) to reach a useful power range which
limited their application.

Fig. 3.2: The Faraday disk: another homopolar
machine (source: Wikimedia Commons, public
domain)
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Working principle of usual DC machines

Let's consider Fig. 3.3 and assume that the flux
density B is constant in the air gap and that
the conductor loop has the axial length [,.
According to the Lorentz force we have

F = I,Bl,. (3.1)

The torque T on the conductor loop is given by
d
T = 2F§ cos (¢) = [,Bl,dcos (¢). (3.2)

If the loop spins with an angular velocity w,
mechanical power Py = Tw is transferred.

Question: What is happening if the coil is
outside the magnetic field?

Iy | [a\L@—.:F_‘
Ufl éEEé TP d
R I —— F ® A

i

Fig. 3.3: Torque on a conductor loop (adapted
from J. Bocker, Elektrische Antriebstechnik,
Paderborn University, 2020)
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DC-machine cross section

Field winding
Armature
winding
. . Yoke
» To ensure a quasi-continuous torque,
the current through the conductor
loop(s) in the rotor must have a Armature —| | Brush
constant direction. or rotor
» This is achieved by using a
commutator (brushes). Armature — Airgap
) winding
» Compared to homopolar machines,

DC machines require a mechanical Stator
rectification of the current.
Fig. 3.4: Simplified DC machine cross section (adapted
from J. Bocker, Elektrische Antriebstechnik, Paderborn
University, 2020)
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Commutation

Oliver Wallscheid

Fig. 3.5: Animation of the commutation process
(source: Wikimedia Commons, M. Frey, CC BY-SA 3.0)

Electrical machines and drives

74


https://commons.wikimedia.org/wiki/File:Animation_einer_Gleichstrommaschine_(Variante-Langsam).gif
https://creativecommons.org/licenses/by-sa/3.0/deed.en

Armature and commutator

(a) Commutator with brushes and springs (source: (b) DC machine armature with commutator (source:
Wikimedia Commons, Marrrci, CC BY-SA 3.0) Wikimedia Commons, public domain)

Fig. 3.6: Examples of commutators and armatures
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Armature and commutator (cont.)

|

(c) Armature inside stator (source: Wikimedia (d) DC machine with permanent magnet excitation
Commons, Marrrci, CC BY-SA 3.0) and tacho speed sensor

Fig. 3.6: Examples of commutators and armatures (cont.)
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Commutation process

During the commutation time At. the brush bridges two commutator segments and the
short-circuited conductor coil current 4. is changing signs. Here, two major scenarios can be
distinguished:

» The commutation is such fast that high local current densities are prevented.

» The commutation is slow and high local current densities lead to sparking effects.

-4- -»- . Al At
2a la +ta ¢
2a 2a 2a Commutation
incomplete
electric arc
U >
[1]2] — t
- - 2_ Commutation &+
|_wba_| a in time

Fig. 3.7: Left: simplified equivalent circuit diagram of the short-circuited coil during commutation.
Right: qualitative trajectories of the conductor current i,
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Commutation process (cont.)

Assuming that the brush width wy, is much bigger than
one commutator segment (which is usual practice), the
commutation time At. is given by

Wh
Ate ~ —. :
" (3.3)
Here, v, is the brush velocity
da
c = W 4
Ve =W (3.4)

with the armature angular velocity w and the armature
diameter d,. Due to the changing current in the coil, the
so-called reactane voltage u, is induced:

Fig. 3.8: Commutator sparking of a
simple DC machine (source: Wikimedia
Commons, M. Frey, CC BY-SA 4.0)

dic ia . Wda
c=Lc— ~L,——— =1
u “dt “alt, cla awp?2
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Basic structure of the armature

Stator pole
Lap winding Wave winding

winding | 3, s

'S N

/oy

rA-—————-r"
/

n
=2

\
\
/

/2 R
/oy
/oy
“/\

Slot N

~ Commutator
e N

Fig. 3.9: Cross section of a drum-type armature including principle winding schemes (adapted from
W. Novender, Elektrische Maschinen, Technische Hochschule Mittelhessen, 2023)
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Types of winding conductors

Iron
o Form-wound
Winding turn (usually copper) type
Slot —
Tooth Slot wedge

Fig. 3.10: Types of winding conductors — unwound representation along the circumference (adapted
from J. Bocker, Controlled Three-Phase Drives, Paderborn University, 2021)
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Commutation process with an armature lap winding
Armature movement——

Fig. 3.11: Three still images of the commutation process with a simplified winding representation (from
left to right): when the brush touches two commutator segments, the according conductor loop is
short-circuited and the current is reduced to zero. The brush then moves to the next commutator

segment and the current starts flowing again but in the opposite direction (adapted from W. Novender,

Elektrische Maschinen, Technische Hochschule Mittelhessen, 2023).
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DC machines with multiple pole pairs

» To reduce the effective length per
armature conductor loop, the
winding can form multiple pole pairs
p.

» This will reduce the inductance per
loop which is beneficial for the
commutation process.

P> The stator excitation must meet the
same number of pole pairs.

» Given some inner stator diameter dj,
the resulting pole pitch is:

d . Fig. 3.12: Simplified DC machine cross section with
= S pp=— (3.6) p = 2 pole pairs (adapted from J. Bocker, Elektrische
P p Antriebstechnik, Paderborn University, 2020)
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Armature winding characteristics
For describing the armature winding layout, the following parameters are introduced:

Q@ : number of slots, NN : number of conductor turns per coil,
K : number of commutator elements, u = K/Q : slot to commutator ratio,

za = 2K N, : total number of armature conductors.

i Pp :
QfF——"""" O
5 \fﬂ Stator Upper layer
] ______ qb Lower layer
\ Armature
@ u=2
i Yb i Ne=1 Ne=1

Fig. 3.13: Coil width and slot design characteristics (adapted from W. Novender, Elektrische Maschinen,
Technische Hochschule Mittelhessen, 2023)
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Double layer winding

» The forward conductor of one coil and the return conductor of another coil are placed in the
same slot. This is the common winding scheme (although not limited to it).

» Enables chording of the winding (p, # y1), another degree of freedom for the machine
design (cf. Fig. 3.13).

End winding

Top layer
Bottom layer
Fig. 3.14: Double layer winding with v = 3 with a solid conductor element (which can be

pre-manufactured for cost reasons — inspired from A. Binder, Elektrische Maschinen und Antriebe, Vol.
2, Springer, 2017)
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Lap winding characteristics

» Back pitch yp: coil span from the
back end

» Front pitch y;: coil span from the
front end

» Resultant pitch ¥,: distance between
two consecutive coils

» Commutator pitch y.: distance
between two consecutive
commutator segments

Progressive winding

Fig. 3.15 shows a progressive wind-
ing layout with yp, > ¢, i.e., the coils
do not cross themselves.

Oliver Wallscheid Electrical machines and drives

Yb Back

/
/
/
/
)
\ S
A S ]
/
/

Front
connectors

Fig. 3.15: Distance definitions of the armature lap
winding (adapted from W. Novender, Elektrische
Maschinen, Technische Hochschule Mittelhessen, 2023)
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Lap winding characteristics (cont.)

Back !
connectorsI

Retrogressive winding

Fig. 3.16 shows a retrogressive wind-
ing layout with y, < wys, i.e., each
coil crosses itself.

N M

» Retrogressive windings require more
conductor material due to the Front -

. K connectors | 1.
crossing of the coils and, therefore, -

are less common.

» Technical feasibility requires
Yb — Yf = LY, i.e., the lap winding
progresses or retrogresses by one
commutator element.

Fig. 3.16: Lap winding with a retrogressive scheme
(adapted from W. Novender, Elektrische Maschinen,
Technische Hochschule Mittelhessen, 2023)
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Lap winding: final remarks and single pole pair example

» Armature turns per pole: — Circumferential direction Pole Short-circuited
_ KN,
Np - 2pC
» Current per armature
Iy

conductor: I. = 2
P

Parallel connection of poles [T LT LTl
For p > 1 the lap winding
parallels the armature coils for I,

each pole enabling a higher
current (but limited voltage)
rating.

Fig. 3.17: Lap winding with commutator unrolled along the
circumferential coordinate
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Wave winding characteristics

» Commutator pitch (wave winding):
Ye = Yt + Ypb, i.e., each coil spans
(nearly) the entire pole pitch.

Progressive winding

Fig. 3.18 shows a progressive wind-
ing layout since each new wave wind-
ing coil starts one commutator ele-
ment to the right. Fig. 3.18: Distance definitions of the armature wave
winding (adapted from W. Novender, Elektrische
Maschinen, Technische Hochschule Mittelhessen, 2023)
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Wave winding: final remarks and single pole pair example

» Armature turns per pole: — Circumferential direction Pole Short-circuited

_ KN.
N_2

» Current per armature
conductor: I, = %a

Series connection of poles

For p > 1 the wave winding
connects the armature coils I,
for all poles in series enabling
a higher voltage (but limited
current) rating.

Fig. 3.19: Wave winding with commutator unrolled along the
circumferential coordinate
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Lap and wave winding comparison

Introducing the parameter
a = number of parallel armature conductors (3.7)

we can wrap up the following summary:

I
Current per conductor: I. = 2—a, Armature turns per pole: N, = ——
a

Comparison

» Lap winding: a = p (parallel connection of poles)

» Wave winding: a = 1 (series connection of poles)
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Air gap field

Assumption: The air gap field distribution is homogenous

and without any leakage (cf. Fig. 3.20).

Consequently, we model the magnetic machine behavior with T#

the simplified network shown in Fig. 3.21.
Rs
Ps

7 r. [k &[]
Rs
@ TNfIf
\ 2

Fig. 3.20: Idealized field lines (adapted from W. Novender, Fig. 3.21: Simplified magnetic
Elektrische Maschinen, Technische Hochschule Mittelhessen, 2023) network of a DC machine
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Air gap field (cont.)

We introduce the following magnetic reluctances

b (stator reluctance)
, = ——— (stator reluctance),
° Nr,feNOAs
la
R, = ——— (armature reluctance), 3.9
° Mr,fe,UfOAa ( ) ( )
0
Rs = air gap reluctance).
o As ( )

Above [; and A; are the respective lengths and cross-sectional
areas of the field paths while § is the air gap width.
Furthermore, we have

prs =1, Hr fe >> L.

Oliver Wallscheid Electrical machines and drives
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Air gap field (cont.)

With Nt field winding turns and the field current I¢, the air
gap flux is given by:

B Nel;

 2Rs+ Ra+ iR

5 l 1 L\
= puoNelt (2 + > :
Ho As ,U/r,FeAa 2 :ur,FeAS

While the relative permeability of the iron paths is depending
on the magnetic flux (pr Fe = fir,Fe(¢)) due to saturation (cf.
Fig. 2.10) rendering (3.10) a nonlinear equation, we will
assume that the air gap reluctance is dominating

o5
(3.10)

Rs >> {R,, Rs} . (3.11)
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Air gap field (cont.)
Based on (3.10) together with (3.11) we can simplify the effective air gap flux to

_Nely  Nply  poNeAs

¢5 ~ = 5 -
2R5 2#075 26

I, (3.12)

Here, § is the air gap width and As the effective cross-sectional area of the air gap which is
As = appl.. (3.13)

Above, the following assumptions and definitions are made:

» [, is the axial length of the machine.

» The air gap width is very small such that the pole pitch 7, can be used as a good
approximation for the air gap circumference.

» « is the pole coverage, that is, the ratio of the active pole surfaces to the pole pitch (cf.
Fig. 3.22 on next slide) representing the average field density in the air gap.
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Air gap field (cont.)

Air |
9ap |
Stator W'gthi

o
H—I—rl_l_l—l_l_l_l—l—l_l_l_l—l_l—l_l_rl—Hlllllllllllllllllvllll !
i ] \ i
Armature

YA |

N/

-

Fig. 3.22: Principle magnetic field paths through stator and rotor as well as the (idealized) normal
component of the magnetic field density By in the air gap (inspired from A. Binder, Elektrische
Maschinen und Antriebe, Vol. 2, Springer, 2017)

Circumferential direction
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Torque

From (3.12) we can calculate the air gap
flux density Bj per pole pair as

A N,
Bs = bs _ polNt
A5 25]9

Is. (3.14)
Assuming that the magnetic field only
flows through each armature conductor in
a perpendicular direction (cf. Fig. 3.23),
the absolute Lorentz force per armature
conductor is resulting in

Fig. 3.23: Simplified DC machine cross section with
F. = B(Slzlc — poNtl ItI,. (3.15) exemplary armature conductor force representation
pa (adapted from J. Bocker, Elektrische Antriebstechnik,
Paderborn University, 2020)
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Torque (cont.)

Assuming that the force direction acting on each armature conductor is perpendicular to the
armature shaft, the torque per conductor for an armature diameter d, is
d _ NONflzda

T, =F.—~

= It 1,. 1
2 8dpa f (3.16)

The resulting (average) machine torque T' for N, armature conductor loops from which an «
share is covered by the poles (cf. Fig. 3.22) is

pocNg Nyl dy

T =2aN,1; = 1opa

L1, (3.17)
With 7, = mds/(2p) = 7da/(2p) assuming a very small air gap width ¢ (cf. Fig. 3.12) we can
also rewrite the torque as

poaNe Nyl
T=———"""I,. 3.18
2mda Ha ( )
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Effective field inductance and effective flux linkage
To write (3.18) more compact, we introduce the effective field inductance

I o Nt Nyl . d, _ pooNg Nal 1,
f 46pa 2méa '

Compared to the self-inductance of the field winding

Nf2 _ ,uoszplZNf2

Ly =

2R; 15
we find o N
==L —crp
f a7er f et
N——

c

Finally, we define the effective field flux linkage t{ to rewrite the torque expression
W = Lil, T = cLelil, = LI T, = il,.
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Flux linkage of a single armature coll

Circumferential direction

From Fig. 3.22 we assume the air gap flux
density normal component along ¢ to be: o ® . ® e

B, 0<e<
Ble)=1{"2 V=T (303)
—Bs, w<e<2m.

The flux linkage of a single armature coil
starting at position € is then

e+m AN . !
€)= B-dS =1,d B(e)de ‘ ‘ ‘
be(c) //5 ? ab/‘E () Fig. 3.24: Flux linkage 1. of a single armature coil
based on the simplified, rectangular air gap flux
— — <
— 1,d,Bs {(”/2 € 0Se<m ity Bs(e) from Fig. 3.22 — light blue and yellow

Njw
3
¥
3

(e—3m/2), m<e<2m areas represent two exemplary armature coil
positions.
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Induced voltage

Assuming that the armature is rotating with the (constant) speed n (or angular velocity
w = €), the induced voltage per armature conductor loop is

-1, 0<e<m,

(3.24)
+1, 7 <e<2m.

d
Ui, c

d d —
= —— = —— — = — 2 B
) dt(bc d€¢cdt6 wl,d, 6{

To calculate the total induced voltage u;, we consider

» the rectification of the induced voltage by the commutator,
» N, total armature conductor loops,

» 2q parallel armature conductors per pole pair (depends on winding scheme, cf. (3.7)),

resulting in:
N, N, — poaNt Nyl d, poaNe Nyl 7, , ;
- ol = =2wl,dyBs = wl, =wl =wltl; = .
Ui 2a [tic| 2aw al?s = Wit 40pa wit 2mda wily = wiy

(3.25)
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Equivalent circuit diagram and summary of important equations

Field and armature voltage equations:

us = Retg + Li— (2 f f
iti (3.26) > F—""
Uy = Rain + La—r + uj Ufl
dt
Induced voltage: °
i iy Lo La
uj = wyp = wigLg == }—
u
Torque: al (
T = Liitia = i o

Dl

Note: we represent the machine currents with small
letters to indicate that they are time-dependent
(e.g., if the external voltage supply is varying).

DC machine

Oliver Wallscheid Electrical machines and drives
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Power balance and efficiency

Based on Fig. 3.25 (note the load convention), the electrical power of the DC machine is:

P, = uata + ugis.

(3.27)

This power is separated into the mechanical power Py, the dissipated power losses P}, and the

change of the stored magnetic energy %Emag:

d
Pelzpme‘F-P1+aEmag-

The power losses are (assuming dominant ohmic losses):
P = Ryi? 4 Rai2.
The mechanical power is:
Ppe=Tw = ¢§iaw.
The magnetically stored energy is
%sz? - %LaiQ.

Enag = a

Oliver Wallscheid Electrical machines and drives
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(3.31)
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Power balance and efficiency (cont.)

In steady state, the DC machine efficiency 7 is defined as

_ Ppe Tw B Liigtaw
ot = T mia + ugit | Rai2 + wLbiia + Rei2’
(3.32)
_ Pa uaia+upis  Rail +wLjigia + Reif
Ten =T Tw Ljigiaw ‘

It can be noted that

» The machine parameters R,, R¢, and L; are influencing the efficiency.

» The efficiency is a function of the load torque 71" and the speed w, that is, depending on the
operating point.

» If i¢ and i, are independently controllable, the efficiency can be optimized as a certain
torque can be produced with infinitely many combinations of iy and i,.
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Intermediate remarks on the DC machine model
During the derivation of the DC machine model, we made several assumptions:

>
4

The air gap magnetic field is homogenous and without any leakage.

The air gap reluctance is dominating the magnetic circuit (neglecting the iron path
reluctances including potential magnetic saturation).

The magnetic field lines follow distinct paths through the armature winding.

There is no mutual inductance between the stator and rotor (ideal orthogonal windings).
The magnetic field in the air gap and in the armature is governed by the field winding
current only (that is, we have neglected the armature current impact on the field).

Model accuracy

We represent the DC machine by a time-invariant, lumped-parameter model which
is based on several substantial simplifications. While this model is likely sufficient
for many applications, systematic deviations between the observed behavior of real
machines and the model predictions are to be expected.

Oliver Wallscheid Electrical machines and drives
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Armature reaction

» So far, we have neglected the impact of the armature current on the magnetic field.
» If i, # 0, the magnetic field in the air gap is distorted (so-called armature reaction).

)nly field excitation Only armature excitation B

Local iron
saturation

circumferential
direction

Bu neutral zone

Fig. 3.26: Superposition of the field and armature magnetic excitation and the resulting air gap field
normal components (adapted from W. Novender, Elektrische Maschinen, Technische Hochschule
Mittelhessen, 2023)
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Armature reaction (cont.)

Issues related to the armature reaction:

» The neutral zone (field-free commutation area) is
shifted by 8 degrees in the circumferential
direction, that is, exacerbate the commutation B
process (increased risk of sparking).

» High local field densities can lead to magnetic
saturation which will increase the iron path

Local iron
saturation

SN

circumferential
direction
o

reluctance and consequently decrease the
machine’s torque capability. Also, the iron losses
will increase.

» The imbalanced magnetic field leads to an
imbalanced Lorentz force distribution on the
armature conductors which can cause mechanical
distortions.

Oliver Wallscheid Electrical machines and drives
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Counter measures: compensation winding and interpoles

Only armature-related distortion Only interpoles and compensation winding

Field . ®
current OOOUO BQQ

Interpole

Compensation
winding

Fig. 3.27: Armature reaction counter measures utilizing compensation winding and interpoles: both are

excited by the armature current with an opposite orientation to account for the load-dependent impact

of the armature reaction (adapted from W. Novender, Elektrische Maschinen, Technische Hochschule
Mittelhessen, 2023 and J. Bocker, Elektrische Antriebstechnik, Paderborn University, 2020)
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Counter measures: compensation winding and interpoles (cont.)

