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What is an electrical machine?

Electrical machine

An electrical machine is a device that con-
verts electrical energy into mechanical en-
ergy or vice versa.

▶ Electrical energy is routed via machine’s
external wiring connected to the terminal
box.

▶ Mechanical energy is transferred via the
shaft (if it is a rotatory machine).

▶ Historic timetable of the electrical machine
development: KIT article (by
M. Doppelbauer)

Rotor

Shaft

Stator
(iron) Stator

(winding)

Housing

Nameplate
Terminal 
box

Fan

Fig. 1.1: Example of an electrical machine (source:
derived from Wikimedia Commons, public domain)
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Some exemplary electrical machines

(a) DC machine (source: Wikimedia Commons,
Marrci, CC BY-SA 3.0)

(b) Induction machine (source: Wikimedia Commons,
Zureks, CC BY-SA 4.0)

(c) Permanent magnet machine (source: Wikimedia
Commons, Andrez, CC BY-SA 4.0)

(d) Linear permanent magnet machine (source:
Wikimedia Commons, Zureks, CC BY-SA 4.0)
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The machine as an electrical-mechanical converter

Load convention
(arrows pointing in 
the same direction)

Generator convention
(arrows pointing in 

the opposite direction)

(a) Rotational converter

Load convention
(arrows pointing in 
the same direction)

Generator convention
(arrows pointing in 

the opposite direction)

(b) Translational converter

Fig. 1.3: Electrically and mechanically free body diagrams of motors as energy converters with variable
notation: time t, voltage u, current i, force F , displacement x, torque T and rational speed ω (adapted

from J. Böcker, Elektrische Antriebstechnik, Paderborn University, 2020)
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Some basic mechanical terms
Translational converter Rotational converter

Kinematic quantities
Displacement / angle x ε
Velocity v = ẋ ω = ε̇
Acceleration a = v̇ = ẍ α = ω̇ = ε̈
Jerk j = ȧ = v̈ =

...
x ρ = α̇ = ω̈ =

...
ε

Dynamical quantities
Force / torque F T
Mass / inertia m J

Mechanical power Pme = Fv Pme = Tω

Work W [t0, t] =
∫ t
t0
Pme(τ) dτ W [t0, t] =

∫ t
t0
Pme(τ) dτ

Momentum / rotational momentum p = mv L = ωJ
Kinetic energy Ekin = 1

2mv
2 Ekin = 1

2Jω
2

Tab. 1.1: Basic mechanical terms for translational and rotational converters
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Work vs. energy

Work

Work is the integral of the power over a
time integral (or force over distance) and is
a measure of the energy transfer.

Energy

Energy is the capacity to do work, that is, a
quantity depending on the state of a system
at a given point of time.

Energy
Work

Heat

Energy

Fig. 1.4: Illustration addressing the work vs. energy terminology (simplified Sankey diagram)
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Power balance of an electrical machine

Electrical
machine

Electrical 
power

Mechanical
power

Dissipated
power (losses)

Change of stored energy

Fig. 1.5: Power balance of an electrical machine (illustrated in motoric operation)

The power balance

Pel(t) = Pme(t) + Pl(t) +
d

dt
Ei(t) (1.1)

must hold for any point in time as energy is conserved, that is, not created or destroyed.
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Four quadrants of machine operation

For the steady state (Ėi(t) = 0), we define the
machine efficiency as the ratio of the converted
energy to the input energy:

ηmot =
Pme

Pel
= 1− Pl

Pel
, (1.2)

ηgen =
Pel

Pme
= 1− Pl

Pme
. (1.3)

Hence, we need to consider in which quadrant
the machine operates as this will influence the
power flow direction.

III
III IV

Driving
(motoric)

Driving
(motoric)

Braking
(generating)

Braking
(generating)

Fig. 1.6: Machine quadrants (derived from
Wikimedia Commons, K. Pitter, CC BY-SA 3.0)
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What is an electrical drive ?

Electrical drive

An electrical drive is a system that
controls the torque, speed or posi-
tion of an electrical machine con-
nected to some mechanical pro-
cess.

▶ Integrates the ’stupid’ electrical
machine into an ’intelligent’
controlled system.

▶ The energy source and mechanical
process (’load’) are not part of the
drive system.

Electrical
energy 
source

Mechanical
process

Higher 
level

control

Converter Machine

Sensors

Reference

Response

Readings

Drive controller

Fig. 1.7: Block diagram of an electrical drive (adapted from
J. Böcker, Elektrische Antriebstechnik, Paderborn University,

2020)
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Examples of electrical machine and drive applications (1)

(a) Electric cars (source: Wikimedia Commons,
M. Movchin and F. Mueller, CC BY-SA 3.0)

(b) Wind turbine generators (source: pxhere.com,
public domain)

(c) Factory robots (source: Wikimedia Commons,
A. Reinhold, CC BY-SA 4.0)

(d) Electric tools (source: flickr.com, M. Verch, CC
BY 2.0)
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Examples of electrical machine and drive applications (2)

(e) High-speed trains (source: Wikimedia Commons,
P. Elektro, CC BY-SA 3.0)

(f) Electric aircraft (source: Wikimedia Commons,
M. Weinold, CC BY-SA 4.0)

(g) Pumps (source: Wikimedia Commons,
Hammelmann, CC BY-SA 3.0)

(h) Cranes (source: Wikimedia Commons, Belfast
Dissenter, CC BY-SA 4.0)
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A broad range of nominal power ratings
100 000 000 W

10 000 000 W

1 000 000 W

100 000 W

10 000 W

1 000 W

100 W

10 W

1 W Toys, mini actuators,...

PC fans, printer drives,...

Appliances, roller blind drives,...

Pumps, mixers, e-bikes,...

Machine tools, kneading machine,...

Electric cars, blowers,...

Train or truck axles,...

Rolling mill, wind power generator,...

Ship generator,...

Fig. 1.9: Power range overview (inspired from A. Binder, Elektrische Maschinen und Antriebe (lecture
slides), Darmstadt University, 2022 with additional figure sources: A. Wolf, Asurnipal, M. Williams, R.

Spekking, Foxcorner, A. Tredz and J. Halicki under varying CC licenses)
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Why is knowledge about electric machines and drives important?

Electric machines and drives are an essential pillar of the modern society

Without electric machines and drives, our todays society would not be possible. Starting
from providing electricity via electrical generators to powering electric vehicles, tools
and entire factory production lines, electric machines and drives are everywhere, that
is, they enable our today’s living standard.