Field winding

Interpole winding

Fig. 3.28: Example of a DC machine with interpole winding (one may identify that the interpole winding
is connected to the brushes and, therefore, excited by the armature current)
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Counter measures: compensation winding and interpoles (cont.)

Compensation winding design: In order to compensate for the armature reaction within the
air gap, the compensation winding MMF 0., must meet the armature MMF 6,:

Zew ! Za,
Ocw| = I, =a——1, = |0, 3.33
(O] 20w P & a2aap a = [0al ( )

Above, the following parameters are used:
» acw/a,: number of parallel conductors of the compensation and armature windings,
» 2ow/za: number of conductors of the compensation and armature windings.

In (3.33) «is only related to ¢, as we assume the armature area to be bigger (or at least the
same size) as the field pole (cf. Fig. 3.27). From (3.33) we can calculate the required
compensation winding conductors

Zew = QlZa a;w = 20Qcw New (3.34)

a

which can be met by choosing Q. slots and N, turns per pole.
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Counter measures: compensation winding and interpoles (cont.)

Interpole winding design: As discussed in (3.5), the reactane voltage u, ~ Leiywd,/(awy2)
is self-induced within the short-circuited coil during commutation. To counteract this, the
interpole winding is designed such that the neutral zone is (over-)compensated leading to an
induced voltage u;, which is opposite to u,:

!
|[uip| = |ur|. (3.35)

Assuming a rotational angular velocity w and some (homogenous) By, # 0 flux density in the
interpole area, the induced voltage w;p, is

Uip = Newdyl, Bip. (3.36)

Here, N, is the number of armature conductor turns per coil assuming that exatly one coil is
placed in the interpole area.

Oliver Wallscheid Electrical machines and drives 114



Counter measures: compensation winding and interpoles (cont.)

From (3.35) and (3.36) we can calculate the
required interpole flux density Bjp:

Uy Lt
Newdyl,  2Ncl,awy’

By = (3.37)

Applying the compensation winding design approach
(3.33) results in:

H-ds = 0ip+0cy—0, = 0ip—0a(1—a). (3.38)
oS

The MMFs per pole are:
Fig. 3.29: Integration contour 95 and related

0ip = Nipia, 0, = Nyi,. (3.39) MMF components for the .i.nterpole Win.ding
design (adapted from J. Bocker, Elektrische
Antriebstechnik, Paderborn University, 2020)
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Counter measures: compensation winding and interpoles (cont.)

Assuming that the air gap reluctance is dominating
the magnetic circuit, we receive

H -ds = 20Hj, = Nipia — Naia(1— ). (3.40)
oS

The flux density in the interpole area is then

ij — Na(l — Oé)
26

Bip = 110 a. (3.41)

The comparison with (3.37) reveals:

Nip = N.(1—a) . L. .
Ia = i
Ho 20 T INLawy
L.o

poNelawy”

(3.42)
= Nip = Na(l — a) +
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Connection types of DC machines

Al
Ua| L2 Acl K
B Q=Dr T
if ual >w, T
L, D2 D1
F1 F2 A2 A2
(a) Separately excited (or perm. magnet) DC machine (b) Series DC machine
i Al 4
e Al I ]
u us
U ual >w, T Ual )w, T
i D2 D1
: | |A2 F1{ le A2
(c) Shunt DC machine (d) Compound DC machine

Fig. 3.29: Connection types of DC machines incl. terminal block designations (note: the not shown
interpole winding has the terminal block designation B1-B2 and the compensation winding C1-C2)
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Steady-state behavior: separately excited DC machine

Assuming a fixed excitation ¢} (e.g., by a permanent magnet or constant field current), the
separately excited DC machine’s voltage demand for a certain speed is:

Ua = Ral, + wis. (3.43)
On the other hand, the speed-torque characteristic for a fixed armature voltage supply U, is
2
T = (Ua ¢f) wf =U, % — wR—f. (3.44)
a a
Ua ‘/
// R . )
o N Fig. 3.30: Steady-state
//Ra w=0 characteristics curves (adapted
T L ~T

——— » w from J. Bocker, Elektrische
U. > 0 Antriebstechnik, Paderborn
0
?/ W< U, <0 University, 2020)
-
/ a =0
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Steady-state behavior: separately excited DC machine (cont.)

For U, = const. > 0, the starting torque (i.e., A
the torque at zero speed) and the To™
corresponding armature current are:

U, = const. > 0

T g Y
T(w = 0) = T() = UaRi,
U a (3.45)
a >

Ia(w:O): a,OZE- w'o\ “
On the ot.her hand for T" = 0, the no-load Fig. 3.31: Starting torque and no-load speed of
speed wy Is: a separately excited DC machine (adapted

wn = % (3 46) from J. Bocker, Elektrische Antriebstechnik,
0 7 : . .
n Paderborn University, 2020)
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Steady-state behavior: separately excited DC machine (cont.)

As the start up of a DC machine with a fixed armature voltage U, can lead to very high
armature currents, which potentially cause damage, dropping resistors can be used to limit the
armature current. While this approach was historically very common (e.g., in rail vehicles), its
additional power losses and the necessity to carry bulky resistors are obvious drawbacks.

iA
Ray Ras
1
L |

Ia,max_

Yia
U ual >w,T " RatRaitRaz
Ifm
_—

Fig. 3.32: Operation with dropping resistor during start up to limit the armature voltage (adapted from
J. Bocker, Elektrische Antriebstechnik, Paderborn University, 2020)

o
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Operation constraints: separately excited DC machine

Now we consider U, being controllable (e.g., via buck converter), that is, we can also change
I,. Nevertheless, the machine is still limited by the voltage and current constraint:

R,
U
For sake of simplicity we only consider the first quadrant (cf. Fig. 1.6), that is, positive torque
and speed mode. From (3.47) T' < ;i ax follows. Also, the maximum speed is limited:

Unax < Uy = T+ Ww%; Iax < I. (3-47)

Umax Ra

w < - —=T (3.48)
TR
Hence, for a constant excitation 1);, the torque must be reduced starting at w; while wp
represents the no-load speed where no torque can be generated anymore:
U, R U,
u)]_ — max a max' (349)

— —Imax wWo =
(/S ’ oo
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Operation constraints: separately excited DC machine (cont.)

max{T(w)} A max{ Pne(w) } A
m xIm X T I?nax
Imaxwé — (]__BL___aL____Ria____ ;
l !
! 1
l !
1)t = const. ! _wilag :
U, = adjustable | f i
! 1
i :
| |
—T > ——w
w1 Wo W1 wWo

Fig. 3.33: Maximum achievable torque and mechanical power for the separately excited DC machine
with a fixed excitation #{ but controllable armature voltage U, and current I,
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Field weakening of the separately excited DC machine

In the previous scenario, the no-load speed wy is limited by the maximum armature voltage
Umax- However, if the field winding current I; is also controllable, the no-load speed can be
increased by decreasing the excitation ¢ (so-called field weakening). Consider an armature
operation both at the voltage and current constraint:

Umax = Ralmax + w% = RaImax + WL;if- (350)

For w > wy the field weakening is applied by reducing is to stay exactly at the armature voltage

constraint:
l Umax R Imax

- 51
i¢ - I (3.51)

Hence, we need to reduce the excitation with 1/w resulting in the torque and mechanical power

T= (Umax max — R II%laX) ) Pie = UnaxImax — R Iglax (3.52)

1
w
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Field weakening of the separately excited DC machine (cont.)

max{T(w)} A
Imaxwé

max{ Pne(w) } A

1 Constant power
UmaxImax - Ra-[maxJI arca

Constant torque area

¢ = adjustable
U, = adjustable

» W
w1 w1

» W

Fig. 3.34: Maximum achievable torque and mechanical power for the separately excited DC machine
with a variable excitation v} as well as controllable armature voltage U, and current I,
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Steady-state behavior: shunt DC machine
The shunt DC machine is characterized by:

U=U,=U;, I=I+1I. (3.53)

The steady-state currents are:

Uy
I —
f Rf’
Uy —wlily  1—L}/Rw
I, = =2 2= f U :
R, R, ’ (3:54)

1 1 Liw
I=L+L=—+—- -2 |U.
i (RﬁRf RaRf)

The resulting steady-state torque is:

1—Li/Rew

T =LI:1, =L
i = R Ry

U2 (3.55)
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Steady-state behavior: series DC machine
The series DC machine is characterized by:

U=U,+ Uy, I=1,=1I. (3.56)
We can rewrite the terminal voltage as
U= (Ra+ Ri) I +wLil = R'(w)I (3.57)
with the effective speed-dependent resistance
R'(w) = Ry + R¢ + wLi. (3.58)

The steady-state torque is then

T=1L%*=L; <R,[(Jw)>2 . (3.59)
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Steady-state behavior: series DC machine (cont.)

If the series DC machine is operated at the negative
mechanical speed

Ra + Rf
Wy = ————, (3.60)
L
the current and the torque get (theoretically)
infinite. This is due to the fact that the back EMF
is exactly compensating the resistive voltage drop.
Moreover, for from (3.59) we can observe that

T-0 = w—o (3.61)

holds for any DC voltage U # 0. This is due to
inherent, load-dependent flux weakening effect of
the series DC machine.
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Universal machine: series DC machine with sinusoidal excitation

From (3.59) it becomes clear that 7'~ I? holds u(t)4
and, hence, the torque is independent of the sign of
the current. Hence, the series DC machine can be >,
also operated with an AC voltage supply (so-called
universal machine). ,
z(t)“
Consider the sinusoidal excitation
>t
u(t) = tcos(wert + pu) = Re {ﬁeJ (weltﬂ’“)}
= Re {erw‘ﬂt} , T(t)4 /T\
which is represented by the complex phasor V :T \‘
U= Ueitn — Laej‘?’u, (3_62) Fig. 3.36: Qualitative voltage, current and
V2 torque signals for a universal motor
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Universal machine: series DC machine with sinusoidal excitation (cont.)

From (3.26) and (3.56) we can derive the complex voltage and current relations:

U= R(w)I+jwaLl

with L = L¢ + L,. The current phasor is

U

[= ——M
T R(w)+jwal

resulting in the instantaneous current (setting ¢, = 0)

-n) o o

U L
=2 TR IWNE cos <wel(t - R’(w))> .

Oliver Wallscheid Electrical machines and drives

(3.63)

(3.64)

(3.65)
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Universal machine: series DC machine with sinusoidal excitation (cont.)

The resulting instantaneous torque is

T(t) = Li?(t)

u(t)A

\

U? L \*
= 2L’— o
R(w)?2+wi? " (w =) )
U? L
7/
= Lf—R’(w)2 vy [1 + cos <2wel( ) ))] i)
The peak and average torque are
. U? 02
T =2L; = L;
TRI(w)? + w3 L? "RI(w)? + wiL?’ T(t)]
21
—  Wel [ @el 1.- (3 67)
T=— T(t)dt = =T. :
27 ®) 2
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Universal machine: series DC machine with sinusoidal excitation (cont.)

» Only if the reactance we L impact on the voltage
demand is negligible, the universal machine
average torque at AC mode is identical to the
series DC machine torque in DC mode applying
the same effective voltage.

» Due to the AC field current, both the armature

and stator should be based on a laminated iron
core design to reduce iron losses.

» The peak armature and field currents are v/2
times higher in the AC case than in DC
operation. To prevent magnetic saturation, the
iron paths must be designed larger than for an
equivalent DC machine (i.e., leading to more
volume and weight).

Fig. 3.37: Steady-state torque-speed
characteristics for different AC voltage
frequencies at a fixed voltage amplitude
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Commutation of the universal machine

Assuming that the entire air gap field ¢s is linked by the
commutation coil, the time-varying excitation field induces an
additional spark voltage us, within the commutation coil:

d
Usp = — CS% (368) _I
@ ()
Due to the time-varying excitation current, we have
¢5(t) = @5 cos(wert) and, hence,
p o
Usp = Ncawd(b(; sin(wet). (3.69)

This additional induced spark voltage is shifted by (approx.) Fig. 3.38: Simplified illustration of
90 degrees to the excitation field. Consequently, the interpole the induced voltage within the

winding current is not in phase and does not compensate . Shoriﬁ'rcu't?d Comr_:”:,at'op IC:;" by
e varying excitation fie
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Commutation of the universal machine (cont.)

Assuming an ideal inductive behavior of the short-circuited
coil, the induced spark voltage (3.69) leads to the current

. Nep
isp = —L—ngﬁg cos(welt). (3.70)
c
This additional current will promote commutator sparking
and, hence, the universal machine commutation process is
more challenging than for a pure DC machine.

Conlusion on the universal machine

The drawbacks of the universal machine in terms of siz-
ing and commutation sparking (leading to higher wear)
are the reasons why this machine type is typical limited
to low-cost applications (e.g., household appliances).
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Transformer definition

A transformer is a static device that transfers electri-
cal energy between two or more circuits through elec-
tromagnetic induction. It converts the AC voltage levels
between inputs and outputs.

» While a transformer is sometimes called a
“static machine”, it does not meet the formal definition of
an electrical machine (compare first chapter).

» However, transformers share some working principles with
electrical machines and are also often used as components
of electrical power systems including drives.

Fig. 4.1: Transformer integrated at
a utility pole (source: pxhere.com,
public domain)
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Examples of transformers

(a) Power supply transformer (source: Wikimedia (b) Single-phase transformer (source: Wikimedia
Commons, R. Spekking, CC BY-SA 4.0) Commons, Georg, CC BY-SA 4.0)

(c) Three-phase transformer (source: Wikimedia (d) Variable tapped transformer (source: Wikimedia
Commons, Asurnipal, CC BY-SA 4.0) Commons, public domain)
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Electromagnetic modeling of the single-phase transformer

Recap from (2.15): for some given current
%, the flux linkages 1) in the transformer
windings are

Pr_incwjary ;

; winding D1 S d

— wl — Ll M n = I Nturns | 0 LT i/ciﬁginary
P . 1 B— g

'(,ZJQ M Lg 19 i = N,turns

where L1 and Lo are the self-inductances

of the primary and secondary winding, "

respectively, and M is the mutual

inductance. —

Note: The above equation is an algebraic e

relation, that is, it is valid for any time
instant ¢ and applies to both AC and DC
excitation of the transformer.
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Dynamic modeling of the single-phase transformer

The dynamic transformer behavior can be represented by the ECD in Fig. 4.3, which also
considers the internal resistances of the windings. Applying Faraday's law, the resulting
differential equations are:

ur(®) = Ruia() + S0y (0) = Ryin(r) + 2210, (4.1)
Inserting (2.15) delivers:
ui(t) = Ryir(t) + leiéit) + Mdi;it), uz(t) = Roia(t) + Lo di;it) - Mdiéit). (4.2)

Ry M R Fig. 4.3: General equivalent circuit diagram

i1 N1~ N 12
O—P—E ! 2 :'—4—0 (ECD) of a transformer (note: that both ports

of the transformer are denoted in the load
Ui Ll L2 U2 convention reference frame which is an
arbitrary representation decision).

(e, O
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Dynamic modeling of the single-phase transformer (cont.)

The model (4.2) can be represented by the T-type ECD in Fig. 4.4. It may be noted that
L1 — M and Ly — M can have negative values due to the model representation.

By rearranging (4.2), we can also write the dynamic transformer model in vector-matrix form:

S 0 1 Y R

us(t)

Rl L1—M LQ—M R2 2‘2

iz Fig. 4.4: T-type ECD of a transformer (note
tm that the model (4.3) assumes linear
U1 M U2 time-invariant (LTI) behavior, which among
other effects neglects magnetic saturation).
[ & O
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Dynamic modeling of the single-phase transformer (cont.)
Rearranging (4.3) gives the state-space representation of the transformer model

d

70 = L™ (u(t) — Ri(t)) (4.4)
with
erzeal’y 2]-415 %)
LiLy—M? | Mo I, o L—lf\é L%
Above, o is the leakage coefficient defined as (compare also (2.18))
LiLy — M? M?
:leTzl_Llezl_kQ' (4.5)
Finally, the state-space representation of the transformer model (with the currents as states) is
i) = [_ﬁll by | 4y 1 | 74 _ffLAfL?] u(t) = Ai(t) + Bu(t).  (46)
dt L ol “LL ok | |
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Steady-state modeling of the single-phase transformer

Assuming that the transformer operates in steady state and that all quantities are sinusoidal,
the state-space model (4.6) can be simplified and represented by complex phasors:

z(t) = & cos(weat + vx) = Re {;f?ej (we1t+gox)} — Re {Xejwelt} '

From (4.3) we receive

U- [Ul] —RI+ijwaLl=ZI= [

Rl +jwelL1 jwelM 11
u- | } [ @)

jwa M Ry + jwelLa| 1o

For some given U we can calculate the current phasor I (i.e., the steady-state current
response) by solving:

I~

=Z'U. (4.8)

Alternative scenarios can be also considered, e.g., defining U; (input voltage) and I, (load
current) as given and solving for I, and U, by rearranging (4.7).
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Steady-state modeling of the single-phase transformer (cont.)
Assuming that the transformer is not loaded (I3 = 0) and that it is lossless (R; = 0), (4.7)

simplifies to
U, JwerLn
= |\ 1. 4.
|:U2:| |:.]welM =1 ( 9)
The voltage transformation ratio in this case results in

Ui jwaliy Ly

R 4.10
Uy  jwaMI; M (4.10)

Assuming further that the transformer is leakage-free (L1 , = 0), the voltage transformation
ratio simplifies to (compare also (2.17))

U L Aoy N2 N

bt Sl N LA\ S (4.11)
U2 M A21N1N2 N2

Hence, this famous result is only valid for the abstract case of a lossless, leakage-free, and,

unloaded transformer — i.e., not (exactly) applicable to real-world transformers.
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Transformation of the secondary side variables

Sometimes it can be helpful to (mathematically) transform the secondary side variables to ease
the mathematical analysis. This can be done by introducing the transformation factor «:
/ i 1 .
Uy = Qug, Q5 = —is. (4.12)
@
Here, uf, and i}, are the transformed secondary side voltage and current, respectively. The
primary voltage equation reads

diq(t dis(t diq(t dib (¢
’U,l(t) = Rlzl(t) + L1 Zl( ) + M 22( ) = R1Z1<t> +L1 Zl( ) + aM 22( )
de de dt dt (4.13)
. dil(t) /dié(t) -
= t L — s/
Ryiy(t) + Ly o M=y

with the transformed mutual inductance M’ = aM.
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Transformation of the secondary side variables (cont.)
Multiplying the secondary voltage equation with « gives

. diy(t diy (¢
auy(t) = aRaia(t) + als ;E ) aM clli(f )
dil(t diy (t
& (1) = a2Rip(1) + ?Lr T2 1 10 (4.14)
, .
& uh(t) = Rhih(t) + L} dzﬁit) + M dzcllit)

with the transformed resistance R, = a?Rs and inductance L} = o Ls.

i1 Ry L1 — M’ /2 - M Ré Z/2 io Fig. 4.5: T—type ECD of a
—«=o transformer with transformed
secondary side variables for some
U1 M’ u/g o« : 1| us| arbitrary transformation factor
(note that &k and o are
Y transformation invariant.)

o
[
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Transformation of the secondary side variables by the turn ratio
With

a =1 = Nyi/Nsy
being the turn ratio as the transformation factor, we receive:
M' = (Ni/No)M = Lim, Ly = (N{/N3)Ls (4.15)
with Lj ,, being the primary magnetizing inductance, cf. (2.17). Moreover, we have
Li—-M =Ly,  Ly—M =(N{/N3)Lyo =L, (4.16)

with L1 , and Lo, being the leakage inductances of the primary and secondary winding.