Energy efficiency and sustainability is key

Electric machines and drives utilize approx. 50% of the global electricity with about 8
billion electric motors in use in the EU (source: European Commission and International
Energy Agency). Therefore, improving their efficiency is an essential factor to reduce
the global energy consumption and the associated CO2 emissions.
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Learning objectives

▶ Understand the generation of magnetic fields, force formation and voltage induction in
electrical machines.

▶ Differentiate the main types of electrical machines and drives:
▶ DC machines,
▶ Induction machines,
▶ Synchronous machines,
▶ And their plentiful variants . . .

▶ Understand their basic design and operation principles.
▶ Analyze the operation of electrical machines and drives:

▶ in steady state and
▶ in transient conditions.

▶ Have fun learning about electrical machines and drives.
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Necessary prior knowledge for this course

You should have a basic understanding of the following topics:

▶ Analysis basics (e.g., complex analysis and differential equations),

▶ Linear algebra basics (e.g., vector and matrix operations),

▶ Basic knowledge of electrical circuit theory and components.

What we will not cover, that is, you do not need to know (covered in separate courses):

▶ Control engineering (design drive controllers),

▶ Power electronics (design switchable actuators).
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Recommended reading

▶ A. Binder, Elektrische Maschinen und Antriebe (in German), Vol. 2, Springer, 2017

▶ D. Schröder and R. Kennel, Elektrische Antriebe: Grundlagen (in German), Vol. 7, Springer
Vieweg, 2021

▶ A. Huges and B. Drury, Electric Motors and Drives: Fundamentals, Types and Applications,
Vol. 5, Newnes, 2019

▶ S. Chapman, Electric Machinery Fundamentals, Vol. 5, McGraw-Hill, 2011

▶ I. Boldea and S. Nasar, Electric Drives, Vol. 3, CRC Press, 2022
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Ampère’s circuital law: magnetic field strength
Relates the circulation of a magnetic field H around
a closed loop to the electric current passing through
the loop:

Integral form:

∮
∂S
H · ds = If , (2.1)

Differential form: ∇×H = Jf . (2.2)

Here, Jf is the free current density, and If is the
free current enclosed by the loop ∂S.

▶ Free current: current that is not bound to a
material (i.e., without polarization and
magnetization currents).

▶ SI-units: [H] = A
m , [J ] = A

m2

Fig. 2.1: Illustration of the magnetic field
strength H around a simple conductor
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Ampère’s circuital law: free current example

What is the free current If enclosed by the loop
∂S?

▶ The current I1 flows in the direction of the loop
∂S (according to right-hand rule).

▶ The current I1 must be counted N times due to
the N turns of wire around the loop ∂S.

▶ The current I2 flows in the opposite direction of
the loop ∂S (according to right-hand rule).

▶ Result:

If = N · I1 − I2.

turns

Fig. 2.2: Arrangement with two electrical
conductors
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Ampère’s circuital law: simple solenoid example
Ampere’s law for magnetic flux density B in vacuum:

Integral form:

∮
∂S
B · ds = µ0I, (2.3)

Differential form: ∇×B = µ0J . (2.4)

Here, µ0 is the permeability of free space, J is the
total current density and I is the total current
enclosed by the loop ∂S.

▶ SI-unit: [B] = T = Vs
m2 = N

Am

▶ Example contour ∂S on the right covering N turns
and length l (flux density within solenoid):∮

∂S
B · ds = Nµ0I ⇔ B =

Nµ0I

l

Fig. 2.3: Magnetic flux density evaluated at
the contour ∂S (adapted from: Wikimedia

Commons, Goodphy, CC BY-SA 4.0)
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Shortcomings of the Ampère’s circuital law
Applying Ampère’s circuital law to a capacitor with
a changing electric field E leads to a contradiction:

▶ Applying (2.2) to S1 yields:∮
∂S1

H · ds = I.

▶ In the case of S2 we receive:∮
∂S2

H · ds = 0.

▶ However, both surfaces share the same bounding
contour ∂S.

▶ Issue: The magnetic field strength H is not able
to describe the displacement current.

Fig. 2.4: Surfaces S1 and S2 share the same
bounding contour ∂S. However, S1 is pierced
by conduction current, while S2 is pierced by

displacement current (adapted from:
Wikimedia Commons, public domain).
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The Ampère – Maxwell equation
The charge Q of capacitor is:

Q =

∮
S2

D · dS.

If the electric flux density D = ε0εrE changes, a
displacement current results:

Id =
d

dt

∮
S2

D · dS

▶ Is not a classical electric current (moving charges) but
a term to describe the changing electric field.

▶ Above, ε0 is the vacuum permittivity and εr is the
relative permittivity of a material.

current 
Displacement

Fig. 2.5: Illustration for calculating the
displacement current (adapted from:
Wikimedia Commons, public domain).
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The Ampère – Maxwell equation (cont.)

Adding the displacement current to (2.2) we receive the Ampère – Maxwell equation:

Integral form:

∫
∂S
H · ds =

∫∫
S

(
Jf +

d

dt
D

)
· dS, (2.5)

Differential form: ∇×H = Jf +
∂D

∂t
. (2.6)

▶ SI-unit: [D] = C
m2

▶ SI-unit: [E] = V
m

▶ ε0 ≈ 8.854 · 10−12 F
m
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Magnetic flux and flux linkage
The magnetic flux ϕ is the surface integral of the
normal component of B over that surface:

ϕ =

∫∫
S
B · dS. (2.7)

As there are no magnetic monopoles, the magnetic
flux through a closed surface (which is covering a
volume without holes) is always zero:∮

S
B · dS = 0. (2.8)

The flux linkage ψ is the product of the magnetic flux
ϕ and the number of turns N of a coil:

ψ = Nϕ. (2.9)

Fig. 2.6: Magnetic flux ϕ evaluated at the
surface S (adapted from: Wikimedia
Commons, Goodphy, CC BY-SA 4.0)
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Magnetic leakage flux

▶ In the scenarios with multiple coils, the
magnetic flux generated by one coil will
influence also the other coils.

▶ Exception: two coils are perfectly
perpendicular to each other.

▶ However, the magnetic flux typically does
not fully couple with the other coils

▶ The difference is the leakage flux ϕσ.

Coil #1

Coil #2

Fig. 2.7: The magnetic flux ϕ1 generated by the
current I does only partly couple with the second
coil, while the difference ϕ1 − ϕ2 is the leakage
flux (adapted from: Wikimedia Commons, M.

Wacenovsky, public domain)
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Inductance
The inductance L describes the ratio between the magnetic flux linkage ψ(t) to the current
i(t):

ψ(t) = Li(t). (2.10)

Example: From the solenoid in Fig. 2.6 we know that the magnetic flux linkage ψ is:

ψ = N

∫∫
S
B · dS =

1

l
N2µ0Iπr

2

with r being the radius of the solenoid. Hence, the inductance L is:

L =
ψ

I
=
N2µ0πr

2

l
.

▶ SI-unit: [L] = H = Vs
A

▶ The inductance is an important parameter describing inductive systems.
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Self and mutual inductance
Based on the inductive coupling between
the two coils from Fig. 2.8, we can define
the magnetic flux matrix:

ϕ =

[
ϕ11 ϕ12
ϕ21 ϕ22

]
. (2.11)

▶ ϕ11: magnetic flux component of coil 1
due to its own current i1

▶ ϕ12: magnetic flux component of coil 1
due to the current i2 in coil 2

▶ ϕ21: magnetic flux component of coil 2
due to the current i1 in coil 1

▶ ϕ22: magnetic flux component of coil 2
due to its own current i2

Primary
winding

turns
 
 turns

 
 

 

Secondary
winding

Fig. 2.8: Two coils coupled via a common core
(adapted from: Wikimedia Commons, Bill C.,

CC BY-SA 3.0)
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Self and mutual inductance (cont.)

Utilizing the permeance definition (“magnetic conductance”)

Λ =
ϕ

Ni
, (2.12)

we can represent (2.11) as:

ϕ11 = Λ11N1i1, ϕ12 = Λ12N2i2, ϕ21 = Λ21N1i1, ϕ22 = Λ22N2i2. (2.13)

The resulting flux linkage per coil is then:

ψ1 = N1 (ϕ11 + ϕ21 + ϕ12) , ψ2 = N2 (ϕ22 + ϕ12 + ϕ21) ,

=
(
Λ11N

2
1 + Λ21N

2
1

)︸ ︷︷ ︸
L1

i1 + Λ12N1N2︸ ︷︷ ︸
M12

i2, =
(
Λ22N

2
2 + Λ12N

2
1

)︸ ︷︷ ︸
L2

i2 + Λ21N1N2︸ ︷︷ ︸
M21

i1.

(2.14)
Above, L1 and L2 are the self-inductances, M12 and M21 are the mutual inductances.
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Self and mutual inductance (cont.)
Hence, we can define the flux linkages of both coils using the following inductance matrix:

ψ =

[
ψ1

ψ2

]
=

[
L1 M12

M21 L2

] [
i1
i2

]
= Li. (2.15)

Due to the symmetry of the inductive coupling, the mutual inductances are identical:

M12 =M21 =M. (2.16)

Based on (2.14), we can also split the self-inductance Li of the i-th coil into the sum of the
leakage inductance Li,σ and the magnetizing inductance Li,m:

Li = Li,σ + Li,m = ΛiiN
2
i + ΛjiN

2
i with i ̸= j. (2.17)

Finally, we can define the coupling coefficient k as:

k =
M√
L1L2

, 0 ≤ k ≤ 1, (2.18)

which indicates how strong or week the inductive coupling between the coils is.
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Boosting the magnet field with ferromagnetic materials

While H depends on the currents applied to an
object, B depends on the material properties of the
object. In free space (vacuum), the relation is linear
and represented by the magnetic constant µ0:

B = µ0H with µ0 ≈ 4π · 10−7 N
A2 . (2.19)

To boost B for a given H, ferromagnetic materials
are typically used. These materials have a high relative
magnetic permeability µr:

B = µH = µ0µrH. (2.20)

Note that µr is a dimensionless quantity and that
(2.20) assumes linear and isotropic material behavior.

Air gap

Leakage flux

Leakage flux

Fig. 2.9: Simplified magnetic field lines of
an iron yoke with a coil (adapted from:
Wikimedia Commons, public domain)

Oliver Wallscheid Electrical machines and drives 36

https://en.m.wikipedia.org/wiki/File:Electromagnet_with_gap.svg


Relative permeability and magnetic saturation

Material µr (range)

Air / copper / aluminum (≈)1
Iron (99.8% pure) 5000
Electrical steel 2000 - 35000
Ferrite 200 - 20000

Tab. 2.1: Typical relative permeabilities of materials

Linear magnetic behavior (µr = const.) is only a local
approximation. When considering larger H ranges, the
(differential) permeability becomes nonlinear:

µr(H) =
dB

dH
. (2.21)

 
Linear 
behavior

Nonlinear 
behavior

Fig. 2.10: Illustrative magnetization curves
for ferromagnets (and ferrimagnets) and

corresponding permeabilities (adapted from:
Wikimedia Commons, public domain)
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Magnetic domains (1)

▶ Magnetic domains are regions within a
material where the magnetic moments of
atoms are aligned (“mini magnets”).

▶ The magnetization within each domain
points in a uniform direction, but the
magnetization of different domains may
point in different directions.

Fig. 2.11: Animation of moving domain walls (source:
Wikimedia Commons, Zureks, CC BY-SA 3.0)

Fig. 2.12: Change of magnetic
domains due to an external
magnetic field (adapted from:
Wikimedia Commons, M. Run, CC
BY-SA 4.0)
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Magnetic domains (2)
▶ A large region of material with a constant magnetization throughout creates a large

magnetic field (diagram a) below). This requires a lot of magnetostatic energy stored in the
field.

▶ To reduce this energy, the sample can “split” into two domains, with the magnetization in
opposite directions in each domain which reduces the overall field (diagram b) below).

▶ To reduce the field energy further, each of these domains can split also, resulting in smaller
parallel domains with magnetization in alternating directions, with smaller amounts of field
outside the material (diagram c) below).

Fig. 2.13: Simplified representation of the
formation of magnetic domains on the
basis of energy minimization (source:
Wikimedia Commons, public domain)
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Hysteresis

▶ Material defects lead to small, random jumps in
magnetization called Barkhausen jumps.

▶ Domain walls move irregularly.

▶ Process also depends on the history of the
magnetization process (dynamic system).