/ /
i Ry L1, 2.0 Ry il

22 Fig. 4.6: T-type ECD of a
transformer with @ = N7 /N5 (note
that all inductances within this
model representation have a direct
physical interpretation.)

/
Ui M' = Lim Ug |[N1:No| u2

[ L g

o
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Transformation towards a single stray inductance

With
a=M/Lsy
as the transformation factor, we receive:
Ly — M =ao’Ly —aM = Ly, = 0, (4.17)
that is, the secondary transformed leakage inductance is vanishing. Moreover, we have
Li-M =L,=0L;, M =M?/L,. (4.18)

With the alternative choice o = L; /M, the leakage inductance gets concentrated on the
secondary side (not explicitly shown).

: Lo = R} , .
o—Z>1—|% 1’r‘w7rv$\L1 ° :2'_3/2_ 22
Fig. 4.7: T-type ECD of a
u1 M’ u/g M:Lo| u2 transformer with o = M/ Lo
° e 0
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Typical transformer core types

» The core of a transformer typical build from laminated steel sheets (cf. Fig. 2.33).
Alternatively, sintered ferrite material is also used for high-frequency applications.

» To improve the coupling between primary and secondary winding, it is beneficial to place
the windings around the same leg. Hence, the middle example in Fig. 4.8 will exhibit a
larger leakage.

Shell type (EE) Core type (UU) Core type (UU) + distr. winding
/2 N #/2 N2

Fig. 4.8: Examples of typical transformer core types
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Toroidal core

Fig. 4.9: Examples of a toroidal core and a transformer made from it — note the laminated, wound up
steel sheets to form the toroid (source: Wikimedia Commons, public domain)
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Typical transformer winding schemes

» The below examples show improving magnetic coupling (lower leakage) from left to right
due to the reducing effective distance between the turns of the primary and secondary
winding.

» Beyond these examples, various winding variations (e.g., a combination of the below
schemes) are used to optimize the transformer design for specific applications.

Double Sandwich /
Cylindrical winding cylindrical winding disc winding

[ MVi/n
[ ]
[ ]
[ IN2/n
L]
L]

L

LIl |

Ll |
N1 No N1/2 Ny

Fig. 4.10: Examples of typical transformer winding schemes
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Core loss model (hysteresis and eddy current losses)

To also consider the iron losses inside the transformer core, a first-order model with the
additional core loss resistance R. can be introduced:

P~ R}~ - (4.19)

Here, we consider a pure sinusoidal operation with I. and U; being root-mean-square (RMS)
values. Obviously, this is only a very rough model approximation (compare Fig. 2.16 and

Fig. 2.33), but for many transformer designs the core losses can be significant and neglecting
them completely would not be justified.

/ /
Rl Ll,o 2,0 R2

71

ih 12
Fig. 4.11: T-type ECD of a

transformer with an additional core

Ui loss resistance R,

N1:No| u2

[, ® L g

o
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Transformer model parameterization via measurements — open-circuit test

Applying a sinusoidal test voltage U7, and several measurement devices during an open-circuit
arrangement, we can determine

Uio M Pro

I S = _flo
UZ,O N27 b Lotles COS((’DO) ULOILO

~
~

(4.20)

with Pj , being the active input power consumed by the transformer and cos(y,) is the power
factor. With the assumptions Ry << R; and L , << M', we can approximate

1, Ui,
R.~ =2, Xpyp=wagM' = =

: _Jle 421
P, I o sin(po) ( )

given the angular frequency we = 27 f) and the reactance X,/ of the mutual inductance.

1o Lo Lio I =0
Uio 0 Uz “~™"7 Fig. 4.12: Open-circuit (no-load)
l() o 1 lUl,o M’ test: measuring circuit and its ECD
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Transformer model parameterization via measurements — short-circuit test
Short-circuiting the secondary and applying a sinusoidal test voltage U; s, we can determine

P
Z, = \/(Rl R+ (X, + Xy )% cos(s) = o 1;1 (4.22)
sl

with Z being the short-circuit impedance while assuming that the impedance across M’ and
R, is much larger, i.e., the short-circuit current will not flow via this branch. Hence, we have

Ry + Ry = Zscos(ps), Xp,, + Xy, = Zs sin(eps). (4.23)

Since we have four remaining unknown component values but only two independent equations,
we additionally assume a symmetrical transformer design, leading to

1 L, .
R1 = RIQ = §Zs COS(QDS), welLLg = XLl,a = welLIQJ = AXVL/Q’(7 = §ZS sm(gps). (4.24)

Lo B1 Lio Ly,

FE] b
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X
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Further short-circuit considerations

Typically the short-circuit test voltage Uy s is limited such that the short-circuit current Iy is
reaching its nominal value I :

Uls
Us=u1sU1n, ©Lis=—7

= =1, 4.25
) Zs 1,1’1 ( )

Here, u1 s is the relative short-circuit voltage w.r.t. the nominal voltage U; ,. Typical values
are uj g =3...13%.

While the short-circuit test is conducted with a reduced primary voltage, the prospective
short-circuit (PSC) current during normal operation (typical as a fault result) can be
significantly higher:
Il,psc = % = UZLS = Il,n' (426)
s s Uls
Hence, the transformer parameters Zs and u; ¢ are crucial for the short-circuit behavior and the
protection coordination of the transformer. Lower bounds are typically enforced by standards to

prevent catastrophic damages, in particular in the electrical energy sector.

Oliver Wallscheid Electrical machines and drives 157




Voltage transformer application: measuring high AC voltages

If the voltage to be measured is too high for direct measurement, a voltage transformer can be
used to step down the voltage to a suitable level:

ua(t) = (1),

Hence, we choose i > 1. Moreover, the voltage sensor on the secondary side comes with a
high internal resistance R; to avoid a significant current and, therefore, power flow. Neglecting
the leakage inductance, we can model the voltage transformer as shown in Fig. 4.14 with

/ -2 / -2 !
Ri =Uu Ri, 9 = =u RQ, M = Ll,m~

The primary RL circuit represents a high-pass filter for the voltage signal, i.e., the transformer
is only suitable for AC signals with we; > R1/M’ (cutoff frequency).

t) I R i5(t)  Fig. 4.14: Voltage transformer

measuring circuit and its ECD
Uy (t) uz u1 (t) M’ R! (represented as transformed
quantities with & = N1 /Na)
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Current transformer application: measuring high AC currents
If the current to be measured is too high for direct measurement, a current transformer can be
used to step down the current to a suitable level:

io(t) = wii(t).
Hence, we choose i < 1. Moreover, the current sensor on the secondary side comes with a
minimal internal resistance R; to avoid a significant ohmic power losses. Likewise, the

transformer should be designed for low Ry and Ry (e.g., N1 = 1 on the primary and sufficiently
large cable cross-sections).

The secondary RL circuit represents a high-pass filter for the current signal, i.e., the
transformer is only suitable for AC signals with we; > (RS + Rf)/M’ (cutoff frequency).

i1(t)  ia(t) = i (2) i1 (t) Ba Ry i4(t) Fig. 4.15: Current transformer
measuring circuit and its ECD
w1 (t) ~ 01 11@(1?) ~0 lul(t) M’ R! (represented as transformed
quantities with o = N7 /N3)
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Connection nomenclature and tapped transformer

%:2.1
2.2
3.1
E3.3
3.2

Fig. 4.16: Connection nomenclature of Fig. 4.17: Tapped transformer with multiple taps on the
single-phase transformers (the lower secondary  secondary side for a train drive application (source:
side connection represents a tapped winding) Wikimedia Commons, Saibo, CC BY-SA 3.0)

1.13
1.2
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Autotransformer

» Uses a common winding for both primary and
secondary side with one or multiple taps.

» No galvanic isolation between primary and
secondary side.

» The autotransformer can be used to step-up or
step-down the voltage.

Fig. 4.19: Exemplary autotransformer
(source: Wikimedia Commons, R. Spekking,
CC BY-SA 4.0)

]

o

Fig. 4.18: Simplified autotransformer representation
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Autotransformer — step-down configuration
Assuming idealized conditions (no leakage, no losses), the apparent power of the standard
transformer S and of the autotransformer Sy; are:

S=U,11 = Usls, Sat = (Ul + UQ)Il = UQ(IQ — Il). (4.27)
1,100
Ir—1; 1.2
I U+ U
1,104 2,51 e 2.1
UllNl Ny lUQ Us
1.2 2.2 2.2

Fig. 4.20: Step-down autotransformer made from a standard two-winding transformer by connecting 1.2
from the primary to 2.1 on the secondary side

Oliver Wallscheid Electrical machines and drives 163



Autotransformer — step-down configuration (cont.)

From (4.27) we can express the autotransformer apparent power Sy in terms of the standard
transformer apparent power S:

U 1
‘%zah+wmzs+whzs+mﬁﬁzsa+?. (4.28)
1
Here, i is the (idealized) voltage transformation ratio of the standard transformer — compare
(4.11). Hence, we can express the apparent power of the autotransformer in terms of the

standard transformer apparent power:

St 1 Ny
=14+-=14-= 4.29
< + + N, ( )

For No/N7 > 0 the autotransformer can transfer more apparent power than the standard

transformer since the autotransformer combines two power transfer mechanisms:

» the apparent power Upl; is transferred via the magnetic coupling (induction) and

» the apparent power Usl; is transferred via the electrical conduction between primary and
secondary (not available in the galvanically-isolated standard transformer).
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Autotransformer — step-up configuration
The apparent power of the step-up autotransformer is
U .
Sat = Ul(ll — IQ) = (U1 -+ UQ)IQ = S(l + il) = S(l + u) = S(l + 7) (430)
2
Likewise to the step-down autotransformer, the step-up autotransformer can transfer more
apparent power than the standard transformer.

I

2.1

I 1.1 U1+U:
1.10— ooy
Ux
U{N1 No lUQ
1.2 2.2 1.2

Fig. 4.21: Step-up autotransformer made from a standard two-winding transformer by connecting 1.1
from the primary to 2.2 on the secondary side

Oliver Wallscheid Electrical machines and drives 165



Autotransformer remarks

The previous analysis has revealed that the
apparent power boost over the standard
transformer is significant if

» Ny >> N (step-down case) or
» Nj >> N (step-up case),

that is, the autotransformer’s input and output
voltage have only a small difference. In this
case, the autotransformer can be more efficient
and cost-effective than the standard
transformer (at the drawback of the lacking
galvanic isolation).

Fig. 4.22: 750 MVA, 380kV / 230kV three-phase
autotransformer (source: Wikimedia Commons,
P. Mertens, CC BY-SA 3.0)
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Autotransformer remarks (cont.)

Another challenge of the autotransformer is its short-circuit behavior. From the step-up case
we know:

N
o = S(1+ =
Sat = S(1 + Nz)
Dividing both sides by U; delivers
N
Lo =01+ 2. (4.31)
Ny

Hence, in case of a short circuit the steady-state current of the autotransformer is 1 + N; /Ny
times higher than the standard transformer:

Ny

) (4.32)

Il,at,psc = Il,psc(l +

The same applies to the step-down case. Therefore, the autotransformer may require additional
short-circuit protection measures to prevent damages (e.g., additional choke).
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Three-phase transformer

11aY Ula 1bY U1b 11cY Ulc
® o 0 0 0 0 ¢a ® o e 0 0 0 ¢b ® o o 0 00 ¢C

e o & o 0 o ® & & & 0 o e & & & 0 o
1224 Uy 12bg Ugh 12c4 U9
_— s _—

Fig. 4.23: Simple three-phase transformer with three independent single-phase transformers connected in
star both on the primary and secondary side
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Three-phase transformer with five legs

11aY lula 11pY |u1b 1cy |Ulc
v v
¢a ¢b ¢c
. x . x . x
(] x . x . x
(] x . x . x
¢_0 [} x [ x [ x @
2 . x 3 b § L] X 2
. x . x . X
L] x . x . x
L] x ] X . X
. . 'y .
12af Iu2a Lab) [u2b 12¢ quc

Fig. 4.24: Three-phase five-leg transformer connected in star both on the primary and secondary side
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Three-phase transformer with five legs (cont.)

Obviously, the three-phase five-leg design from Fig. 4.24 can save space and material compared
to the three independent single-phase transformers from Fig. 4.23. However, there might be a
zero flux component

¢0(t) = ¢a(t) + ¢b(t) + ¢c(t) (433)

flowing via the winding-free legs. This zero flux component can be avoided if the primary and
secondary side are connected both in star configuration

ila(t) + ilb(t) + i1c(t) =0, iga(t) + igb(t) + igc(t) =0

and if the magnetic reluctances A, of the three main legs are equal (i.e., symmetric design, no
saturation):

G0 = ba + b + ¢ = AmN1 (i1a(t) + i16() + i1c(t)) + Am N2 (i2a(t) + 26 (t) + d2c(t)) = 0.

Oliver Wallscheid Electrical machines and drives 171



Three-phase transformer with three legs (double star connection)

i1aY lula i1y lulb 21* l“lc
» If the flux zero component ¢y can
be avoided, a three-leg design as |
shown in Fig. 4.25 can be used.

» However, if ¢g # 0 due to an
asymmetric design, magnetic
saturation or non-ideal
symmetrical operation, the zero
component will act as a stray field
leaving the core.

w|§
o e o o
XX X X|[%xxxx
* e o 0
XX X X|[%xxx
® o o 0
X X X X||[xxxx

,,
¥

» This can lead to increased losses in
auxiliary components (e.g., i2af Tu2a i2p4 T“2b i20* Tu2c
housing) and electromagnetic
interference issues.

Fig. 4.25: Three-phase three-leg transformer connected in star
both on the primary and secondary side
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Three-phase transformer with three legs (star-delta connection)

. Sy i1 lula 1b luua 1) lulc
If the primary or secondary side is

connected in delta configuration, this ba b be
side can carry a zero sequence
current:

io = 3 (ialt) + (1) + 8c(1)) £ 0.

This zero sequence current would not
be visible in the phase conductors:

$io, 419p 19¢
lab = la — b, 4%2a1 Usa Alobe Ugp, +i2ca
The = ip — i, (4.34) o
lca = 1 — ta- Fig. 4.26: Three-phase three-leg transformer connected in a

star-delta configuration (delta on secondary is exemplary)
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Zero flux and zero current components in three-phase transformers
Based on (4.34) the winding currents on the delta side becomes

. . 1. . , , 1 . . . . I .
g, =10+ g (7/ab - an) , tph =10+ g (Zbc - 'Lab) , e =10+ g (an - Zbc) . (4-35)
If the secondary side is connected in delta, the zero sequence current will result from
$0 = Ga + I + P = P(i1a;42a,920) + P(i1bs i1, i20) + P(i1c, G2c,i20) =0 (4.36)
where ¢(-) is the (potentially nonlinear) magnetic flux function (e.g., including saturation).
4
iOA Ro ~ 0
. x |
%o : x lUO
3 x |
Fig. 4.27: Substitute model to represent the zero flux component
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Three-phase transformer connection and winding types
Each side of a three-phase transformer can be connected in:

Y/y: star connection, D/d: delta connection, Z/z: zigzag connection.

The winding nomenclature is as follows:

> First upper case letter: primary side (high voltage)

» Second lower case letter: secondary side (low voltage)

» Number (0...11): phase deviation between the primary and secondary side in °30 steps
» Optional: N/n for neutral connection of high/low side.

1Ul -~ 1U2 2U2 ~~mn2U1
1Vl -~ 1V2 2V2 -~ 2Vl

1W1L ~~rr 1W2 2W2 -~~~ 2W1
1N 2N

Fig. 4.28: Connection nomenclature of three-phase transformers

Oliver Wallscheid Electrical machines and drives



Three-phase transformer connection and winding types (example: Yd1)
Transformer connection Yd1 indicates

» Y: star connection on the primary side,
» d: delta connection on the secondary side,

» 1: phase deviation of 1-30° = 30° between the primary and secondary side.

Uwv
Uruv Usuv
Urw U coils: in —

phase on primary

& secondary Usvw

Urv Uawu

Fig. 4.29: Winding configuration and resulting phasor diagrams for Yd1 connection
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Three-phase transformer connection and winding types (example: Dy11)
The transformer connection Dyl1 indicates

» D: delta connection on the primary side,
» y: star connection on the secondary side,

» 11: phase deviation of 11 - 30° = 330° between the primary and secondary side.

U coils: in phase on primary & secondary
Uyuv Usuf\ U2uv

Urwy

Uivw Uaw Uav

Fig. 4.30: Winding configuration and resulting phasor diagrams for Dy11 connection
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Three-phase transformer connection and winding types (example: Dyb5)

In this example, the primary and secondary side are still connected in a delta-star configuration,
but, the polarity of the secondary side is reversed compared to the previous Dyll connection.
Consequently, the phase deviation is 5 - 30° = 150°.

Uiuvv

Urwy U coils: 180°
—_ phase shift

on primary

& secondary

Uauv Usu

Urvw

Fig. 4.31: Winding configuration and resulting phasor diagrams for Dy5 connection

Oliver Wallscheid Electrical machines and drives 178



Three- phase transformer connection symbols (vector groups)

o[ = R v I v A 7= I -1
1V

)1 A A )i \
U 1w 1y W1y W 4] 1w U 1w AIW
2V 2V 2y
2w 2w
2U w2V 2W
5U 2W 2V 2V 2V 2U

LI T TR T T
TTRCTT I T TR TT

2U 2V2W 2U 2V2W 2U 2vV2W 2U 2V2W 2U 2V2wW 2U 2V2W

Fig. 4.32: Exemplary (simplified) connection symbols for three-phase transformers and the resulting
phasor displacement representations
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Three-phase transformer voltage ratio

If the three-phase connection type changes between the primary and secondary side, the
voltage ratio between the primary and secondary side is affected — cf. Tab. 4.1.

primary Y D Y D Y D
secondary 'y vy d d z z

Un/Ugn 1 V3 1/V3 1 V3/2 3/2

Tab. 4.1: Idealized voltage ratios between primary and secondary due to different connection types
(assuming Ny = N3) with Uy 1 and Usjj being the line-to-line voltages on the primary and secondary
side, respectively
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Dynamic modeling of the three-phase transformer

Assuming a three-phase transformer without mutual coupling between the phases abc (as in
the three independent single-phase transformers from Fig. 4.23) and without saturation, the
magnetic flux linkage of the primary and secondary side can be expressed as

¢1a(t) L1, O 0 M, 0 0 _Zla(t)-
P1b(t) 0O Lyp 0 0 M, O i1p(t)
| ie(t) 0 0 Li O 0 M| |ic(t)| .
YO= )| = [Ma 0 0 Low 0 0| |ir)| ~FHO- (430
bop (1) 0 My 0 0 Lo 0| |isn(t)
’QZJQC(t) L 0 0 M. 0 0 LQC_ _igc(t)_

If the transformer’'s magnetic three-phase circuit is ideally symmetric, also

M:

holds.