Fig. 2.14: Animation of the Barkhausen jump (source:
Wikimedia Commons, public domain)

Barkhausen 
jumps

Elementary magnets
rotate in domains

Saturation

Domain walls
shift

Fig. 2.15: Simplified hysteresis curve in first
quadrant with magnetic domains illustration

(adapted from: Wikimedia Commons,
Fralama, CC BY-SA 3.0)
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Hysteresis curve and losses

▶ With an external and varying field H, a
closed hysteresis curve is obtained.

▶ Traversing through the curve requires to
move the domain walls and rotate the
elementary magnets within the domains.

▶ This process requires work and leads to heat
dissipation (losses).

▶ The area enclosed by the hysteresis curve is
identical to the relative remagnetization
work (per volume, that is, [wh] =

J
m3 ):

wh =

∮
H · dB. (2.22)

Fig. 2.16: Exemplary hysteresis curve with Br

being the remanence field density and Hc the
coercivity field strength
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How can we model the hysteresis losses?
1 Data look-up table: Measure the

hysteresis curve and its losses directly on a
test bench (cf. MagNet project data hub).

2 Loss-fitted models: Use empirical models
to fit the hysteresis losses (e.g., Steinmetz
model):

Ph = khf
amax{B}b.

3 Curve-fitted models: Use empirical models
to describe the hysteresis curve and derive
the losses (e.g., ODE as in the
Jiles-Atherton model):

dB

dH
= f(B,H).

Fig. 2.17: Measured B-H loops for sinusoidal
excitation at different frequencies (source: IEEE

TPEL, Serrano et al., CC BY 4.0)
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Alternative to boost the magnet field: permanent magnets (PMs)

▶ Create own persistent magnetic fields.

▶ Consist of hard ferromagnetic (or
ferrimagnetic) materials.

▶ Nearly constant magnetiziation offset
BPM in the usual operating range:

B = µ0µrH ≈ µ0H +BPM. (2.23) Fig. 2.18: PMs on a rotor (source:
flickr.com, AIDG, CC BY-NC-SA 2.0)

S N

Fig. 2.19: Permanent magnets as
alternatives to current-based
excitation (source: Wikimedia
Commons, M. Run, CC BY-SA 3.0)
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Hysteresis curve of permanent magnets

▶ PM’s magnetization is nearly
completely saturated and constant in
common operation area.

▶ The greater the coercivity Hc, the
greater the resistance of the PM to
demagnetization by external fields.

▶ Beyond the so-called knee point, PMs
are (partially) demagnetized.

▶ Important figure of merit is the
so-called energy product:

(BH)max = max {−BH} . (2.24)

▶ The higher (BH)max the less PM
material is needed for an application.

reversible area
(common operation area)

irreversible 
demagnetization

knee 
point

Fig. 2.20: Exemplary hysteresis curve of a
permanent magnet

Oliver Wallscheid Electrical machines and drives 44



Hysteresis curve of permanent magnets (temperature dependence)

▶ Besides pressure and vibrations,
PMs are also sensitive to
temperature.

▶ The coercivity Hc and the
remanence Br decrease with
increasing temperature.

▶ Hence, with higher temperatures,
a PM gets more susceptible to
demagnetization.

Increasing temperature

knee 
points

Fig. 2.21: Qualitative representation of the
temperature dependence of permanent magnets
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Energy product overview of permanent magnets

NdFeB400
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Alnico
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SmCo5
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Fig. 2.22: Historic development of PM materials and their energy product (adapted from: Wikimedia
Commons, Kopiersperre, CC BY-SA 4.0)
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Manufacturing process of NdFeB permanent magnets

Fig. 2.23: Basic process steps for the NdFeB-based magnets (source: Springer JOM, J. Cui et al., CC
BY 4.0)
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Electromagnetic induction (Maxwell – Faraday equation)

A changing magnetic field induces an electric field
according to the Maxwell – Faraday equation:

Integral form:

∮
∂S
E · ds = − d

dt

∫∫
S
B · dS,

(2.25)

Differential form: ∇×E = −∂B
∂t

. (2.26)

Here, E is the electric field strength and S is the surface
enclosed by the loop ∂S.
▶ Lentz’s law: The induced electric field opposes the

change in magnetic field (negative sign above).

Fig. 2.24: Representation of the
magnetic and electric field relation

(adapted from: Wikimedia Commons,
Qniemiec, CC BY-SA 3.0)
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Electromotive force (EMF) and electromagnetic induction

If the integration path ∂S is identical to a
conductor loop, the changing magnetic field induces
a voltage ui (electromotive force, EMF) according
to Faraday’s law:

ui =

∮
∂S
E · ds = − d

dt

∫∫
S
B · dS. (2.27)

▶ Despite its name, the term EMF does not
describe a force in the physical sense (as ui is
obviously a voltage).

▶ The term remains a historical artifact from the
early days of electrical engineering, but is still
frequently used in today’s literature.

Rotating conductor
loop

Fig. 2.25: Induced voltage / EMF in a rotating
conductor loop (adapted from: Wikimedia

Commons, M. Lenz, CC0 1.0)
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Intermediate wrap up: electromagnetic principles and magnetic materials

Induction law

Material property

Ampere's law (simple version)

Fig. 2.26: Illustration of the connections between the phenomena discussed previously (derived from:
Wikimedia Commons, M. Lenz, CC0 1.0)
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Magnetic networks

▶ Motivation: Model magnetic systems with a
simplified lumped-parameter approach and apply
analysis techniques analogous to electric networks.

▶ Assumption: magnetic field is homogenous within
a lumped element (cf. Fig. 2.27).

▶ The magnetic flux per element is:

ϕk = AkBk. (2.28)

▶ The magnetic voltage (magnetomotive force –
MMF) per element is:

θk = lkHk. (2.29)

Fig. 2.27: Magnetic element with
homogenous magnetic field (adapted from
J. Böcker, Mechatronics and Electrical

Drives, CC BY-NC-ND)
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Magnetic networks (cont.)

▶ The magnetic reluctance per element is:

Rk =
θk
ϕk

=
lk

µ0µrkAk
. (2.30)

▶ The magnetic conductivity (or permeance) per
element is:

Λk =
1

Rk
=
µ0µrkAk

lk
. (2.31)

▶ As the magnetic field is free of sources
(∇ ·B = 0), it follows (node rule – analogous to
Kirchhoff’s first law):∑

k

ϕk = 0. (2.32)
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Magnetic networks (cont.)

Considering magnetostatic situations where the displacement current can be neglected,
Ampère’s law reads: ∮

∂S
H · ds = If = NI =

∑
k

θk =
∑
k

lkHk. (2.33)

So far, the equation has not the structure of the second Kirchhoff’s law (loop rule). However,
we can force this desired format by placing the term with the electric currents on the left-hand
side of the equation: ∑

k

θk − θ0 = 0 with θ0 = NI (MMF term). (2.34)
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Comparison: electric and magnetic network quantities

Electric network Magnetic network

Voltage u =
∫
E · ds V Magnetomotive force θ =

∫
H · ds A

Electric field E V
m Magnetic field H A

m
Current i A Magnetic flux ϕ Vs
Resistance R Ω Reluctance R 1

H
Conductance G S Permeance Λ H

Conductivity σ S
m Permeability µ H

m
Ohm’s law u = Ri Hopkinson’s law θ = Rϕ
Kirchoff’s first law

∑
ik = 0 Equivalent first law

∑
ϕk = 0

Kirchoff’s second law
∑
uk = 0 Equivalent second law

∑
θk − θ0 = 0

Tab. 2.2: Electric and magnetic network quantities and their analogies
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Magnetic network example: simple magnetic actuator

Winding

Iron

(a) Simple magnetic actuator

Constant 
air gaps

Varying 
air gap

MMF
source

(b) Magnetic network representation of the actuator

Fig. 2.28: Example for a simple magnetic actuator and its magnetic network representation (adapted
from J. Böcker, Mechatronics and Electrical Drives, CC BY-NC-ND)
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Lorentz force

The force F acting on a particle of electric charge q with
instantaneous velocity v, due to an external electric field
E and magnetic field B, is given by

F = q (E + v ×B) . (2.35)

▶ The term qE is called the electric force.

▶ The term q (v ×B) is called the magnetic force.

▶ In Cartesian coordinates, the Lorentz force is given by:

Fx = q (Ex + vyBz − vzBy) ,

Fy = q (Ey + vzBx − vxBz) ,

Fz = q (Ez + vxBy − vyBx) .

(2.36)

   

  

Fig. 2.29: Lorentz force F on a particle
(of charge q) in motion (instantaneous
velocity v) with given E and B fields
(adapted from: Wikimedia Commons,

Maschen, CC0)
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Hand rule of the magnetic Lorentz force

Technical current 
direction

Physical current 
direction

Fig. 2.30: Right and left hand rule for the magnetic Lorentz force q (v ×B) (adapted from: Wikimedia
Commons, M. Run, CC BY-SA 3.0)
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Lorentz force density for a continuous charge distribution

For a continuous charge distribution in motion,
the Lorentz force density (force per unit
volume) becomes:

f = ρE + J ×B. (2.37)

▶ ρ is the charge density (charge per unit
volume).

▶ J = ρv is the current density.

  

Fig. 2.31: Lorentz force density f on a continuous
charge distribution (charge density ρ) in motion
(adapted from: Wikimedia Commons, Maschen,

CC0)
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Power loss types in electrical machines

Electrical
machine losses

Copper losses Iron losses Mechanical losses

Stator winding

(Rotor winding)

(Skin effect)

(Proximity effect)

Hyteresis

Eddy currents

Excess losses

Windage

Friction

Fig. 2.32: Overview of power loss types in electrical machines
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Eddy currents

▶ A changing magnetic field induces a voltage.

▶ In bulky conductive materials (e.g.,
electromagnetic steel) this voltage drives
currents called eddy currents.

▶ Eddy currents lead to losses and heat
dissipation.

▶ To reduce eddy currents, laminated cores
are used as they decrease the effective
current path width and, therefore, increase
the effective resistance per sheet.

Fig. 2.33: Eddy current formations in solid and
laminated steel cores (source: Wikimedia

Commons, Chetvorno, CC0)
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Eddy currents: single sheet example

Assumption

Sheet’s thickness d is much smaller than
the sheet’s width w and the magnetic flux
density B is homogenous in the normal di-
rection of S and introduces a sinusoidal ex-
citation B(x, y, t) = B̂ sin(ωt).

From (2.25) integrating over S, we get

2wE(x, t) = −∂B
∂t

2xw

with 2w being the effective contour length of
∂S and 2xw being the effective surface area.

External 
magn. field

Eddy currents     /  electrical field 

Fig. 2.34: Single sheet and induced eddy currents

Oliver Wallscheid Electrical machines and drives 65



Eddy currents: single sheet example (cont.)
With Ohm’s law and the material conductivity σ, we get the current density J :

J(x, t) = σE(x, t) = −xσ∂B
∂t
.

Inserting the assumed magnetic flux density distribution it follows:

J(x, t) = −xσωB̂ cos(ωt).

The relative power loss (per volume) density p(x, t) results in:

p(x, t) =
1

σ
J2(x, t) = x2σω2B̂2 cos2(ωt).

The average power loss per volume (considering the entire sheet thickness) is:

p(t) =
1

d

∫ d/2

−d/2
p(x, t)dx =

1

12
σω2d2B̂2 cos2(ωt).
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Eddy currents: single sheet example (cont.)

The average power loss per volume and time is then:

p =
1

T

∫ T

0
p(t)dt =

1

24
σ
(
ωdB̂

)2
.

Although this is a simplified model, it shows the significance of

▶ the sheet’s thickness d,

▶ and excitation conditions ω and B̂.

This finding motivated empirical fitting approaches, like Bertotti’s model for the eddy currents:

pe ≈ kef
2B̂2.
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Homopolar / unipolar machines

(a) Video of an operating homopolar machine (source:
Wikimedia Commons, Smial, Free Art License)
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(b) Electric current, magnetic field and Lorentz force
(adapted: Wikimedia Commons, M. Run, CC BY-SA)

Fig. 3.1: Working principle of homopolar machines demonstrated with a simple permanent magnet,
battery and screw design
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Homopolar / unipolar machines (cont.)

▶ Homopolar machines are the simplest form
of electric machines.

▶ They are also true DC machines, as the
current and flux paths are unidirectional.

▶ The general design prevents connecting
multiple rotor turns in series to increase the
voltage, that is, only a relatively low voltage
is induced.

▶ Consequently, homopolar machines require
high currents (in the order of kA or even
MA) to reach a useful power range which
limited their application.