Oliver Wallscheid

Ma:Mb :M07

Ly = L1y = L1y, = Ly,

Electrical machines and drives

Lo = Loy = Loy, = Lo
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Dynamic modeling of the three-phase transformer (cont.)
Hence, we have

¢1a<t) Ly O 0 M 0 0] Zla(t)
Yin(t) 0 Ly 0 0 M 0] |in@®
@ {0 0 L1 0 0 M| |ic(t)| _
it = Poat)|  |M 0 0 Ly 0 0 |i2a(t)]| Li(?)
Yan (1) 0 M 0 0 Ly 0] [in(?)
Vac(t) (0 0 M 0 0 Lo [d2(t)]
The voltage equation results from Faraday's law and Ohm's law:
Ry 0 0 O 0 O]
0O Ry 0 0 0 O
e d.. [0 0 R 0O 0 O d.
u(t) = Ri(t) + Laz(t) =lo 0 0 R 0 0 i(t) + Laz(t)
0 0 0 0 R O
L0 0 0 0 0 Ro]

Oliver Wallscheid Electrical machines and drives
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Dynamic modeling of the three-phase transformer (cont.)
Due to the ideal three-phase symmetry, the model relation per phase pair on the primary and
secondary side are identical for all three phases, i.e., we can split up the model into:

(
(
U2hH (t
(

ety
0
[Zi(g:

‘R,
1 0
‘R,
1 0
‘R,
1 0

) oo [ 2] o]
) i) [ 22J e o)

) nto [ 2w o]

dt |ige(t)

Hence, under the made assumptions the same ECD from Fig. 4.4 for the single-phase
transformer case can be also used to model the three-phase transformer.

Oliver Wallscheid
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(4.40)
(4.41)

(4.42)
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Conceptual idea of a rotating magnetic field

Qe

i,

Fig. 5.1: Animation of a rotating magnetic field produced by three-phase currents in three coils both
physically and electrically displaced by 120° (inspired by C. Joubert)
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https://perso.univ-lyon1.fr/charles.joubert/web_anim/simen_rotfield_create.html

MMF distribution of a single-phase coil
4 93

—Ni+

Fig. 5.2: MMF of a lumped single-phase coil with N turns for some current i, # 0 with the rotating
integration path 05 along the circumference coordinate vJ. The rotor is considered an unspecific solid
iron dummy. Both stator and iron have infinite magnetic permeability.
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MMF distribution of a single-phase coil (cont.)
Utilizing Ampere's law in the magnetic network context from (2.33)

H-ds:if:Ni:ZHk:Zlka
oS & &

and assuming that the air gap path along § is dominating the magnetic circuit, we have

1 1 | Nip for —7w/2 <9 <7/2,
Hy(9) = 556,(0) = 25{

5.1
26 ° —Ni, form/2<¥ < 3n/2. (5.1)
0a
Niy
i 7ir 3 2=77 v
,]\Ti[a,,
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Air gap flux density distribution of a single-phase coil
With B = poH in the air gap and an alternating current i, = i,(t), we have

Ni,(t for —7w/2 <Y < w/2,
B,(0,1) = 10 { Niall) /229 <nf (5.2)
20 | =Niy(t) for m/2 <9 < 3m/2.
B, B;E”(ﬂ)* :\ Ba
“B.(9) (1) gy
B ) — Fig. 5.3: Air gap flux density
. . “Ba(v) | | distribution of a lumped
in ™ 8r  on ¥ i 7 Br  on ¥ single-phase coil representing a
4 spatiotemperal function
together with its fundamental
T component BMW
(a) ia(t) =1 (b) ia(t) = i/2
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Fourier analysis of the air gap flux density distribution

Assuming a sinusoidal current i,(t) = i cos(wt), we have

Ba(9,1) = (5.3)

1oNi {cos(wt) for —mw/2 <9 <m/2,
20 | —cos(wt) for /2 <9 < 37/2.
B
The flux density distribution therefore is periodic and has a sinusoidal shape over t as well as a

rectangular shape over 1. To analyze the latter in terms of its fundamental and harmonic
components, we utilize the Fourier series expansion for some arbitrary ¢ € R:

Ba(9,t) = Ba(9) = B® + Y " B® cos(kv) + B sin(kv), (5.4)
k=1

for harmonic order k € N with amplitudes Eék) € R and BZGC) € R as well as offset B(®) € R.
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Fourier analysis of the air gap flux density distribution (cont.)
The Fourier coefficients of (5.4) are

27
B@zl/_mmm
0

2w
2T
B@:i/ B(9) cos(kd)do), (5.5)
0
2T
B@—lf B(9) sin(kv)do.
™ Jo

Since the positive and negative areas under the MMF curve in Fig. 5.2 are identical in size, the
magnetic field does not have any offset component:

BO — .

Furthermore, (5.3) is an even function, i.e., B(¥) = B(—1) (i.e., the function is
mirror-symmetrical to the ¥ axis — cf. Fig. 5.3), leading to

B = .
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Fourier analysis of the air gap flux density distribution (cont.)
Finally, (5.3) is symmetrical w.r.t. the abscissa, i.e., B(J) = —B(¢ + 7) (mirrored positive and
negative half-wave), leading to

B® =0 for k=24,6,....

Summarizing the above, the Fourier series for the air gap flux density boils down to

2m
Z ) cos(k?)  with  B¥) = E B(99) cos(kv)dd. (5.6)
T Jo
13,5

Utilizing symmetry of the flux distribution as shown in Fig. 5.3, we can calculate Bék) for the

remaining odd k = 1,3,5,... harmonic orders as follows:
. 92 w/2 NA' /2
Bk = = B(9) cos(k¥)dd = pot cos(wt)/ cos(kv)dv
_ pmoNi kT . km ] 2uNi . kT
= o cos(wt) [sm( 5 ) — sin(— 5 )} =5k cos(wt) sin( 5 ).
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Fourier analysis of the air gap flux density distribution (cont.)
The Fourier series describing the spatiotemperal air gap flux density distribution of a lumped
single-phase coil is therefore

2u0Ni =~ 1 .k
B.(9,t) = M(SOW ! cos(wt) k_§5 %sin(g)cos(/m?)
OO_ ’ 1 (5.8)
= ;B cos(wt) Z Esm(—) cos(kd)
k=1,3,5,...
This series can be further decomposed into
sin(kg) =1 fork=1,509,..., sin(%r) =—-1 fork=3,7,11,....

Also, the fundamental component B of the air gap flux density distribution is 4/7 times
higher than the amplitude B of the original square wave function from (5.3) while the
harmonic amplitudes decrease with 1/k.
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Fourier analysis of the air gap flux density distribution (cont.)
Ba,

Flux density harmonics

The existence of harmonics is to
be attributed to the spatial layout
of the winding. The phase current
was assumed to be of pure sinu-
soidal form, i.e., is not causing the
flux density harmonics (in our sim-
plified investigation).

Fig. 5.4: Decomposition of B(¢,t) for t = 0 into its
fundamental and its first harmonic components
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Stators with multiple pole pairs

ol
3
3

W
3
N
3

<

Fig. 5.5: MMF of a lumped single-phase coil with two pole pairs p and N/p turns per pole pair for some
current i, # 0 with the rotating integration path 95 along the circumference coordinate ¥
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Stators with multiple pole pairs (cont.)

Following the same derivation as previously for machines with p > 1 pole pairs, we have

210N = 1
B,(9,t) = 'L(;ST ! cos(wt) Z Z Sin(%r) cos(kpt)
p k=135, (5.9)
= ié cos(wt) i 1 sin(kj) cos(kp?) |
TP k=1,3,5,... & 2

Compared to the single-pole pair case, the flux density

» amplitude is reduced by 1/p (due to the winding turns being distributed over p pole pairs),
» spatial frequency is increased by p: 9 — pd.

The latter implies that the fundamental and harmonics of B(J) repeat p times more often over
the (mechanical) stator circumference (compare Fig. 5.4).
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Stators with multiple pole pairs (cont.)
From the previous finding

4 — 1
B,(v,t) = W—chos (wt) N %:5 7 sin si cos(kpﬁ)

we can conclude that the field distribution for p > 1 is repeated p times over the mechanical
stator circumference, assuming that the machine is ideally identical for each pole pair.

Electrical vs. mechanical angle
To simplify the following analysis, we introduce the electrical angle

Vel = pv, (5.10)

i.e., to complete one mechanical revolution, the electrical angle has to complete p rev-
olutions. The field description in the electrical coordinate system is therefore sufficient,
as this is merely repeated in the mechanical system.

Oliver Wallscheid Electrical machines and drives
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Basic rotating field model

We assume an ideal three-phase stator current:

isb(t) = is cos(wt — 2m/3), (5.11)
is,c(t) = is cos(wt + 27/3).

The index 's’ indicates stator quantities, but is
omitted in the following as we will only consider
stator quantities until further notice, i.e.,

is,a(t) = ia(t)v is,b(t) = ib(t)a Z.s,c(t) = ic(t)

and ig = 1.

Fig. 5.6: Elementary three-phase stator

winding with lumped coils displaced by 120°

(p =1 pole pair)
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Basic rotating field model (cont.)

Transferring the finding (5.9) to the three-phase stator winding from Fig. 5.6 (considering an
arbitrary number of p > 1 pole pairs), we have

™

4 — 1
Ba(9q,t) = — B cos(wt) Z Z sin <k‘27r) cos(ke),

k=1,3,5,...
4 . 27 > 1 (krm 27
By (Y, t) = ﬂ—pB cos (wt — 3> Z Z (2> COS <k‘79e1 — k3> , (5.12)
k=1,35,...
4 . 2w > 1 (krm 2w
B.(Ve,t) = W—pB cos (wt + 3) k%; z <2> cos <k"l9€1 + k3> .
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Basic rotating field model (cont.)
Applying the decomposition
cos(z) cos(y) = % [cos(z —y) + cos(z + y)]

to (5.12), we obtain

2~ e 1
B,(¥a,t) = W—pB Z — sin k;-) [cos(wt — ke1) + cos(wt + k)],
k=1,3,5,...

2 4 = 1. [(kr 27 27
By (Ye1,t) = —pB Z 7 sin () {cos(wt — kg — 3(1 —k)) + cos(wt + ko — ?(1 + k))} ,

2 . = 1 k 2 2
B(Wa,t) = —B Y sin <’r> {cos(wt — ke + %(1 — k)) + cos(wt + ki + %(1 + k))} .
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Positive and negative sequence decomposition
Hence, the decomposition led to two sinusoidal fields rotating in opposite directions:

cos(wt — ki) = cos(kde — wt) and cos(wt + kve1)
| ——
positive sequence negative sequence

cos(wt) cos(?)

| 5 cos(¥ + wt)

wt =0 wt =m/3

Fig. 5.7: Decomposition of the alternating field into positive and negative sequence components for
p=1land k=1
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Resulting field: positive sequence part
To describe the resulting field distribution (as visualized in Fig. 5.1)

B(Je1,t) = Ba(Ve1,t) + By (Jel, t) + Be(Vel, t) (5.13)
we analyze the positive and negative sequences separately. Utilizing
cos(z £ y) = cos(x) cos(y) F sin(x) sin(y)
we obtain for the positive sequence:
27 27
cos(wt — kie)) + cos(wt — ke — 3(1 —k)) + cos(wt — ke + 3(1 —k))
2w 2w
= cos(wt — ki) + cos(wt — k1) cos(— 3 (1 —k)) + sin(wt — k) sin(—- 3 (1—k))
2 2m
+ cos(wt — kdep) cos(—- 3 (1 —k)) —sin(wt — k) sin(—- 3 (1—k)).

Hence, the sine terms cancel out each other.
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Resulting field: positive sequence part (cont.)

Summarizing the above, we have
27 2m
cos(wt — kte)) cos(wt — ke — ?(1 —k)) + cos(wt — ke + 3(1 —k))
2
= cos(wt — kdq)(1 4+ 2005(%(1 —k))).

Considering cos(n2m) = 1 and cos(47/3 + n2m) = cos(2w/3 + n2w) = —1/2 for n € Z we
observe the following for the positive sequence

3cos(wt — kdq) for k=1,7,13,19,...,

0 for k=3,5,9,11,15,17,....
(5.14)

Hence, there are multiple harmonic orders which cancel out each other, among others, any

multiple of £ = 3. Moreover, the positive sequences of all three phases carries the fundamental

component for k = 1.

cos(wt — ki) (1 + 2 Cos(%r(l —k))) = {
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Resulting field: negative sequence part
For the negative sequence part of

B(Uel, t) = Ba(Vel, ) + Bp(Vel, t) + Be(Ver, 1)
we rewrite the following terms
cos(wt + k) + cos(wt + ke — 2?( + k)) + cos(wt + ke + 2%T(l +k))
_ C%@¢+ka+C%@w+km9qu(1+k»+sm@¢+kmo$mz(1+k»
+ cos(wt + kde)) cos(23 (14 k)) — sin(wt + k) sin( 23 (1+k))

and find for the negative sequence

(5.15)

2m 3 t+ kdy) fork=5,11,17,...,
cos(wt + ke ) (1 + 2 cos(— 3 (1+k))) = { cos(wt + ki) for

for k=1,3,7,9,15,....
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Resulting field: summary

Combining the positive and negative sequences, we receive

cos(wt — ki) for k=1,7,13,19,...,

1
BV, t Z 7 Sin 1 () cos(wt + ki) for k=5,11,17,..., (5.16)
k 0 otherwise.
Utilizing cos(—x) = cos(z) and sin(—z) = —sin(z), we can rewrite the above as
6 ~=1 ; km
B(¥a,t) = — Z - sin cos(wt — kig) for k=1,-5,7,—11,13,—-17,.... (5.17)
k

Here, the negative sequences are represented by the negative harmonic orders. Finally, one can
note that the amplitudes of the resulting field from the three-phase excitation (5.17) are 3/2
times higher than in the single-phase case from (5.9).
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Stator winding examples

(a) Induction machine with fed-in stator winding (b) Hydrogenerator with form-found stator winding
(source: Wikimedia Commons, J. Pharos, (source: Wikimedia Commons, Astronomyinertia,
CC BY-SA 3.0) CC BY-SA 3.0)

Fig. 5.8: Examples of three-phase stator windings with different configurations
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Winding as a distributed coil system

In contrast to the lumped-coil representation from Fig. 5.6, the stator coils per phase are
distributed over the stator circumference. To describe the winding layout, we (re-)introduce:

@ : number of slots, m : number of phases (usually m = 3),

qg= Qi : number of notches (number of slots per phase and pole), p;, : pole pitch (elec.).
DM

b a c b a c
e = e

RIS QL @O @ 1@ QL I® Q@ [© |©_|®_ ¥ |®_[© ©_|©

Pp

0 /2 7 3m/2 o1 Vel

Fig. 5.9: Example scheme of a distributed winding with @ = 18,p = 1,¢q = 3 (adapted from J. Bocker,
Controlled Three-Phase Drives, Paderborn University, 2021)
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Distributed winding: same width coils

(a) Simplified unwound cross-section view (adapted (b) Front view on end winding (adapted from
from J. Bocker, Controlled Three-Phase Drives, W. Novender, Elektrische Maschinen, Technische
Paderborn University, 2021) Hochschule Mittelhessen, 2023)

Fig. 5.10: Realization of a distributed winding through windings of same width y
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Distributed winding: varying width coils

e

Pp

[ Y
Y2
Y3
(a) Simplified unwound cross-section view (adapted (b) Front view on end winding (adapted from
from J. Bocker, Controlled Three-Phase Drives, W. Novender, Elektrische Maschinen, Technische
Paderborn University, 2021) Hochschule Mittelhessen, 2023)

Fig. 5.11: Realization of a distributed winding through windings of varying widths y;
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Distribution factor

As a result of the winding distribution, the MMF results in a staircase form as shown in
Fig. 5.12. Hence, the field distribution calculation from (5.8) has to be adapted.

Nia_| . AY I
p R N
2Nig mq
qp
\
1 f 3 19?
571' 7T 577' el
_Nia |
P

|® |® |®| | |® |® |®|

Fig. 5.12: Example of the MMF of a distributed winding scheme
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Distribution factor (cont.)
Starting from

B.(¥e) = Z B(Ek) cos(kte))
k=1,3,5,...
R k 2 7T/2
B® = / B(Ye) cos(kte)de
T J—m/2

we rewrite the integral considering shifted coils by A
steps (i.e., kA steps for the k-th harmonic order) with
N/q turns per coil based on the distribution of a single
lumped coil B’ from (5.7):

-1 . . .
. 2 a . /2 Fig. 5.13: Representation of the coil
k A9k
Bé ) = - Re { § :ej ! / B (V1) cos(kder)dde ¢ - displacement by A4 steps for a
1 =0 —m/2 distributed winding with ¢ =3 and p =1
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Distribution factor (cont.)

The discrete coil displacement angles are (assuming that the @ slots are evenly distributed over
the stator circumference, i.e., AY = p27/Q)

—1 19 P
AYy =L T ST T forl=0,1,...,q—1. (5.18)

2 mq mq 2 7 Q Q

Hence, we can rewrite the Fourier series coefficient integral as:

. 1 q_l . 2 7'('/2
B = “Re {ZeJMzk} = B’ (9e1) cos(ke))dd . (5.19)
q -0 ™ J—n/2
a,k single lumped-coil integral

Hence, the Fourier coefficient of every harmonic order k is multiplied by the distribution factor

Ed k-
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Distribution factor (cont.)

To write this &g, more compactly, we rearrange

[y

Q

q—1 q—1

: ib(—4=Ll,2m 27 _ipa=l,2m e 2m\
E IOk :E :ejk( T PG HPG) _ ik (eJka> (5.20)
1=0 1=0

N
Il
=)

and utilize the finite geometric series expression

;o 1—af
xr =
1—z
=0
to rewrite
g-1 1 _ ke

Oliver Wallscheid Electrical machines and drives 215



Distribution factor (cont.)

The latter can be further rewritten as

kap2rl [ ikap2ml  ipgp2rl
1-— ejkqp%r SR (e kapg e _ (kePQ 2)
1_ G ks (e—jkp%% _ s 1)
Utilizing the identity
et — e7IT
sin(z -
@="
we can further rewrite
-1 i 27 jkqp2z L o\ e o 1 o 1
q p2m\l 1 — S R 2(—2])8111(]{3(]]967 o2z ozt sm(kqui)
<€ Q) - wZ T EL oo a1y ¢ 2T L (5.21)
= 1= MG G (2 sin(hp2s L sin(kp% )
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Distribution factor (cont.)

Inserting (5.21) into (5.20) we finally receive

Cikp2m a=1 2w g— 1Sln(kqp2”%)
ak = fRe {Z eJMl’“} e QT JF e 4sm(kng1)
Sm(kqu’r 3 sin(kgp)
- qs1n(l<:p27r 1) - qsin(kp%) (5.22)
sin ( ot )

asin (32)

» |£4,k] <1 holds for all parameter combinations.