Fig. 3.2: The Faraday disk: another homopolar
machine (source: Wikimedia Commons, public

domain)
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Working principle of usual DC machines
Let’s consider Fig. 3.3 and assume that the flux
density B is constant in the air gap and that
the conductor loop has the axial length lz.
According to the Lorentz force we have

F = IaBlz. (3.1)

The torque T on the conductor loop is given by

T = 2F
d

2
cos (ε) = IaBlzd cos (ε) . (3.2)

If the loop spins with an angular velocity ω,
mechanical power Pme = Tω is transferred.

Question: What is happening if the coil is
outside the magnetic field?

Fig. 3.3: Torque on a conductor loop (adapted
from J. Böcker, Elektrische Antriebstechnik,

Paderborn University, 2020)
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DC-machine cross section

▶ To ensure a quasi-continuous torque,
the current through the conductor
loop(s) in the rotor must have a
constant direction.

▶ This is achieved by using a
commutator (brushes).

▶ Compared to homopolar machines,
DC machines require a mechanical
rectification of the current.

Stator

Armature  
or rotor

Armature
winding

Armature
winding

Air gap

Brush

Yoke

Field winding

Fig. 3.4: Simplified DC machine cross section (adapted
from J. Böcker, Elektrische Antriebstechnik, Paderborn

University, 2020)

Oliver Wallscheid Electrical machines and drives 73



Commutation

Fig. 3.5: Animation of the commutation process
(source: Wikimedia Commons, M. Frey, CC BY-SA 3.0)
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Armature and commutator

(a) Commutator with brushes and springs (source:
Wikimedia Commons, Marrrci, CC BY-SA 3.0)

(b) DC machine armature with commutator (source:
Wikimedia Commons, public domain)

Fig. 3.6: Examples of commutators and armatures
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Armature and commutator (cont.)

(c) Armature inside stator (source: Wikimedia
Commons, Marrrci, CC BY-SA 3.0)

(d) DC machine with permanent magnet excitation
and tacho speed sensor

Fig. 3.6: Examples of commutators and armatures (cont.)
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Commutation process
During the commutation time ∆tc the brush bridges two commutator segments and the
short-circuited conductor coil current ic is changing signs. Here, two major scenarios can be
distinguished:

▶ The commutation is such fast that high local current densities are prevented.
▶ The commutation is slow and high local current densities lead to sparking effects.

Commutation
in time

Commutation
incomplete

=
electric arc

Fig. 3.7: Left: simplified equivalent circuit diagram of the short-circuited coil during commutation.
Right: qualitative trajectories of the conductor current ic
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Commutation process (cont.)

Fig. 3.8: Commutator sparking of a
simple DC machine (source: Wikimedia
Commons, M. Frey, CC BY-SA 4.0)

Assuming that the brush width wb is much bigger than
one commutator segment (which is usual practice), the
commutation time ∆tc is given by

∆tc ≈
wb

vc
. (3.3)

Here, vc is the brush velocity

vc = ω
da
2

(3.4)

with the armature angular velocity ω and the armature
diameter da. Due to the changing current in the coil, the
so-called reactane voltage ur is induced:

ur = Lc
dic
dt

≈ Lc
ia

a∆tc
= Lcia

ωda
awb2

. (3.5)
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Basic structure of the armature

N N NSS

Lap winding Wave winding

Commutator

Commu-
tator

Slot

Armature 
winding

Slot
wedge

Stator pole

Fig. 3.9: Cross section of a drum-type armature including principle winding schemes (adapted from
W. Novender, Elektrische Maschinen, Technische Hochschule Mittelhessen, 2023)
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Types of winding conductors

Slot

Slot wedgeTooth

Fed-in 
type

Form-wound 
type

Iron 

Winding turn (usually copper)

Fig. 3.10: Types of winding conductors – unwound representation along the circumference (adapted
from J. Böcker, Controlled Three-Phase Drives, Paderborn University, 2021)
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Commutation process with an armature lap winding
Armature movement

Short circuit

Fig. 3.11: Three still images of the commutation process with a simplified winding representation (from
left to right): when the brush touches two commutator segments, the according conductor loop is
short-circuited and the current is reduced to zero. The brush then moves to the next commutator

segment and the current starts flowing again but in the opposite direction (adapted from W. Novender,
Elektrische Maschinen, Technische Hochschule Mittelhessen, 2023).
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DC machines with multiple pole pairs

▶ To reduce the effective length per
armature conductor loop, the
winding can form multiple pole pairs
p.

▶ This will reduce the inductance per
loop which is beneficial for the
commutation process.

▶ The stator excitation must meet the
same number of pole pairs.

▶ Given some inner stator diameter ds,
the resulting pole pitch is:

τp =
πds
2p

, ρp =
π

p
. (3.6)

Fig. 3.12: Simplified DC machine cross section with
p = 2 pole pairs (adapted from J. Böcker, Elektrische

Antriebstechnik, Paderborn University, 2020)
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Armature winding characteristics
For describing the armature winding layout, the following parameters are introduced:

Q : number of slots, Nc : number of conductor turns per coil,

K : number of commutator elements, u = K/Q : slot to commutator ratio,

za = 2KNc : total number of armature conductors.

Upper layer

Lower layer

Stator

Armature

Fig. 3.13: Coil width and slot design characteristics (adapted from W. Novender, Elektrische Maschinen,
Technische Hochschule Mittelhessen, 2023)
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Double layer winding
▶ The forward conductor of one coil and the return conductor of another coil are placed in the

same slot. This is the common winding scheme (although not limited to it).
▶ Enables chording of the winding (ρp ̸= yb), another degree of freedom for the machine

design (cf. Fig. 3.13).

Top layer

Bottom layer
Slot

End winding

Fig. 3.14: Double layer winding with u = 3 with a solid conductor element (which can be
pre-manufactured for cost reasons – inspired from A. Binder, Elektrische Maschinen und Antriebe, Vol.

2, Springer, 2017)
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Lap winding characteristics

▶ Back pitch yb: coil span from the
back end

▶ Front pitch yf : coil span from the
front end

▶ Resultant pitch yr: distance between
two consecutive coils

▶ Commutator pitch yc: distance
between two consecutive
commutator segments

Progressive winding

Fig. 3.15 shows a progressive wind-
ing layout with yb > yf , i.e., the coils
do not cross themselves.

Front
connectors

Back
connectors

Fig. 3.15: Distance definitions of the armature lap
winding (adapted from W. Novender, Elektrische

Maschinen, Technische Hochschule Mittelhessen, 2023)
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Lap winding characteristics (cont.)