» The factor describes the change of each harmonic component due to the distributed
winding compared to the (idealized) lumped-coil case.
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Pitch factor

If windings are not implemented as diametral winding,
i.e., the winding width gy is smaller than the pole pitch
Pp:

y<pp=m,
the winding is called chorded. Hence, the starting and
end position of the coil are shifted towards
+(y/pp)(m/2) along the circumference. Consequently,
the Fourier coefficients of the chorded winding are:

Y

g(k)_Q/g"
¢ T J_

s
2

kel

B('lgel) COS(kﬁel)dﬁel. (5.23)

S

Fig. 5.14: Representation of a chorded
coil for a distributed winding with ¢ = 3
andp=1

)

P
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Pitch factor (cont.)
Continuing from (5.23), we can rewrite the integral as

R 2 ™Y R s
Bc(k’) == /2 e B(V¥e1) cos(k¥e))d¥e) = — B cos(wt) /2 . cos(kie))ddel
T jus v ™
5% 5% (520
2 . 1 Yy . Ty ] 4 - 1. Yy
= —Bcos(wt)— |sin(k-—) —sin(—k—-—)| = —B cos(wt)—sin(k—-—
2 Broostwn) . [sinliy 2) —sin(k 5 2) | = 2 Boosfn) sin(hG )
Compared to the unchored case (5.7), the Fourier coefficients are
i Ty
sin (k:2 pp)
sin (k:g)
smaller. As the magnitude of the denominator is always one, we define
. ™Y
ép ke = sin <k:> 5.25
b 3 (5.25)

as the pitch factor.
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Winding factor

Considering both, a distributed and chorded winding, we receive

—1 Ty
R 1 — . 2 (25
Bék) — “Re {Z eJAﬁl’f} z /2 v B(9e1) cos(kte1)die)

¢ | = g
4 . 1 i (5
— % reos(un) sin (1 2 ) o0 (gm) (5.26)
T k 2 pp gsin (%)
4 . 1
= —Bcos(wt)— &a kép i
T k—

gw,k

with & 1 = &q,16p,x being the winding factor. It describes the change of each harmonic
component due to the distributed and chorded winding compared to the (idealized)
lumped-coil case (which would be equivalent to & 1 = 1).
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Winding factor: examples

Machine A Machine B Machine C
q=1, y/pp,=2/3, q=2, y/p,=5/6, q=3, y/pp="7/9,
Q/p="6 Q/p =12 Q/p =18

Eak  Spk Ew.k §d k Ep k Ew ik §d k Ep Ew.,k

1 0.866 0.866 0.966 0.966 0.933 0.960 0.940 0.902

1 0 0 0.707 -0.707 -0.500 0.667 -0.500 -0.333

1 -0866 -0.866 0.259 0.259 0.067 0.218 -0.174 -0.038

1 0.866 0.866 -0.259 0.259 -0.067 -0.177 0.766 -0.136
9 1 0 0 -0.707 -0.707 0.500 -0.333 -1.000 0.333

1

1

1

~N oW

11 -0.866 -0.866 -0.966 0.966 -0.933 -0.177 0.776 -0.136
13 0.866 0.866 -0.966 -0.966 0933 0.218 -0.174 -0.038
15 0 0 -0.707 0.707 -0.500 0.667 -0.500 -0.333

Tab. 5.1: Winding factors for different winding configurations for three-phase machines (m = 3)
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Winding factor: remarks

Winding factor interpretation

The winding factor &  mathematically maps a (real-world) distributed (and eventually
chorded) winding with N turns in slots distributed over the stator circumference to an
idealized (abstract) lumped-coil representation with N - &  (effective) turns. For
following calculation steps (e.g., in a three-phase machine model — compare Fig. 5.6),
one can utilize the simplified lumped-coil representation without systematic modeling
errors thanks to the winding factor concept.

v

» With respect to Tab. 5.1 one can also observe that the winding configuration choice has a

direct impact on the harmonic content of the flux density distribution.

» As those will also influence the production of torque and induced voltage (harmonics), the

winding factor is a crucial parameter for the design of electrical machines.
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Winding factor: limitations
The winding factor approach leading to (5.26) was based on several (implicit) assumptions:

» The number of slots per phase and pole is a (positive) integer: ¢ € N.
» The slot distribution is even over the stator circumference.

However, these assumptions do not apply to all (typical) winding configurations, in particular
fractional slot windings where

Q
=5~ €Q
pm
is represented by a common fraction, i.e., rational number.
—60° 0° 60°  180°  300°  420° 9

Y

Cﬁ’gj_@ b C a b C a b %c
Fig. 5.15: Example scheme of a fractional slot concentrated winding with Q@ =9, p =3, ¢ =1/2
(adapted from J. Bocker, Controlled Three-Phase Drives, Paderborn University, 2021)
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Concentrated winding

» Concentrated winding: the coils per phase are wound around single stator teeth.
» Allows for smaller end windings (i.e., less copper and reduced motor length) compared to
distributed windings.

Fig. 5.16: Example of a concentrated winding where
conductors form coils centered around single stator teeth
(source: Chan-Ho Baek et al., Iron Loss Analysis of a
Concentrated Winding Type Interior Permanent Magnet
Synchronous Motor with Single and Dual Layer Magnet
Shape, MDPI Machines, 2021, CC BY 4.0)
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Complex winding factor
The complex winding factor (here: for phase a) is defined as

Q
1 : .
Sk TN D NyeltVeta (5.27)
R AL

with N, ; € Z being the number of conductors in slot 7 at the position ¥ 5, with

Q
Na =Y |Nail (5.28)
=1

being the total number of conductors. Moreover, N, ; represents the orientation of each
conductor by

» N,; = 0: no conductor is in slot 4,
» N,; > 0: conductor is oriented towards the positive z-axis (directed towards reader),

» N,i < 0: conductor is oriented towards the negative z-axis (directed away from reader).
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Complex winding factor (cont.)

The complex winding factor is a generalization of (5.19) weighting the contribution of each

conductor to the k-th harmonic (compare Fig. 5.17). Hence,

» the conductor positions ¢ »; are arbitrary and do not need to follow a specific distribution
pattern (i.e., applicable to arbitrary slot configurations),

» the magnitude of the complex winding factor |§ak] € [0, 1] indicates the dampening of the
harmonic component k due to the winding configuration,

» the phase of the complex winding factor Aéa,k indicates the phase shift of the harmonic
component k£ compared to the winding layout.

Ideal current distribution, Ideal current distribution
3rd harmonic

0 /2 m 31/2 2 Vo

Fig. 5.17: Qualitative illustration of the complex winding factor as a comparison of the actual current
distribution compared to the ideal distribution belonging to a certain flux harmonic
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Complex winding factor (cont.)
While (5.27) represents the complex winding factor for phase a, the complex winding factor for
phase b and c can be derived by rotating the coordinate system by +27/3:

Q Q
1 j 27 1 3 27
= T E PLCE it = E ik (Ve a7 3
§b,k - JNb g Nb;Le ( 1 3 )7 éC,k‘ = JNC — NC716 ( 1 3 ) (529)
Hence, - -
éa,k - e_Jk?éb,k = ejk?éck (5.30)
applies.

Harmonic orders

While regular symmetrical windings with ¢ € N will only produce certain harmonic
orders (k = 1,3,5,7,... — cf. (5.12)), arbitrary winding configurations can produce
further harmonic orders k € Q (in particular if ¢ is a common fraction).
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Complex winding factor: example
Based on the below table describing the winding scheme information from Fig. 5.15 we have

§a,k = Jl6 ( 165 + 165" — "5 £ e™8" — %" 1o k137ﬁ> ,
1= ;; ( 165 +160% — % £ el — s +ei”7”) — —0.866,
§a72 = Jl6 ( 165 4178 —e'3" 4 el5 — 78 4 ejMTW) = —0.866,
§os = ;6 (—1el™ + 16T — T 4 T _ (I3 4 i1TT) — ),

i-thslot 1 2 3 4 5 6 7 8 9
7 . 13

Vel,ai %71' s %7’[’ sm 3T Gm  Fm ST T
Nai -1 0 1 -1 0 1 -1 0 1

Ny i 1 -1 0 1 -1 0 1 -1

Nei 0 1 -1 0 1 -1 0 1 -1
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Basic induction machine (IM) representation

» Three-phase stator + three-phase rotor:
“rotating three-phase transformer”
(plus air gap)

» Rotor angular speed: w;

» Rotor angular displacement: ¢,

» Index “s" for stator, “r" for rotor quantities

Fundamental wave model

While the previous chapter has revealed that the
magnetic flux distribution in the air gap is sub-
ject to plentiful harmonics, the following model
limits itself to the fundamental wave.

Oliver Wallscheid Electrical machines and drives

Fig. 6.1: Elementary three-phase induction
machine (IM) lumped-coil representation

(p =1 pole pair)
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Visualization of the asynchronous IM operation

0.0

—0.5

-10
0.000 0.003 0.005 0.007 0.010 0.013 0.015 0.018 0.020

0,000 0.003 0.005 0.007 0.010 0.013 0.015 0.018 0.020

10 10
;05
;; 0.0
¥ o5

~10 ~10

0.000 0.003 0.005 0.007 0.010 0.013 0.015 0.018 0.020 0.000 0.003 0.005 0.007 0.010 0.013 0.015 0.018 0.020

B ficld (stator normal component, fundamental)
0.5 N Lorentz Foree

-1.0
0.000 0.003 0.005 0.007 0.010 0.013 0.015 0.018 0.020
tins

0.000 0.003 0.005 0.007 0.010 0.013 0.015 0.018 0.020
tins

Fig. 6.2: Exemplary IM operation at w = 2#50% in motoric operation (positive average torque)
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Visualization of the asynchronous IM operation (cont.)

0.0

—0.5

-10
0.000 0.003 0.005 0.007 0.010 0.013 0.015 0.018 0.020

0,000 0.003 0.005 0.007 0.010 0.013 0.015 0.018 0.020
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;05
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~10 ~10

0.000 0.003 0.005 0.007 0.010 0.013 0.015 0.018 0.020

0.000 0.003 0.005 0.007 0.010 0.013 0.015 0.018 0.020

1.0

B ficld (stator normal component, fundamental)
0.5 N Lorentz Foree
0.0

0.5 \\_/ ;
-1.0

-1.0
0.000 0.003 0.005 0.007 0.010 0.013 0.015 0.018 0.020 0.000 0.003 0.005 0.007 0.010 0.013 0.015 0.018 0.020
tins

tins

Fig. 6.3: Exemplary IM operation at w = 27750% in no-load operation (zero average torque)
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Dynamical IM model

Based on Faraday's and Ohm's laws, we can write the following equations for the stator

d ug o () ig.a(t) d Vs a(t)
Ug ape(t) = Rstg ape(t) + a‘ﬁs,abc(t) & (ug,(t) | = Rs |5, (0| + o | Y5, (1) (6.1)
us c(t) ig.c(t) Vsc(t)

and rotor

g (1) 0] 4 [Yha®
u;,abc(t) = R 2 abc( ) + 'lnbr abc( ) < ui,b(t) = Rl“ err,b(t) + a ;ﬂ,b(t) (62)
r T T
Uy (1) ir (1) re(t)
which are generally applicable as only identical resistances per phase on the stator and rotor
are assumed. Above, the lower index denotes the physical location of the quantities, while the
upper index indicates the coordinate system orientation.
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Flux linkage model

In contrast to the simple three-phase transformer
model (4.38), the flux linkage model of the IM is
more complex:

» Due to the spatial 120° phase shift between the
windings of the stator and rotor, the abc phases
are all mutually coupled.

» The flux paths and physical dimensions of the
stator and rotor are not identical, i.e., the rotor
and stator inductances are different (even if the
winding turns Ng and N, are identical).

» The coupling between the stator and rotor is
rotor position-dependent (not explicitly shown on  Fig. 6.4: Simplified representation of the

the right due to space limitations). inductive coupling between the stator/rotor
phases of the IM
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Flux linkages of the three-phase model

Based on the previous considerations, the flux linkages are given by

L _Ms _Ms-
M o | s N .
:,abc(t) = |- Ly 57| s, abc( ) + M, N Rabc(gr 81<t))7’r,abc(t)7
_Ms M L
L 2 2 s
S (6.3)
r T2 T2
. N, .
i,abc(t) = _J\gr L, _]\;[r Z;abc(t) + MSﬁrRabC(Er,el(t))Tz:,abc(t)
M, M, s
L2 T2 Ly

with ey c1(t) = pec(t) and the transformation matrix

cos(erel(t)) cos(erel(t) + 2%) cos(erel(t) — %’r
Rabe(erel(t)) = |cos(eral(t) — %’r) cos(erel(t)) cos(erel(t) + %’r
cos(erel(t) + %’r) cos(erel(t) — 2;) cos(erel(t))

)
)| (6.4)
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Inductance matrices of the three-phase model

The inductance matrices

Ly -
M.
Ls,abc = |— 25 Ls
_Ms _ M
2 2

are based on the following considerations.

» The self-inductances cover both the leakage and mutual coupling to other windings:

Ls/r - Ls/r,a + Ms/r'

» The mutual inductances on the stator/rotor M;/, are identical, as all three phases share the

M, _ M

Lr 2 2

M, M,

Lr,abc = |— 2r Lr - 2r
_ My M,y

2 2 Lr

same magnetic paths and have the same winding turns N .

» The mutual inductances on the off diagonal represent the spatial displacement of the
stator /rotor coils by +120°, which is why they are multiplied by cos(+120°) = —0.5.

» In (6.3), the coupling term between stator and rotor is multiplied by the turn ratio to
account for the different winding turns N/, (i.e., mapping the mutual inductances between

stator/rotor).

Oliver Wallscheid
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Orthogonal representation: alpha-beta coordinates

» The three-phase IM model is obviously quite
unhandy: six differential equations plus a rather
complicated magnetic circuit representation.

» Remedy: transform the three-phase model into
the orthogonal a8 coordinates.

» Advantage: only four differential equations and a
simpler magnetic circuit representation (as one
will see on the next slides).

Coordinate transformations

The following transformations of the IM model

into different coordinate systems are pure math- Fig. 6.5: Conceptual IM representation within
ematical “tricks” to simplify the analysis. The the orthogonal o3 coordinates (p = 1 pole
IM remains a three-phase machine. pair)
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Clarke transformation

To transform the three-phase model into the orthogonal a8 coordinates, the Clarke
transformation is applied. Consider any @, € R?, then the Clarke transformation is given by

To 23 —1/3 /3] [z,
Tapo = |z8| = 0 1/\/§ —1/\/§ xh | = TeXape (65)
xo \/5/3 ﬁ/g ﬁ/s IREZ

with the inverse transformation

1 0 Vel |za
Tane = |—12 V32 V2| |ag| =T, 'zago. (6.6)
—lf2 =32 12| @0

Above, T, € R3*3 is the Clarke transformation matrix and Tapo € R3 the transformed vector.
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Clarke transformation: amplitude and power scaling

The transformation (6.5) is amplitude-preserving, i.e., the amplitude of the a3 vector is
identical to the amplitude of the original abc vector. On the other hand, the power is not
preserved, as can be seen from the inner product of the transformed vectors (which commonly
occurs in power calculations):

_INT e 3
Tl Yabe = Togo (T ') Ti 'Wapo & Tala + TpYb + TelYe = 5 (Ta¥a + TY5 + Toyo) -

The alternative power-preserving Clarke transformation variant is given by

V3 1 T
=1 (@) =) (67)
which utilizes an orthogonal transformation matrix. However, when using TC’ the amplitude of
the transformed vector is not preserved. While being an arbitrary choice, we will stick to (6.5)

as a convention for the following.
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Clarke transformation: simplification for zero-component-free vectors
If the abc vector @,y is zero-component-free, i.e.,
Ty +aH+ 2. =0,

e.g., the phase currents of a star connected system, the Clarke transformation simplifies to

ma

Tq 2/3 —1/3  —1/3
a g = = T abc 68
Tap Lﬁ’] [O e _1/\/51 Tp 23%ab (6.8)

and
1 0

Tabe = | =12 V3/2 [ia] = Txap. (6.9)

T RET g
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Clarke transformation: simplification for zero-component-free vectors

B
b

Tg

Fig. 6.6: Geometrical interpretation of the Clarke transformation without zero components: mapping
Zabe € R3 to Top € R? without information loss (adapted from J. Bocker, Controlled Three-Phase
Drives, Paderborn University, 2021)
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IM model a3 coordinates

Assuming zero-component-free three-phase quantities, multiplying the three-phase IM model
(6.1) and (6.2) with Th3 results in

d
17[’5 a C(t)
dg "o (6.10)

A4 ’u’z,a,ﬁ(t) = Rsiz,aﬁ( ) + d)s aﬁ( )

T23us abc( ) R T231’s abc( ) + T3 —

and

d
T23ur abc( ) R T237’r abc( ) + T3 dt¢r abc(t) (6 11)

< u;aﬁ(t) = Rri;a,@( ) + wr ocﬁ( )

Here, it must be noted that the two voltage equations are still represented in their own stator
or rotor coordinate system. In particular, the rotor's a3 axes are rotating (compare Fig. 6.5).
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IM model a3 coordinates: transformation of rotor quantities

To bring both model parts into the same coordinate system, the rotor quantities will be
transformed into the stator’s a8 coordinates. This is done by applying the Park transformation
with (t) = ey a1(t) = per(2):

Ty (erer(t))trap(t) = Tp(erel(t)) Rriy ap(t) + Ty (€r,e1(t))% ras(t)

d r
&’lpr,aﬁ (t)

(6.12)
&l p5(t) = Rl 45(t) + Tp(era(t))

The last term of (6.12) is rewritten as

%'ﬂb;aﬁ(t) = Tp(gr,el(t))% [Tgl(gr,el(t))¢f,a6(t)]

Ty (era(t))
= Ty(era®) | S (15 Ga0) $has(t) + T (ewa ) S ($.0s(0)
= (DT 1) + (1)
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IM model a5 coordinates: transformation of rotor quantities (cont.)

Hence, the IM model voltage equations in the stator-oriented a5 coordinates are

. d
ug 05(t) = Rstg op(t) + a’ﬂs,aﬁ(t%

(6.13)

S .S S d S
ur,aﬁ (t) = Rl”ll’r,aﬂ (t) — Wrel (t)J’(pr,a,B (t) + &wr,aﬁ (t)

Furthermore, the flux linkages representation (6.3) should be also transformed into the
stator-oriented a3 coordinates. Hence, (6.3) is multiplied with Th3:

Ls,aﬁ RZﬁ(ar,el(t))
N. A

,—J% . .
Y3 0p(t) = Tozthl e (t) = Toz L anc T2 85 0 5(t) + My~ TosRoabe(erel(t)) T2 by o5 (1),

Ny
, N, .
(1) = Tost] ape(t) = Tos L anc Tha o5 (1) + Ma TosReabe (erel (1) Tha 85 o5((5.14)
N— s
L .ap Rz;; (er,e1(t))
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IM model a5 coordinates: transformation of rotor quantities (cont.)