Retrogressive winding

Fig. 3.16 shows a retrogressive wind-
ing layout with yb < yf , i.e., each
coil crosses itself.

▶ Retrogressive windings require more
conductor material due to the
crossing of the coils and, therefore,
are less common.

▶ Technical feasibility requires
yb − yf = ±yc, i.e., the lap winding
progresses or retrogresses by one
commutator element.

Front
connectors

Back
connectors

Fig. 3.16: Lap winding with a retrogressive scheme
(adapted from W. Novender, Elektrische Maschinen,

Technische Hochschule Mittelhessen, 2023)
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Lap winding: final remarks and single pole pair example

▶ Armature turns per pole:
Np = KNc

2p

▶ Current per armature
conductor: Ic =

Ia
2p

Parallel connection of poles

For p > 1 the lap winding
parallels the armature coils for
each pole enabling a higher
current (but limited voltage)
rating.

Circumferential direction Pole Short-circuited

Fig. 3.17: Lap winding with commutator unrolled along the
circumferential coordinate
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Wave winding characteristics

▶ Commutator pitch (wave winding):
yc = yf + yb, i.e., each coil spans
(nearly) the entire pole pitch.

Progressive winding

Fig. 3.18 shows a progressive wind-
ing layout since each new wave wind-
ing coil starts one commutator ele-
ment to the right. Fig. 3.18: Distance definitions of the armature wave

winding (adapted from W. Novender, Elektrische
Maschinen, Technische Hochschule Mittelhessen, 2023)
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Wave winding: final remarks and single pole pair example

▶ Armature turns per pole:
Np = KNc

2

▶ Current per armature
conductor: Ic =

Ia
2

Series connection of poles

For p > 1 the wave winding
connects the armature coils
for all poles in series enabling
a higher voltage (but limited
current) rating.

Circumferential direction Pole Short-circuited

Fig. 3.19: Wave winding with commutator unrolled along the
circumferential coordinate
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Lap and wave winding comparison

Introducing the parameter

a = number of parallel armature conductors (3.7)

we can wrap up the following summary:

Current per conductor: Ic =
Ia
2a
, Armature turns per pole: Np =

KNc

2a
. (3.8)

Comparison

▶ Lap winding: a = p (parallel connection of poles)

▶ Wave winding: a = 1 (series connection of poles)
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Air gap field
Assumption: The air gap field distribution is homogenous
and without any leakage (cf. Fig. 3.20).
Consequently, we model the magnetic machine behavior with
the simplified network shown in Fig. 3.21.

Fig. 3.20: Idealized field lines (adapted from W. Novender,
Elektrische Maschinen, Technische Hochschule Mittelhessen, 2023)

Fig. 3.21: Simplified magnetic
network of a DC machine
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Air gap field (cont.)
We introduce the following magnetic reluctances

Rs =
ls

µr,feµ0As
(stator reluctance),

Ra =
la

µr,feµ0Aa
(armature reluctance),

Rδ =
δ

µ0Aδ
(air gap reluctance).

(3.9)

Above li and Ai are the respective lengths and cross-sectional
areas of the field paths while δ is the air gap width.
Furthermore, we have

µr,δ = 1, µr,fe >> 1.

Oliver Wallscheid Electrical machines and drives 94



Air gap field (cont.)
With Nf field winding turns and the field current If , the air
gap flux is given by:

ϕδ =
NfIf

2Rδ +Ra +
1
2Rs

= µ0NfIf

(
2
δ

Aδ
+

la
µr,FeAa

+
1

2

ls
µr,FeAs

)−1

.

(3.10)

While the relative permeability of the iron paths is depending
on the magnetic flux (µr,Fe = µr,Fe(ϕ)) due to saturation (cf.
Fig. 2.10) rendering (3.10) a nonlinear equation, we will
assume that the air gap reluctance is dominating

Rδ >> {Ra, Rs} . (3.11)
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Air gap field (cont.)
Based on (3.10) together with (3.11) we can simplify the effective air gap flux to

ϕδ ≈
NfIf
2Rδ

=
NFIf

2 δ
µ0Aδ

=
µ0NfAδ

2δ
If . (3.12)

Here, δ is the air gap width and Aδ the effective cross-sectional area of the air gap which is

Aδ = αpτplz. (3.13)

Above, the following assumptions and definitions are made:

▶ lz is the axial length of the machine.

▶ The air gap width is very small such that the pole pitch τp can be used as a good
approximation for the air gap circumference.

▶ α is the pole coverage, that is, the ratio of the active pole surfaces to the pole pitch (cf.
Fig. 3.22 on next slide) representing the average field density in the air gap.
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Air gap field (cont.)

Armature

Circumferential direction

Air 
gap

width
Stator

Fig. 3.22: Principle magnetic field paths through stator and rotor as well as the (idealized) normal
component of the magnetic field density Bδ in the air gap (inspired from A. Binder, Elektrische

Maschinen und Antriebe, Vol. 2, Springer, 2017)
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Torque

From (3.12) we can calculate the air gap
flux density B̂δ per pole pair as

B̂δ =
ϕδ
Aδ

=
µ0Nf

2δp
If . (3.14)

Assuming that the magnetic field only
flows through each armature conductor in
a perpendicular direction (cf. Fig. 3.23),
the absolute Lorentz force per armature
conductor is resulting in

Fc = B̂δlzIc =
µ0Nf lz
4δpa

IfIa. (3.15)

Fig. 3.23: Simplified DC machine cross section with
exemplary armature conductor force representation

(adapted from J. Böcker, Elektrische Antriebstechnik,
Paderborn University, 2020)
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Torque (cont.)