Continuing from the previous slide, we can rewrite the newly defined inductance matrices as

Lgs + Ms/2 0
Ls,oeﬁ = T23Ls,abcT32 = |: i 0 / L.+ M, 2:| = (Ls + MS/Q)Ia
L 4/ ° . (6.15)
v/2
Lr,aﬁ = T23Lr,abcT32 = { ' 0 L.+ Mr/2:| = (Lr + MT/Q)I
r
and the rotation matrices as
3 |cos(e; ot —sin(e; ¢ (t 3
R p(era(t)) = TosRapelera(®) T = o | enall) msilenaO) Sy )y,
2 |sin(eyel(t) 2

] ;Tgl(gr,el(t)).
(6.16)

) )
) cos(erel(t))
) )

)

cos(erel(t))  sin(erel(t))
(

3
R, rel(t)) = TosRabe retTT =5
esCratt)) = TR (Eralt)) o2 = 5 [—sin@r,el(t» cos(erer(1)
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IM model a5 coordinates: transformation of rotor quantities (cont.)
Inserting (6.15) and (6.16) into the flux linkage model (6.14) yields

S *S 3 N -1
ws,aﬁ(t) = (Lb + Ms/z),l’s,aﬁ( ) + M (61‘ el(t))zr,aﬂ(t%
N (6.17)
3 Ny, 4 .
ST )i as()
Multiplying the second equation with T;,(&;¢1(t)) from the left allows transforming the rotor

flux linkage into the stator's a8 coordinates

rag(t) = (Le + Me/2)iy o 6(8) + My

r -1 3 N — .
Tp(erar(®)rap(t) = (Le + M/2) Ty (era(t))iras(t) + Msg 7 ~ To(ere ()T (era(t))is ap(t)
resulting in a mutual flux linkage model in the stator’'s a5 coordinates:

s M. .S 3 N
s,a,@(t) = (LS + 5/2)zs,aﬁ( ) + M 2 N raﬂ(t)7

S -S 3 Ny
r,a,@(t) = (Lr + Mr/z),l’r,aﬂ( ) + M 2 N sa,B(t)

(6.18)
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IM model a3 coordinates: torque
To obtain the IM's torque equation, a power balance is performed w.r.t. (6.13). Dropping the
time dependency for brevity, the power terms (transposed current times voltage) are
d
.s T s .s T.s .5 T S
(15,08) Usap = Bs(i30p) t2ap(t) + (25 0p) ) c.af
(6.19)
.S T,,s .S Tes - T s .S T d s

(zr,aﬁ) ur,oz/o’ = Rr(zr,aﬁ) lr,aﬁ - wnel(?’r,aﬁ) J’wr,a,ﬁ + (zr,aﬁ) & r,af"

Considering Fig. 1.5 and the Clarke transf. power mapping, one can identify the following:

2 .
Input power: gpel = (z;oéﬁ) saﬁ + ( 2% 04,3) raﬁ’
2 .
Losses: gpl = Rs(’tiag) sap T I (3 raﬁ) i 0>
5 d d Ld (6.20)
. . — yS s
Change of stored energy: §&E1 =(z soc,B) 1@ saﬁ + (2 ra,B) & ra/a’
2
Mechanical power: nge = —wr,el(iiaﬁ)TJ"/’iaﬁ'
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IM model a5 coordinates: torque (cont.)
From (6.20) one can compare the mechanical power representations

2 2

nge = ger = —pwr(ii,aﬁ)TJ’l/)iaﬁ (621)
and find the torque expression
3 . 3
T = —ip(zf,aﬁ)TJ'Qbia,B = 517 (wiﬁ bra wr a r,B) (622)

As all terms in (6.22) are invariant with respect to the choice of the coordinate system, the
superscript labeling can be omitted:

3 . .
T= §p (wr,ﬁlr,a - wr,alr,ﬁ) . (623)

If one would transform the model (6.13) into the rotor-oriented o coordinates and redo the
torque derivation, one would find the alternative torque expression

3 . 3 ) .
T = Ep(ls,aﬁ)TJ'lps,aﬁ = ip (ws,azs,,ﬁ - ws,ﬁzs,a) . (6-24)
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Summary: IM model in stator-oriented a3 coordinates

The most important equations of the IM model in the stator-oriented o3 coordinates are:

) d
Stator voltage:  ug ,5(t) = Ry o5(t) + aiﬁiaﬂ(t),

Rotor VOltage: ui,aﬁ (t) = Rrils",aﬁ (t) - wr,el( )Jwr aﬁ( ) wr aﬁ( )

. 3 N,
Stator flux linkage: 45 ,5(t) = (Ls + Ms/2)5 ,5(t) + My 5 NS iy ap(t),
. . S M. S 3N1“ s
Rotor flux linkage: 1} ,3(t) = (Ly + Mr/2)37 ,5(t) + Ms 3N 5.05(1),
3 . 3 .
Torque: T(t) = §P(i§,aﬁ)TJ1/’§,a,3 = _ip(zi,aﬁ)TJ’(/)iaB'

It may be noted that the voltage and torque equations are independent of any linearity
assumption, i.e., also apply to IMs with magnetic saturation. Only if the above flux linkage
models are utilized, magnetic linearity is assumed.
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Transformation of the rotor quantities based on the turn ratio

» The previous model depends on the physical parameters of the rotor: R;, L, and M.

» Those parameters might not be accessible or known in practice (in particular when direct
rotor measurements are not possible).

v

» Identical procedure to the transformer approach as from Fig. 4.6.

» Hence, stator-based measurements can be used to infer the rotor quantities (compare
open-circuit test Fig. 4.12 and short-circuit test Fig. 4.13).

Rl Ll,a Ll2,0' Ré 4

i1 19 iQ

N71:No| u2

l
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Transformation of the rotor quantities based on the turn ratio (cont.)

Applying (4.14) with o = Ns/N, to the IM model interpreting the rotor as the secondary side
results in

N, . N; .
u; = Fsura 7’2 = ﬁr”/ra ";Z’r b — 'Qbr ,afs
r s
6.25)
N2 , N2 , Ns (
Rr—N;R LT—NSQL M = 7M.

Above, the indices representing the coordinate system are omitted as the transformation is
independent of the chosen coordinate system.

Utilizing also Ly = Ly + Mg and L, = Ly, + M, the flux linkage equations in the
stator-oriented o3 coordinates are then

(1) = (Lo 5 M) (1) + M35 s(0),

() = (Eh 5 M (1) + M 5(0)
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Transformation of the rotor quantities based on the turn ratio (cont.)
Analyzing the (magnetic) power balance reveals

3 3

that is, the mutual inductance is identical for both the stator and (transformed) rotor side.
Hence, we can rewrite the flux linkage equations as

¢:,a6<t) = (LUS + M) : aﬁ(t) + Milsr,aﬁ(t)7 (627)
Qp?,aﬁ’(t) = (L/ + M) 2% aﬁ( ) + Miz,aﬁ(t)' (628)
Alternatively, we can express the currents as a function of the flux linkages:

(Los + M3 5(t) — My 5(1)

. 6.29
ls,ag( ) M(Ly s+ L ’T) + L075L37T ’ ( )
iy = Lor T MBap(t) = M50 (6.30)
r.af M(L;T +Los)+ LoyLos |
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Transformation of the rotor quantities based on the turn ratio (cont.)

Rewriting the transformer’s leakage coefficient definition (4.5) for the IM model as

g Lost Lop)M 4 LosLos | M (6.31)
(M + Los)(M + L, ,.) (M + Los)(M + L, ) '

allows expressing the currents as

aalt) = 27y (Weoalt) = g g ¥es®) (632)
ii:aﬁ(t)zm< vas(t) — M+MLU S,aﬁ(t)). (6.33)
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ECD of transformed IM model in general a3 coordinates

Cop®) B Lo Lue R i)

U op(t) P ap(t) M |Eas(t) |usas(t)

—_—
_wr,elJ¢f,aﬂ (t)

Fig. 6.7: T-type ECD of an IM in stator-oriented o3 coordinates with rotor quantities transformed using
o = NS/Nr
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Summary: transformed IM model in stator-oriented a3 coordinates

The most important equations of the IM model in the stator-oriented a5 coordinates with all
rotor quantities transformed to the stator side are:

S *S d S
Stator voltage:  wug ,5(t) = Rsig 05(t) + aqﬁs,aﬁ(t),
Rotor VOltage: ulsr:aﬂ(t) = erijaﬁ(t) - wr,el( )J'lrbr ocﬂ( ) + ¢r aﬂ( )
Stator flux linkage: 45 ,5(t) = (Los + M)ig ,5(t) + M’i;aﬁ(t),

Rotor flux linkage: 45 o 5(t) = (Ll + M) o 5(t) + MiS o 5(t),

/

Torque:  T() = 2p(i0 (1) T8 (1) = — o p(i5 (1) T s (1),

The transformed rotor quantities are u). = au,, . = Vai,, ) = atp,, R. = o?R;, L. = o*L,,
and M/} = aM, with o = Ns/n,.
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Park transformation

The Park transform rotates a vector x,g € R? by a certain angle ¢ to obtain Tyq € R?, that is,

Taq = [l’d] _ [cos(s) sin(e)] [xa] _ Tgl(e?)wag (6.34)

Zq —sin(e) cos(e)| |zp

with the counter rotation

- [cos(a) —sin(e)] [xd] T ()wa (6.35)

sin(e) cos(e) | |zq

Above, T}, € R?*? is the Park transformation matrix. It might be noted that is a (historical)
convention to define that T, rotates into the mathematically positive direction. Depending on
the application background and choice of ¢, the interpretation of x4, can vary.

Oliver Wallscheid Electrical machines and drives 260



Park transformation (cont.)

s

Tq\™

/ Tor [&

Fig. 6.8: Geometrical interpretation of the Park transformation: mapping .5 € R? to x4, € R?
(adapted from J. Bocker, Controlled Three-Phase Drives, Paderborn University, 2021)
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Park transformation: some properties
Performing the Park and inverse Park transformation sequentially, does not change the vector:

Top = TpTy 'ap = Ty ' Tpwas. (6.36)

A frequent rotation within the electric machines and drives context is

_ oy |cos(/2) —sin(m/2)| _ |0 —1
e =T Lin(ﬂ/Q) cos(7/2) ] - [1 0

leading to the definition of J € R%*2 which will be used for brevity in the following. Moreover,
if € results from some rotation, i.e., d/dte(t) = w(t), we have:

=J (6.37)

GTo(e0) = [ o) et ) = Tye) ), (6.38)
%Tp_l(s(t)) _ [:jii((?); _C’Zf‘r(jﬁég)] %5@) = T () Tw(t) (6.39)
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Visualization of different coordinate systems

abe signals

10{-—; ——
0.5
0.0 a e
-1.0 <
0 /2 x 3m/2 2
5 af signals
1.0 —
05 / ><
0.0 a
K
-10
/2 i 3/2 27
. dq signals
1.0 <
054
0.0
-05
-10

/2 x 37/2 2
Fig. 6.9: Representation of a rotating phasor (without zero component) in different coordinate systems
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General rotating coordinate system k

» In af coordinates, all quantities have sinusoidal
trajectory under regular IM operation.

» Compare rotating field theory: sinusoidal phase
currents lead to sinusoidal a3 currents.

5

K coordinate system

To simplify the machine analysis, a general ro-
tating coordinate system k is introduced. The
orientation of the d-axis of that coordinate sys-
tem can be chosen freely, however, if aligned to
the stator or rotor flux linkage vector all quan-
tities become constant during steady state (cf.

Fig. 6.9). | Fig. 6.10: Comparison of coordinate systems
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IM model in coordinate system k

Applying the Park transformation to the IM model in the stator-oriented a3 coordinates results
in (dropping the time dependency for brevity):

Kk 1 . .k _1 . )
Ug qq — T ( ) :,a,87 s, dq™ Tp (Ekﬁl)z:,aﬁ? ws dq T ( ) ;,aﬁ>

k s -k -1 .S s (640)
Up qq = Tp ( )uraﬂv Y dq™ Tp (Ek,el)zr,oﬁ? r,dq: p (€k761)¢r,a6‘

The transformed flux linkage model in the k coordinate system remains structurally unaffected
by the coordinate transformation

3 N, i
2 N, ‘rdar
3 N, e

S9N, ‘sda

é(,dq ( +Mb/2) sdq+M
(6.41)
Il/)i{,dq - (LF + My 2) 2 .dg + M-

since both the current and flux linkage vectors are transformed in the same way starting from
(6.18).
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IM model in coordinate system k (cont.)
Likewise, the torque is invariant with respect to the chosen coordinate system:

3 .
_ip (zr,dq)T J'lpbr,dq- (642)

Applying the Park transformation derivative rule (6.39) to the voltage equations in the k
coordinate system vyields

3 .
T = Ep (ls,dq)T J'l;bs,dq =

Ug dq =R zs ,dq + wk 61J¢s ,dq + td’;dqv (6 43)

d k
Uy dq =R zr ,dq (wk,d Wr 01) J'd)r ,dq + = dt T rdas

Likewise, the transformation of the rotor quantities based on the turn ratio v = Ns/N, can be
applied to the k coordinate system:

k/ k k/ k' k
Uy gq = AUr qq5 U dq = /O‘zr ,da> /l:br,dq = aqpr,dq’ (6 44)

R. = o’R,, L.=d’L,, M =aM,.
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Summary: IM model in general dq coordinates

The most important equations of the IM model in the general k coordinate system with dq
coordinates are:

Stator VOItage: uls{,dq( ) R zs dq( ) + wk,el(t)J’lp;dq( ) ¢s dq( )

Rotor VOItage: ukdq( ) R 1’1" dq( ) + (wk,el(t) — Wr 61(t)) J,‘pr,dq( ) d)r dq( )
3N,

: ok _ K
Stator flux linkage: g qq(t) = (Ls + Ms/2)ig 44(t) + My 2N, Ty aq(t),
3 N,
. ” ik
Rotor flux linkage: ¢r dq(t) = (L + Me/2)i] 4 () + My 2N, igdq(t);

Torque: T(t) = Sp(igaq(t) J9aq(t) = *gp(ilﬁ,dq( NIt qq(1)-

Likewise in the stator-oriented «3 coordinates, one can further transform the rotor quantities
based on the turn ratio a = Ns/N, to infer the rotor parameters from stator-based
measurements (cf. next slide).
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Summary: transformed IM model in general dq coordinates

The most important equations of the IM model in the general k coordinate system with dq
coordinates with all rotor quantities transformed to the stator side are:

d
Stator voltage: ulsidq( ) = Rgig dq( )+ wk,el(t).]’l/);dq(t) + —'(#;dq(t),
Rotor VOItage: }r{/dq( ) R 7‘1" dq( ) + (wk,EI(t) - wr,el( )) wr dq( ) ¢r dq( )

Stator flux linkage: ;dq(t) = (Los+ M)i bdq( ) + Mk dq( ),

Rotor flux linkage: X dq( ) = (Ly, + M)i rdq( ) + Mk dq(1),

3 (i o ()T T 4o (£) = — 2 p(a¥ ()T T (8):

T : T(t) =
orque (t) 5 5

The transformed rotor quantities are u). = au,, i\ = Vai,, Y. = atp,, R. = o?R;, L. = o*L,,
and M| = aM, with a = Ns/N;.
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ECD of transformed IM model in general dq coordinates

i 4q(t) Bs Lo Lo Ri ¥ (t)

u¥ 4o (O] P aq (1) M K1) | ()

/ /
/
k k
wk,e1J P, aq(t) (wWicel = wr,el) J9r aq(t)
Fig. 6.11: T-type ECD of an IM in general dq coordinates with rotor quantities transformed using

a = Ns/N,
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Stator flux orientation in the k coordinate system
Per definition we can assign the stator flux

linkage vector to the d-axis of the k coordinate

system: 43°
"'\ijvl\.r'l
K PEq(t) PEq(t) .
’(/)s,dq(t) - Kk - q .
S,q(t) 0 1s,dq ¢
- (6.45) s,da
k)
L 0 Pr,dq
In this case, the torque expression simplifies to o
3 -k k
T(t) = Qp(ls,dq(t))Tst,dq(t)
3 i K (6.46) Fig. 6.12: Stator flux-oriented coordinate system
= Spita(D0ka(0).
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Rotor flux orientation in the k coordinate system
Per definition we can also assign the rotor flux

linkage vector to the d-axis of the k coordinate

system:

¢11r{,dq(t) -

Sat)| | ¥ra(®)

wi‘,q(t) 0

|¢rdq( )|
0

(6.47)

In this case, the torque expression simplifies to

T(t) =

= (a4 ()T T (1)

(6.48)

= — o pitq (t)Pra(t).

Oliver Wallscheid

Electrical machines and drives

q

1s,dq

'Ebs,dq

Wk el
*

d

"J’r,dq

v

Fig. 6.13: Rotor flux-oriented coordinate system
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Steady-state behavior

Starting from the general IM model voltage equations in the transformed k coordinate system
(6.44), the steady-state (d=(t)/at=0) behavior is described by

k -k k
Uy dq =R sy dq + wk,elJ"tbs,dqv

Rr r dq (Wk,el - wr,el) qul)r,dq‘

rdq

During steady state the stator is excited by a constant three-phase voltage with the stator
frequency ws while the rotor is excited with the rotor or slip frequency wg;p:

Wk,el = Ws, Wk,el — Wr,el — Wslip- (6.50)
Dropping the coordinate system indices, we have
us = Reig + wsJ g, u. = Rl + wsliinpi. (6.51)
Rewriting the vectorial quantities as complex phasors X, = Xel? = X4 + j X, we obtain
Us = Rel + jws ¥y, U, = R, + jwsip¥y.. (6.52)

Oliver Wallscheid Electrical machines and drives 273



Steady-state behavior (cont.)

In (6.52) the complex rotor and stator fluxes rotate with different frequencies. To simplify the
analysis, we introduce the slip ratio
Wt
§= S (6.53)

Ws

Multiplying (6.52) with the inverse slip ratio delivers then
. 1 ! 1 /7! : /
QS = Rsls +stgs7 ggr = gerr +stgr' (654)

Here, both the stator and rotor fluxes rotate with the same frequency ws. Additionally, we can
insert the current-to-flux linkage relationships

o = (Los + M)L,+ ML, ¥ = (L, + M)L, + MI, (6.55)

leading to
Qs = Rsls + jws [(La,s + M)ls + Ml;] )

1 / 1 /7! . / / (6'56)
ggr = gerr + Jws [(Lo,r + M)lr + Mls] .
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Steady-state behavior: equivalent circuit diagram

The complex steady-state phasor model (6.56) can be represented by the following equivalent
circuit diagram. Here, one can note the striking similarity to the T-type ECD of a transformer.

(o, O

Fig. 6.14: T-type ECD of an IM in steady state represented by complex phasors
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IM rotor types

(a) Squirrel cage rotor (source: Wikimedia Commons, (b) Wound or
Zurek, CC BY-SA 3.0) slip ring rotor

Fig. 6.15: IM rotor variants
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Squirrel cage IM torque-speed characteristic
Utilizing the stator flux orientation we define

gs = \I’s,d +j\Ils,q = \I"s,d = \Ijs~

Assuming that the stator ohmic voltage drop is negligible (Rs = 0), we get from (6.54)

Ug = Us,d +jUS,q = jws¥g = jwsWq (6.57)
and, therefore,
U, U,
Us,d = 07 \I’s,d === \I’s- (658)
Ws Ws

Hence, the stator voltage phasor is purely imaginary and the stator flux phasor is real due to
the chosen orientation. From (6.55) we can rewrite the flux-to-current relationships as

1 M
[, =——— U — Vi
= o(Les+ M) o(Les+ M)(L,, +M)™"
| Iy (6.59)
! !

I, =——7i—+V — v..
- O-(Lf);r + M)ir O-(LUGS + M)(L/U,r + M)‘S
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Squirrel cage IM torque-speed characteristic (cont.)
Furthermore, the rotor voltage for the squirrel cage IM is

UL =0
due to the short-circuited rotor winding. The rotor voltage equation (6.54) then simplifies to
1 . j RL
/
ls Rs La,s La,r ]/

o

Fig. 6.16: T-type ECD of a squirrel cage IM in steady state represented by complex phasors
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Squirrel cage IM torque-speed characteristic (cont.)
Combining (6.58), (6.59), and (6.60) we have a linear equation system resulting in

I USJ wbhp(LUS+M)(L, +M)3 (L/ +M)(L05+M)(R{“)2 7M2(R:“)2 (6 61)
Y o(Lon + MY(L,, + M)y (0% (L, + M)? + (RL)?) ’ '
U M2y R!
Lg=—22 slip , 6.62
9wy (Lo + M)2(02(LL, , + M)2w?, + (R)?) (6.62)
US O'MOJ 1i (L/ + M)
Lg=—-— Qip 5 v (6.63)
Ws (LU,S + M)(J (L + M) wshp (Rr) )
US MR rWsli
Ig=——2 p , 64
97 o o ¥ MDD, + MR, (R (0.64)
U, M(R.)?
U, g = , .
4 o Ton M (02(Th, + My, + (R)P) (6.69)
, M (L., + M)Rlwg;
i} Us o ( o,r ) W lip (666)

YT g (Lo + M) (L, + M)20202, + (R)?)
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Squirrel cage IM torque-speed characteristic (cont.)
With the definition of wmax = Bi/o(L, .+M) we can rewrite and receive

[ 2w (Los + M) (L, + M)* + (L, , + M)(Los + M)(R})? — M*(R})? (667
T T 0L+ ML, + Mg (023, (T, + M+ (RDD) 0
Us M? 1
la=71 » 6.68
Y97 Wy 0(Los + M)2(LL, + M) 22 | e (6.68)
Ms 1
Lia=-Us - : 6.69
“ (Lo + MR S5 o me (6.69)
U, M 1
Ia=—71- ; 6.70
»q Ws O—(Lg'7s —+ M) (L/ + M) Wslip + U:)u';.ax ( )
Us MR 1
Pra= - - = : 6.71
“ Ws J(LCRS + M)(Lir,r + M)wshp Wy P - L:;mlfax ( )
Us M 1
Yra =" - : 6.72
“ Ws (La',s + M) :;)S# + o:]“;'flx ( )

Oliver Wallscheid Electrical machines and drives 280



Squirrel cage IM torque-speed characteristic (cont.)
The torque expression is then

3 3 U? M? 2
T ="pV2U V2 = —p— : . (6.73)
2 T 20w o(Los + M) (L, + M) S e
Hence, the maximum achievable torque for a constant stator excitation is
3 U? M?
Thax = =p— (6.74)

2702 9Ly + MLy, + M)

since

2 ) 2 R,
maxs<§ oo = argmax § oo = W = ————
w, Y w, max
Welip slip + Wmax o slip + Wmax O-(L/ + 7‘1)
Wmax Wslip SHUp Wmax Wslip o,r

applies. Above, ¥ and I, are RMS values according to the complex phasor definitions, which
is why the factor /2 appears in the torque expression.
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Squirrel cage IM torque-speed characteristic (cont.)

The torque expression
2

T = Tmax Wslip Wrmax

Wmax Wslip

can be also alternatively expressed as a function of the slip ratio s by utilizing

/
o Wmax _ R,
max — -
Wy U(L{,J + M)ws

Wslip = SWs,

leading to
2

S Smax °

T = Tmax

Smax s

The torque-speed characteristic of a squirrel cage IM is also known as Kloss's formula. It

(6.75)

(6.76)

should be noted that wyax and Spmax are machine-dependent parameters (for a constant stator
excitation), i.e., constants. Contrary, the slip ratio s and slip frequency wgj, depend on the

IM’s shaft speed and vary during operation.
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Kloss's formula: visual representation

TA

(a) Nlustration based on the mechanical speed

- Trn ax

(b) Nlustration based on the slip ratio

———————————————————— E e Tnax
\ - Starting — Ws |g —

To torque i/wr p 5=0 —4-3-2-1 i

N | Rotor speed Wy S 1 2 3 . s
_Tmax E i

Fig. 6.17: Steady-state torque-speed characteristic of a squirrel cage IM for a fixed stator excitation
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Squirrel cage IM torque-speed characteristic: rotor resistance

The starting torque, i.e., the torque at motor standstill (w, = 0), is given by

2Smax 2wWmax
1+ Sthax 1+ whax
since
Wslip = Ws — PWr = Wy —0=ws

(6.77)

holds. Depending on the machine design T can be significantly lower than Ty, which might

be a disadvantage for certain applications. Since

W = 7R; S = —R;
" Lo+ M) T oL+ M,

depend on the rotor resistance R, the starting torque can be modified by changing the rotor
resistance, e.g., via a dropping resistor or potentiometer (which would require a slip ring rotor).
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Squirrel cage IM torque-speed characteristic: rotor resistance (cont.)
T

Rotor speed Wr

R

Fig. 6.18: Steady-state torque-speed characteristic of a squirrel cage IM for a fixed stator excitation with
varying rotor resistance R. — note that the synchronous speed w, = ws/p and the maximum torque
Thax are independent of the rotor resistance variation
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Slip frequency-dependent rotor skin effect

» If wqip # 0, the rotor bars are exposed to a —
time-varying magnetic field.
B4
» This induces eddy currents leading to an uneven " leddy
N _ Buot
current distribution within the bars. |
» As a result, the effective rotor resistance b |
increases with the slip frequency: bar i el | i
Ru(wa sinh(26) + sin(26 iy
r(ip) _ 5 SINh(20) +5in(20) - 7 =
R, pc cosh(20) — cos(29)
Wslot
with Fig. 6.19: Rotor bar with eddy currents
8 = hpary Weip Hok Whar induced by the rotating magnetic field
2 Wglot (inspired from A. Binder, Elektrische
being the skin depth. Here, ug is the vacuum Maschinen und An;gle?;' Vol. 2, Springer,

permeability and x is the bar's conductivity.
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Slip frequency-dependent rotor skin effect (cont.)

0 10 20 30 40 50
Saip in Hz

Fig. 6.20: Rotor resistance of a squirrel cage IM as a function of the slip frequency (example based on
the following values: x = 3.7 - 107 % hbar = 50 mm, Whay = 10 mm, wger = 15 mm)
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Squirrel cage IM torque-speed characteristic: varying stator frequency

T 1 Tm ax

» Adaption of rotor resistance might be
technically tricky.

v

Alternative: vary stator frequency ws.

» Shift of the torque-speed characteristic
along the speed axis, i.e., the synchronous
speed wy = wg/p.

» Allows utilizing T,.x at different speeds
(including initial starting torque).

» Requires a variable frequency source, e.g., a

power electronic converter. Fig. 6.21: Steady-state torque-speed characteristic
of a squirrel cage IM with varying ws while keeping
Us/ws = const.
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Squirrel cage IM torque-speed characteristic: flux weakening
T4

» The previous consideration from Fig. 6.21
assumed that Us/ws = const. applies, that
is, the stator voltage amplitude is adjusted
according to the frequency.

» Obviously, this is only possible to a certain
extent due to the voltage source limitations.

» Hence, at some point, the torque-speed
characteristic is limited by the available
voltage leading to a flux weakening
operation mode (cf. right figure).

Fig. 6.22: Steady-state torque-speed characteristic
of a squirrel cage IM with varying ws while keeping
Ug = const., i.e., field weakening operation
(Vs ~ 1/ws)
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Squirrel cage IM torque-speed characteristic: air gap harmonics

» The rotating field analysis (5.17)
revealed that the air gap magnetic field
contains harmonics:

6 ~v=1 km
B:—Bg —sin | — t — kve
P k:SHl( 5 )cos(w 1)

» This induces rotor currents with the
harmonic slip frequency ws(ﬁl)).

» Likewise the IM fundamental torque,
these air gap field and rotor current
harmonics lead to constant, i.e.,
non-harmonic, torque contributions
distorting the torque-speed
characteristic.

T ,
7
— |7
/\.—///\ -
Wr
7(=5)

Fig. 6.23: Steady-state torque-speed characteristic of a
squirrel cage IM considering torque harmonics due to
stator magnetic field harmonics of order k =1, —5,7, —11
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Synchronous machine (SM) rotor types

(a) Salient pole rotor (b) Cylindrical rotor

Fig. 7.1: Major rotor types of synchronous machines (SM)
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SM application examples

! A

(a) 2MVA generator from 1920 (source: Wikimedia (b) 36 MVA Pelton wheel generator (source:
Commons, Kolossos, CC BY-SA 3.0) Wikimedia Commons, Asurnipal, CC BY-SA 4.0)

Fig. 7.2: SM examples with salient pole rotor type
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(a) 650 MVA turbogenerator from Cernavod3 nuclear (b) 1 GVA turbogenerator SM rotor from Balakovo

power plant (source: Wikimedia Commons, R. Lavinia, nuclear power plant (source: Wikimedia Commons, A.
CC BY-SA 4.0) Seetenky, CC BY-SA 3.0)

Fig. 7.3: SM examples with cylindrical rotor type
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Visualization of the synchronous machine operation

10—\ 10

-0 -10

0.000 0.003 0.005 0.007 0.010 0.013 0.015 0.018 0.003 0.005 0.007 0.010 0.013 0.015 0.018 0.020
tins

= oo/
< 0.5

0.000 0.003 0.005 0.007 0.010 0.013 0.015 0.018 0.020
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Fig. 7.4: Exemplary SM operation at w = 271'50% in motoric operation (positive average torque)
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Visualization of the synchronous machine operation (cont.)
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Fig. 7.5: Exemplary SM operation at w = 27750% in no-load operation (zero average torque)
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Dynamical SM model

Based on Faraday's and Ohm's laws, we can write the following equations for the stator

. 2,1 Ba0] 4 [URa0)
u:,abc(t) = Rsi:,abc(t) + a’@b:,abc(t) g u:,b(t) = RS z:,b(t) + & ;,b(t) (7'1)
Us,c(t) i5e(t) Pse(t)
and rotor field winding
r -1 d r
ug(t) = Ryig(t) + &wf(t) (7.2)

which are generally applicable as only identical resistances per phase on the stator are assumed.
In contrast to the induction motor, only a single rotor field winding is present.
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Flux linkage model

The SM flux linkage model is similar to the IM
model:

» Assuming a cylindrical rotor, the self-induced
stator flux remains identical to the IM model
(derived from rotating field theory chapter).

» In contrast to the IM model Fig. 6.4, the SM's
rotor field coil is a represented by a single
winding.

» The coupling of the stator and rotor remains
rotor position-dependent (not explicitly shown on

the right due to space limitations). Fig. 7.6: Simplified representation of the
inductive coupling between the stator/rotor
phases of the cylindrical rotor SM
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Flux linkages of the three-phase model

Based on the previous considerations, the flux linkages of the cylindrical SM are given by

Ly % cos(erel(t))
Yoane(t) = | =2 Lo 4| 43 0c() + M ﬁ cos(era(t) — &) | i5(t),
—% _J\gs Ly cos(erel(t) + %ﬂ) (7.3)
Vi(t) = Leig(t)

N, .
+ Msﬁr [COS(Er,el(t)) COS(Er,el(t) - 2%) COS(gr,el(t) + 2?71-) z:,abc(t)
s

with €, ¢1(t) = per(t). Consequently, (7.3) is a reduced representation of the IM’s flux linkage
model (6.3).
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Cylindrical SM model in alpha-beta coordinates: voltage equations

IS
'

ey
& \

Wr

Similar to the IM, we can represent the SM model is
orthogonal af-coordinates. For the SM this only
applies to the three-phase stator, as the rotor has
only a single phase winding. The a3-coordinates
voltage equation is given by (compare to (6.10))

s . d
u’s,aﬁ(t) = Rsz:,aﬁ(t) + aqp:,aﬁ(t) (74)

while the rotor field winding voltage equation
remains identical to (7.2):

d . o
us(t) = Ryig(t) + dilb;(t) Fig. 7.7:.Conc.ept.ual cylindrical SM
i representation within the orthogonal a3
coordinates (p = 1 pole pair)
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Cylindrical SM model in alpha-beta coordinates: flux linkage

For the flux linkage model in af8-coordinates, we multiply the stator flux equations from (7.3)
with Th3 from the right

Lsas cos(erel(t))
—— r,el ‘
Y3 05(t) = Tosvg ape(t) = To3 Ls ancTh2 %5 o5(t) + M " T3 |cos(era(t) — 2) | iF(t)
r cos(erel(t) + ) (7.5)

- s Ns [cos(erel(t))|
= (Ls + Ms/2)35 ,5(t) + Mrﬁr |:Sin(€r,ell(t)):| it (t)

and utilize 43 (1) = T52%5 ,5(t) to modify the rotor flux linkage equation accordingly:
v " Ny . 5
Vi(t) = Lyip(t) + Msﬁ [cos(ere(t)) sin(ere(t))] 4 ,5(t)- (7.6)
S

In contrast to the IM «a/3-coordinates flux linkage model, the SM flux-to-current coupling is
rotor position-dependent.
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Cylindrical SM model in alpha-beta coordinates: flux linkage (cont.)

Analyzing the (magnetic) power balance reveals

Ns Nr !
M,— = My— = Mj, 1.7
Nr st fs ( )
and with the shorter notation
Ly = (Ls + Ms/2) (7.8)

we can rewrite the flux linkage model in af3-coordinates to

Las(0) = L1050+ 21 | ) i),
LrN o cos(erel(t)) T s (7.9)
wf (t) = szf(t) + Mis [Sin(er el(t)):| Zs,aﬂ(t)
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Cylindrical SM model in alpha-beta coordinates: torque

Following the same power balance approach as from the IM, the SM's torque equation is given
by

T(1) = (35 s () TS 05 (0). (7.10)

The equivalent representation with the rotor current and flux linkage as in the IM case is not
applicable in the SM case, as the rotor has only a single field winding, i.e., is lacking an a3
representation. Inserting the linear flux linkage model from (7.9) into the torque equation yields

T(1) = (850 ()T T4 051
3 /o cos(erel(t))|
S RO RO TA Swai EIO) (7.11)
— 3 Mt (cos(era(£))iS 5(t) — sin(enel(£))i (1))

2
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Cylindrical SM model in alpha-beta coordinates: torque interpretation

In (7.11) the term
COS(Er,el(t)) 2 = S
M Lin(ar,el(t))} ) = i)

can be interpreted as the field winding flux linkage
coupled with the stator winding. Hence, the torque

(7.12)

expression can be rewritten as:

3 s 5
T(t) = 5p [|[¥F(#) x 50 ®)]] (7.13)

= o |90 [i20a(0)] sin(6(2)

with 6 being the angle between the field winding
flux linkage and the stator current vectors, also

known as the load angle.

Oliver Wallscheid
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Fig. 7.8: Interpretation of the torque as the
parallelogram area spannend by the vectors of
the field winding flux and the stator current
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Summary: cylindrical SM model in a3 coordinates

The most important equations of the cylindrical SM model in the a8 coordinates are:

Stator voltage:
Rotor / field winding voltage:

Stator flux linkage:

Rotor / field winding flux linkage:

Torque:

Oliver Wallscheid

u:,a/ﬁ (t) =

u(t) =

T(t)

Rsi:,ab’( ) + d’s aﬁ( )

Reif(1) + Sui(0)
£as(t) = it as(0) + 1 | (),
10 = i) + 3 [ e
D8 0) T
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Rotor flux orientation: the dq coordinate system

» In the SM case the rotor flux orientaton is q
directly related to the rotor position (cf.
Fig. 7.1).

» Hence, to transfer the rotor and stator Wr,el = PUy
equations into a mutual coordinate system, d
the rotor flux orientation is typically used as
a reference.

» In contrast to the a5-coordinates, where the Erel
stator quantity signals are of sinusoidal
shape during steady state, the rotor
flux-oriented signals are constant during
steady state. Fig. 7.9: Rotor flux-oriented coordinate system

v
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Rotor flux orientation: the dq coordinate system (cont.)

Transferring the stator voltage equation into the dq coordinate system results in

u:,aﬁ(t) = Rsiz,aﬁ( ) + ’lrbb a/B( )

& Ty (ere)ulaq(t) = BTy (ere)il aq(t) + di(Tp_ Her, e1)¢§ dq(?)) (7.14)

t
A ug,dq( ) R ’Ls dq( ) + whel(t)']'lpé,dq( ) + 11bs dq( )

Since the dq coordinate system is always aligned with the rotor flux in the SM case, one can
also drop the superscript r:

. d
us,dq(t) = Rsfl/s,dq(t) + Wr,el(t)*]qvbs,dq(t) + aws,dq(t)-
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Rotor flux orientation: the dq coordinate system (cont.)
The stator flux linkage model in the dq coordinate system is given by

s s cos(erel(t))| v
s,a,@(t) - Lszs,aﬁ(t) + Mfs |:Sin(€r7ell(t)):| Zf(t)v

= Trjl(gr,el)’(bs,dq(t) = LéT (Er el)s dq(t) M [Z?ﬁ((e 11((;))))] i (t) (7.15)
& ualt) = Llisaolt) + My [(1)] — Lliya(t) + Mii(0)
Mfs

while the field winding flux results in
Yi(t) = Lig(t) + My [cos(era(t))  sin(era(t))] i saﬁ( )
& Y(t) = Lyig(t) + My, [Cos(gr,el(t» Sin(gr alt ))] (5r o) sdq(t) (7.16)
= T,Z);(t) = Lfig(t) + M [1 0] is,dq(t) = Lfif( ) + MfszS,dq( )
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Summary: cylindrical SM model in dq coordinates
The most important equations of the cylindrical SM model in the dq coordinates are:

. d
Stator voltage:  ug qq(t) = Rgisdq(t) + wrel(t) J s aq(t) + a‘/’s,dq(t%

d
R — e (t
rig(t) + dtwf( ),
= L ’Ls dq(t) + Mfsif(t),
= szf( ) =+ Mgs—is dq(t)a

7p(7's dq) Jq;bs ,dq-

e

Rotor / field winding voltage: e (t

Rotor / field winding flux linkage: Pe(t

(t)

Stator flux linkage: b5 qq(t)
(t)

Torque: T(t)

Here, one can observe that the d component of the stator flux linkage is directly coupled with
the field winding flux and vice versa, which was to be expected due to the rotor flux orientation

of the chosen coordinate system.
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ECD of cylindrical SM model in dq coordinates
is.a(t) Bs Li— My Li — My Ry i (t)

us,a(t))  tsalt) us(t)
4 O [ 3
— Fig. 7.10: T-type ECD of a cylindrical
—Wr,el’(/}s,q(t) SM in dq coordinates (note that this
ECD is represented with scalar values and
is.q(t) Rs L. not as vectors or complex numbers as in
the IM case).

Us,q(t) Qbs,q(t)
oM
_/

—
wr,el",bs,d(t)
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Salient pole SM model

» The cylindrical rotor SM model (7.15)
considered an identical stator inductance L,
for the d and q axis.

» In the cylindrical SM case this is a valid
assumption, as the rotor is symmetrical.

» However, in the case of a salient pole SM,
the rotor is not symmetrical and the flux
path per axis is different (cf. Fig. 7.11).

» The g-axis reluctance is larger than the
d-axis reluctance due to the larger air gap in ‘ q reluctance
the g-axis direction. PN path

» Consequently, the inductance per axis is

different. pole SM in the dq coordinate system

Oliver Wallscheid Electrical machines and drives

Fig. 7.11: Effective reluctance paths of the salient



Salient pole SM model (cont.)
From Fig. 7.11 we derive the following stator flux linkage model for the salient pole SM:

'ﬂbs,dq(t) = |:L(S)7d LE) :| is,dq(t) + Mfs |:0:| Z'f(t) = Ls,dqis,dq(t) + Mfsif(t) (7-17)

Ls,dq
while the rotor field winding flux linkage remains identical to the cylindrical SM case. Inserting
the stator flux linkage model into the torque equation yields

3

T(t) = §p(is,dq>TJ¢s,dq =

3 3
prsZs qlf + 2p'Ls,q'Ls d (L L/ )

3
§pis,q [Mfsif + (L;d - L;q) is,d]

(7.18)

main torque reluctance torque

The latter part is specific to the salient pole SM since L. ; # L, q holds, while
L] 4 = L, = L applies to the cylindrical SM, that is, the reluctance torque is zero.
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Summary: salient pole SM model in dgq coordinates

The most important equations of the salient pole SM model in the dq coordinates are:

. d
Stator voltage: g qq(t) = Rysis dq(t) + wrel(t)J s aq(t) + &d)g,dq(t)
d
Rotor / field winding voltage: us(t) = Ryig(t) + wa(t),
Stator flux linkage: ) aq(t) = Lg dq¥s,dq(t) + Misis (1),

Rotor / field winding flux linkage: () = Lgif(t) + M is.aq (1),

3 .
Torque: T(t) = ip(zs’dq)TJ’l/)S’dq

3 . ) .
= ipzs,q [Mfszf + (L;,d - L;,q) 7’S7d] :

Oliver Wallscheid Electrical machines and drives
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Damper winding

damper
winding

(a) Salient pole SM with damper winding

-A

(b) Salient pole with dismantled damper winding
(source: L. Frosini, Novel Diagnostic Techniques for
Rotating Electrical Machines — A Review, Energies,

2020, CC BY 4.0)

Fig. 7.12: SM with damper winding
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Damper winding (cont.)

» The damper winding is a short-circuited Damperber §
winding in the rotor slots of the SM.

» The damper winding is used to dampen the
rotor oscillations during transients.

» This is important for synchronous generators
in power systems, where the rotor
oscillations can lead to instabilities.

Damper winding model

The SM damper W'“d'“_g can be interpreted Fig. 7.13: SM rotor with solid damper bars (source:
as the IM squirrel cage, i.e., the rotor model | | ¢ 1os et al., Simulation Methods for the Transient
can be extended accordingly (superposi- Analysis of Synchronous Alternators, Renewable
tion). Energy, 2016, CC BY 3.0)
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SM model with damper winding

From the IM model in dg-coordinates (compare Fig. 6.11) we introduce the short-circuited
damper winding voltage equation:

S NIRE RO (SNt Rt R

Here, the following applies:

» Capital indices represent the damper winding.
» i.pq(t) and ¥, pq(t) are the current as well as flux linkage in the damper winding.

» R, pq represents the resistance matrix: Since the damper winding eventually does not cover
the entire rotor circumference, R, p # R, q can apply (compare Fig. 7.12).

The stator and field winding voltage equations remain unchanged:

d d
us,dq(t) = Rsis,dq(t) + Wr7el(t)J¢s,dq(t) + &st,dq(t)a uf(t) = Rfif(t) + &wf(t)
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SM model with damper winding (cont.)

The flux linkage equations become

¢S,dq(t) = Ls,dqis,dq(t) + Mfsif(t) + Mrsir ,DQ (t)

] e R LR KR ]

s7q
Pe(t) = Lyig(t) + MLis aq(t) + Mg, po(t)

— Lyig(t) + Mg [1 0] [228] + Mg [1 0] [

¥ pQ(t) = Ly pQirpq(t) + Misis aq(t) + Myig(t)

[ Al e ] o
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SM model with damper winding (cont.)

The torque equation results in

T(t) = gp( o) J¥s dq (7.21)

= Qp [Mfslfls,q + ( ;d - L;’q) 1s,dls,q T MdDZs,qu,D - MqQZs,er,Q] .

Here, the last two terms represent the torque contribution of the damper winding:
» In steady state, that is, the stator field rotates synchronously with the rotor, the damper
winding current is zero, cf. (7.19). Consequently, the damper torque is zero.

» Only during transients, when a changing flux linkage induces a voltage within the damper
winding, non-zero damper currents occur.

» The resulting damper torque will oppose the transient and, e.g., dampen mechanical rotor
oscillations in generator applications.
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Permanent magnet synchronous machine (PMSM)
witd B wikd P

(a) Surface-mounted PMSM (SPMSM) (b) Interior PMSM (IPMSM)

Fig. 7.14: SM with permanent magnet excitation
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PMSM characteristics

» Field winding is replaced by permanent
magnets (PMs) in the rotor.

» Typically increases efficiency and power
density, since no field winding losses occur.

» However, PMs are often more expensive
than field windings and the machine is less
flexible in terms of field weakening.

PMSM applications

Due to weight and size advantages, PMSMs > oot
are often used in automotive applications E—
(e.g., electric vehicles) and in highly dy- Fig. 7.15: PMSM with external rotor (source:

namic industrial applications (e.g., servo | Wikimedia Commons, R. Spekking, CC BY-SA 4.0)
drives).
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PMSM model
Due to the absence of a field winding, the PMSM model simplifies: The general stator voltage
equation in the dq coordinate system remains identical to the SM model

. d
us,dq(t) = Rszs,dq<t) + wr,el(t)*]/l;bs,dq(t) + a"ps,dq(t)

while the field winding voltage equation is omitted. The stator flux linkage model becomes

¢s,dq(t) = Ls,dqis,dq(t) +’¢pm = |:L(S)’d L? :| |:zb7jg§:| + |:w8m:| . (722)
s,q S,

Here, ¥pm represents the (constant) permanent magnet flux linkage. By definition of the dq
coordinate system, the permanent magnet flux linkage is directed exclusively along the d-axis
(cf. Fig. 7.14). The rotor flux linkage model is omitted, since no field winding is present. Also,
a damper winding is very uncommon for PMSMs. Hence, torque equation results in

3 . 3 . .
T(t) = ip(zs,dq)TJ'l.bs,dq = ipls,q ['ﬂbpm + ( ;d - L;,q) Zs,d] . (7-23)
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Isotropic vs. anisotropic PMSM

From (2.23) we know that the relative permeability of the PM material is nearly as that of air,
ie.,

frpM ~ 1

applies. Consequently, the PM flux path can be considered as an (additional) air gap. Against
this background, the two types for PMSM rotors as in Fig. 7.14 show different characteristics:

» SPMSM: The PMs are distributed over the entire rotor circumference.

» The PM flux path is isotropic, i.e., the same in all directions.
» Consequently, the relucance paths in the d and q axis are identical.
> L, =L, =L applies.

» IPMSM: The PMs are concentrated inside the rotor core.

» The PM flux path is anisotropic, i.e., different in the d and q axis.
» Consequently, the effective reluctance along the d axis is much higher than along the q axis.
> L4 <L, applies.
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Synchronous reluctance machine (SynRM)

» SynRM: utilizes only the reluctance torque. : Flux barriers

v

No field winding or PMs are present.

» The rotor is designed such that the
reluctance difference in the d and q axis is
maximized.

» PMSM model equations can be used, but
the PM flux linkage is zero.

"ps,dq (t) = Ls,dqis,dq (t) ’

3 . T H
T(t) = 5plisaa) J¥s.dq (7.24) |
2 ,

= 5pz’s,q( ta— Liy) isa Fig. 7.16: Example of a SynRM with rotor flux

barriers (no PMs or field winding present)
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Steady-state behavior
We limit the following discussion to the isotropic case

A A
s,d_Ls,q_Ls

which covers the SPMSM and the cylindrical SM. In steady state (dz/dat = 0), the flux linked
with possibly present damper windings is constant, i.e., no voltage is induced within the
damper windings and

I.pg=0
applies. Hence, the damper winding can be neglected in steady state. Furthermore, in steady
state the field winding current is constant:

f
Iy = — = const.
f R
Consequently, the stator flux linkage share resulting from the field winding M I is constant
and can be interpreted as an equivalent permanent magnet flux linkage. Hence, we will focus
on the steady-state behavior of the cylindrical SM in the following, which implicitly covers the
SPMSM case as well. The steady-state characteristics of the other SM types are not covered.
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Steady-state behavior (cont.)
In steady state, the flux linkage equation remains

M I I
Yedq = Liloaq + Ml & Usd| _ (p, 4 28 (sl g 11
ws,q 2 Is,q 0

With the decomposition of Lg into its leakage part L, and the mutual part Mj,

Ls = Lo‘,s + Ms, (725)

ws,d _ § Is,d If
e ] el e

In the context of simplified modeling, the assumption is (often) made that the (scaled) mutual
inductances are equal, i.e.,

we obtain

My, = 3/2My = M

leading to
ws,d = (LU,S + M) Is,d + MIfa ws,q = (LU,S + M) IS,Q' (727)
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Steady-state behavior (cont.)
The steady-state voltage equation is

Us,d IS,d _w s
Us,dq = RSIS,dq + Wr,elJT.bs,dq = |:Us,q:| = Ry |:Is,q:| + Wr el |: 1ZJS7qu:| . (7.28)

Inserting the (simplified) flux linkage equation (7.27) yields

Us,d _ Is,d - (LU,S + M) Is,q
[U&q] = B [ISJ + Wrel [(Lg,s +M)Igg+ MI| (7.29)

Rewriting the vectorial quantities as complex phasors X, = Xel? = X4 + jXq rotating with
the angular frequency wy o — ws, we obtain

Qs :Rsls +jws [(La,s+M)ls+MIf] :Rsls +jws (La,s‘i'M)ls +jwsMIf

X U;

(7.30)

with U; being the internal voltage, i.e., the induced voltage due to the field winding excitation
and X being the synchronous reactance (which can be empirically identified using open-circuit
and short-circuit tests, cf. after next slide).
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Steady-state behavior (cont.)
The ECD of the cylindrical SM is sown in Fig. 7.17. Here, the following can be noted:

» The internal voltage U; is purely imaginary as the field winding current is a DC current and
defined as real (convention).

> If U, is fixed, e.g., by a stiff grid voltage, the stator current I, is determined by the voltage
difference AU = U, — U;.

» Hence, in grid operation the field winding current I; is adjusted to reach a certain operation
point, that is, the field excitation is controlled.

I. Rs Logs M

—S

U, ()j@i = jws M

[,

Fig. 7.17: ECD of a (simplified) cylindrical SM in steady state represented by complex phasors
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Short-circuit and open-circuit tests
From Fig. 7.17 the open-circuit voltage is

U, oo =U; = jwsMIL. (7.31)

~s,0c
Here, the stator current is zero. On the other hand, the short-circuit current is given by

Q‘ wsMIf JM
[ == - Ir. 7.32
Lose = 73X, T Tion(Lon + M)~ (Lys+ DD (7.32)

Here, the stator voltage is zero and one can observe that the short-circuit current I ;. can be

interpreted as the excitation current Iy converted via the inductance ratio. Finally, the
synchronous reactance can be calculated by the ratio of the open-circuit voltage and the

short-circuit current: U
&:?ﬁi (7.33)

£s,s¢
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Steady-state torque
The steady-state torque of the cylindrical SM is given by

3 3
T:im@g@ﬂp:V?%qu

Here, the factor v/2 results from the RMS value representation of the AC stator current in the
complex phasor component I 4. Note that It is a DC quantity, i.e., its RMS value is equal to
the DC value in the time domain. From (7.30) we obtain the stator current as

I = Qs_gi
= Ry+jws (Los+ M)’

(7.34)

Assuming that the ohmic voltage drop is negligible (Rs ~ 0), which typically applies to high
power machines, the stator current simplifies to

U —-U
[ =i =s 7.35
= T o (Los + M) (7.35)
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Steady-state torque (cont.)

The q part from I, = I g+ jlsq is

|Qi — Qs|
Iig=—"""—. 7.36
el ws (L(ns + M) ( )
From Fig. 7.18 we identify
: U; — U]
sin(f) = ———
Ul
and can rewrite I 4 as
Ul .
ILig=—FF"""—"— : :
9= o Ton t 3D sin(6) (7.37)

Here, 6 is the load angle counted from U; to U..
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Steady-state torque (cont.)

Moreover, from (7.30) we can express the field winding current (amplitude, DC quantity) as

Uil
I = V2=
f \[wsM

Inserting the expressions for I 4 and I; into the torque equation yields

\Us| U
w2 (Los+ M)

UsU;

T=3 __Uszi
P 2 (Lo + M)

sin(f) = 3p

Hence, the load angle # determines the torque of the cylindrical SM:

» For < 0°, the torque is negative (generator mode, if w, > 0).
» For 8 = 0°, the torque is zero.
» For 6 > 0°, the torque is positive (motor mode, if w; > 0).

» For 8 = +90°, the absolute torque is maximal.

Oliver Wallscheid Electrical machines and drives

sin(6).

(7.38)

(7.39)
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Stable steady-state operation (with fixed stator excitation)

» From (7.39) we see that the torque depends on
sin(0).

» Beyond 6 = +90°, the absolute torque decreases
again.

» If the SM is operated with a fixed stator -7

excitation, e.g., by a stiff grid voltage, the load
angle 6 is determined by the mechanical load.

» If the absolute mechanical load is increased such
that |6| > 90° applies, the SM will lose

AT
T

; 1 |Tmax -
1 1
1 1
: 1
1

i '
1 1
1 1
' i
_r :

! } 2 t | 79

us

: 0 )
H !
1 1
1 1
1 1
1 1
1 1
1 1
1 1
: :
e —1 :
I* __________________ _»I

synchronicity and stall.

» Hence, the stable operation range is limited to

| stable operation |

|6] < 90° (while in practice an additional safety Fig. 7.19: Torque vs. load angle for the

margin is considered).
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Power balance

The SM's complex power is given by
S =3U]1, =3(P+jQ) = 35€% (7.40)

with X being the complex conjugate and the factor 3 results from the representation of the
three-phase machine in an orthogonal coordinate system (cf. Clarke transf.) plus the RMS
phasor representation of currents and voltages. Above, S is the apparent power, P and () are
the active and reactive power, respectively. The active power is

P =3Re{U} = 3UsIscos(p) (7.41)

and the reactive power is B
Q = 3Im {UI} = 3Ussin(p). (7.42)

Here, @ is the power factor angle, that is, the phase change between stator voltage and current
(compare Fig. 7.18).
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Power balance (cont.)
From (7.39) we receive the active power as

UsU;

o (Lo + 3D sin(6). (7.43)

P=Tuw =T =3
P

For the reactive power we insert (7.35) in (7.42) and obtain (after some rewritting)

Us

o (Los £ 30 (Us — Ui cos(6)) . (7.44)

Q=3

Four quadrant operation

Due to a combination of # and U;, which are adjustable via the field winding current I,
the (cylindrical) SM can cover all four quadrants of operation (i.e., combine positive
/ negative signs of both the active and reactive power). This is why the externally-
excited SM is often used in generator / power plant applications.
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Phasor diagrams for the cylindrical SM in all four quadrants

Motor: P > 0 Generator: P <0
Im
AU
U U, U,
L
A >0, 6>0
>0, <0
It Re , Re
L
Im Im
U; U;
AU AU
<0, <0
U - 1/U.
_ “" <0, 6>0 Ao by
I 0 /
Iy Re I, Iy Re

Oliver Wallscheid
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Under excited: Q >0

Over excited: Q <0
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English-German dictionary |
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AC machine .
acceleration . .
active power .
airgap . . . .
angle . . . ..
apparent power
armature . . .
autotransformer
back pitch . .
braking . . . .
brush . . . ..

.................. Wechselstrommaschine
.................. Beschleunigung
.................. Wirkleistung
.................. Luftspalt
.................. Winkel
.................. Scheinleistung
.................. Anker / Laufer
................. Spartransformator
.................. Spulenweite

.................. bremsend
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English-German dictionary Il

brushless

capacitance

capacitor

circuit

commutation

commutator pitch

compensation winding

conductance

conductivity

control

copper

current

Oliver Wallscheid Electrical machines and drives

birstenlos

Kapazitat [GroBe]
Kondensator [Bauelement]
Schaltkreis

Kommutierung
Kollektorschritt
Kompensationswicklung

Leitwert
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English-German dictionary IlI

damper winding . . . .. ... Dampferwicklung
DC machine . . . .. ..o Gleichstrommaschine
differential equation . . . . . . . ... ... .. Differentialgleichung
displacement . . . . . ... Verschiebung
displacement current . . . . . . .. ... L. Verschiebestrom
displacement field . . . . ... ... Elektrische Flussdichte
drive . . . . Antrieb

driving . . . . ... antreibend

eddy currents . . . . .. ..o Wirbelstrome
efficiency . . . . . ... Lo Wirkungsgrad
ENEIgY . . . . e Energie

equivalent circuit diagram . . . . . . . ... .. Ersatzschaltbild
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English-German dictionary 1V
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excitation . . . . ..o oL Erregung
fan . .o Lifter
fed-in winding . . . .. ..o Traufelwicklung
field ... Feld
field weakening . . . . ... ..o Feldschwachung
field winding . . . . . ... L Erreger(-wicklung)
flux . ..o Fluss
flux linkage . . . . . . ..o Flussverkettung
force . . ... Kraft
form-wound winding . . . . .. ... Formspulenwicklung
frequency . . . . ..o Frequenz
friction . . . . . ... Reibung
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English-German dictionary V

front pitch . . . . . ..o Schaltschritt
fundamental wave . . . . . ... ..o Grundwelle

heat . . . ..o Warme

inductance . . . .. ... Induktivitat [GroBe]
induction machine . . . . ... ... ... Asynchronmaschine
inductor . . .. ... Spule [Bauelement]
innere voltage . . . . . .. ... L. Polradspannung
interpoles . . . . ... Wendepolwicklung
inverter . . ... Wechselrichter

Iron . . . L. Eisen

jerk ..o Ruck

lapwinding . . . . .. ..o Schleifenwicklung
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English-German dictionary VI
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leakage . . . . . ..o Streuung
load . . ... Last / Belastung
losses . . . . . .. Verluste
machine . . . . ... Maschine
magnetic domain . . . . . ... Weiss-Bezirk
magnetomotive force . . . . ... ... magnetische Spannung
Mass . . . . . ... Masse
momentum . . . . ... Impuls
nameplate . . . . .. ..o Typenschild
oscillation [quantity depending on time] . . . . . Schwingung [GroBe in Zeit]
permanent magnet . . . . . . . . ... ... .. Permanentmagnet
PErmMeance . . . . . . . ..o Permeanz
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English-German dictionary VII
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phasor

reactive power

rectifier . . . . . . . . .. .. ...

reluctance

resistance . . . . . . . . . . . ... ...

resistor

root mean square . . . . . . . . . . . . . ...

rotor

salient pole rotor
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Zeitunabh. komplexer Zeiger
Leistung

Leistungselektronik
Leistungsfaktor
Blindleistung

Gleichrichter

Reluktanz

Widerstand [GroBe]
Widerstand [Bauelement]

Effektivwert

349



English-German dictionary VIII
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saturation . . . . ... L. Sattigung
separately excited DC machine . . . . . . . . .. Fremderregte Gleichstrommaschine
series DC machine . . . . . . . ... ... ... Reihenschlussmaschine
shaft . . . ..o Welle
shut DC machine . . . . . . . . ... ... ... Nebenschlussmaschine
slip . . . Schlupf
slipring . . . ... Schleifring
slot . . .. Nut
slot wedge . . . . . ... Nutkeil
speed . ... Geschwindigkeit
squirrel cage . . . . . ... Lo Kafiglaufer
starting torque . . . . . ... L. Anlaufdrehmoment
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English-German dictionary IX

steel

tap

terminal

three phase machine

torque

transformer

transient . . . . . ... L
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Stator

Stationarer Zustand

Synchronmaschine
Anzapfung
Anschlussfeld
Drehstrommaschine
Drehmoment
Transformator
Transienter Zustand
Windung
MaBeinheit
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English-German dictionary X

velocity . . . ..o Geschwindigkeit

voltage . . . . . .. ..o Spannung

wave [quantity depending on time and space] . . . Welle [GroBe in Zeit und Raum]
wave winding . . . . ... Wellenwicklung

windage . . . ... ..o Luftwiderstand

work . ... Arbeit

yoke . ... Joch
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Nomenclature |

x(t) .o time-dependent, scalar quantity
oo (fundamental) amplitude of a signal z(t)
gk k-th harmonic amplitude of a signal z(t)

x(t) ..o time-dependent, vectorial quantity

X . constant, scalar quantity (e.g., root mean square value)
X matrix

T ... average

X o complex quantity

X complex conjugate

Loty o derivative (first derivative w.r.t. time)
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