Assuming that the force direction acting on each armature conductor is perpendicular to the
armature shaft, the torque per conductor for an armature diameter da is

Tc = Fc
da
2

=
µ0Nf lzda
8δpa

IfIa. (3.16)

The resulting (average) machine torque T for Na armature conductor loops from which an α
share is covered by the poles (cf. Fig. 3.22) is

T = 2αNaTc =
µ0αNfNalzda

4δpa
IfIa. (3.17)

With τp = πds/(2p) = πda/(2p) assuming a very small air gap width δ (cf. Fig. 3.12) we can
also rewrite the torque as

T =
µ0αNfNalzτp

2πδa
IfIa. (3.18)
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Effective field inductance and effective flux linkage
To write (3.18) more compact, we introduce the effective field inductance

L′
f =

µ0αNfNalzda
4δpa

=
µ0αNfNalzτp

2πδa
. (3.19)

Compared to the self-inductance of the field winding

Lf =
N2

f

2Rδ
=
µαpτplzN

2
f

4δ
, (3.20)

we find

L′
f =

2p

aπ

Na

Nf︸ ︷︷ ︸
c

Lf = cLf . (3.21)

Finally, we define the effective field flux linkage ψ′
f to rewrite the torque expression

ψ′
f = L′

fIf , T = cLfIfIa = L′
fIfIa = ψ′

fIa. (3.22)
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Flux linkage of a single armature coil

From Fig. 3.22 we assume the air gap flux
density normal component along ε to be:

B(ε) =

{
Bδ, 0 ≤ ε < π,

−Bδ, π ≤ ε < 2π.
(3.23)

The flux linkage of a single armature coil
starting at position ε is then

ϕc(ε) =

∫∫
S
B · dS = lzda

∫ ε+π

ε
B(ε)dε

= lzdaBδ

{
(π/2− ε), 0 ≤ ε < π,

(ε− 3π/2), π ≤ ε < 2π.

Circumferential direction

Fig. 3.24: Flux linkage ψc of a single armature coil
based on the simplified, rectangular air gap flux

density Bδ(ε) from Fig. 3.22 – light blue and yellow
areas represent two exemplary armature coil

positions.
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Induced voltage
Assuming that the armature is rotating with the (constant) speed n (or angular velocity
ω = ε̇), the induced voltage per armature conductor loop is

ui,c = − d

dt
ϕc = − d

dε
ϕc

d

dt
ε = −ωlzdaBδ

{
−1, 0 ≤ ε < π,

+1, π ≤ ε < 2π.
(3.24)

To calculate the total induced voltage ui, we consider

▶ the rectification of the induced voltage by the commutator,

▶ Na total armature conductor loops,

▶ 2a parallel armature conductors per pole pair (depends on winding scheme, cf. (3.7)),

resulting in:

ui =
Na

2a
|ui,c| =

Na

2a
ωlzdaBδ = ωIf

µ0αNfNalzda
4δpa

= ωIf
µ0αNfNalzτp

2πδa
= ωIfL

′
f = ωψ′

f .

(3.25)
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Equivalent circuit diagram and summary of important equations
Field and armature voltage equations:

uf = Rf if + Lf
dif
dt

ua = Raia + La
dia
dt

+ ui

(3.26)

Induced voltage:

ui = ωψ′
f = ωifL

′
f

Torque:
T = L′

fif ia = ψ′
fia

Note: we represent the machine currents with small
letters to indicate that they are time-dependent
(e.g., if the external voltage supply is varying).

Fig. 3.25: Equivalent circuit diagram of the
DC machine
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Power balance and efficiency
Based on Fig. 3.25 (note the load convention), the electrical power of the DC machine is:

Pel = uaia + ufif . (3.27)

This power is separated into the mechanical power Pme, the dissipated power losses Pl, and the
change of the stored magnetic energy d

dtEmag:

Pel = Pme + Pl +
d

dt
Emag. (3.28)

The power losses are (assuming dominant ohmic losses):

Pl = Rfi
2
f +Rai

2
a. (3.29)

The mechanical power is:
Pme = Tω = ψ′

fiaω. (3.30)

The magnetically stored energy is

Emag =
1

2
Lfi

2
f +

1

2
Lai

2
a. (3.31)
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Power balance and efficiency (cont.)

In steady state, the DC machine efficiency η is defined as

ηmot =
Pme

Pel
=

Tω

uaia + ufif
=

L′
fifiaω

Rai2a + ωL′
f ifia +Rfi

2
f

,

ηgen =
Pel

Pme
=
uaia + ufif

Tω
=
Rai

2
a + ωL′

f ifia +Rfi
2
f

L′
fifiaω

.

(3.32)

It can be noted that

▶ The machine parameters Ra, Rf , and L
′
f are influencing the efficiency.

▶ The efficiency is a function of the load torque T and the speed ω, that is, depending on the
operating point.

▶ If if and ia are independently controllable, the efficiency can be optimized as a certain
torque can be produced with infinitely many combinations of if and ia.
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Intermediate remarks on the DC machine model
During the derivation of the DC machine model, we made several assumptions:

▶ The air gap magnetic field is homogenous and without any leakage.
▶ The air gap reluctance is dominating the magnetic circuit (neglecting the iron path

reluctances including potential magnetic saturation).
▶ The magnetic field lines follow distinct paths through the armature winding.
▶ There is no mutual inductance between the stator and rotor (ideal orthogonal windings).
▶ The magnetic field in the air gap and in the armature is governed by the field winding

current only (that is, we have neglected the armature current impact on the field).

Model accuracy

We represent the DC machine by a time-invariant, lumped-parameter model which
is based on several substantial simplifications. While this model is likely sufficient
for many applications, systematic deviations between the observed behavior of real
machines and the model predictions are to be expected.
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Armature reaction
▶ So far, we have neglected the impact of the armature current on the magnetic field.
▶ If ia ̸= 0, the magnetic field in the air gap is distorted (so-called armature reaction).

Only field excitation Only armature excitation

neutral zone

circumferential
direction

Local iron
saturation

Fig. 3.26: Superposition of the field and armature magnetic excitation and the resulting air gap field
normal components (adapted from W. Novender, Elektrische Maschinen, Technische Hochschule

Mittelhessen, 2023)
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Armature reaction (cont.)
Issues related to the armature reaction:

▶ The neutral zone (field-free commutation area) is
shifted by β degrees in the circumferential
direction, that is, exacerbate the commutation
process (increased risk of sparking).

▶ High local field densities can lead to magnetic
saturation which will increase the iron path
reluctance and consequently decrease the
machine’s torque capability. Also, the iron losses
will increase.

▶ The imbalanced magnetic field leads to an
imbalanced Lorentz force distribution on the
armature conductors which can cause mechanical
distortions.

Only field excitation Only armature excitation

neutral zone

circumferential
direction

Local iron
saturation
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Counter measures: compensation winding and interpoles

Only armature-related distortion Only interpoles and compensation winding

InterpoleInterpole

Compensation
winding

Armature 
current

Field
current

Fig. 3.27: Armature reaction counter measures utilizing compensation winding and interpoles: both are
excited by the armature current with an opposite orientation to account for the load-dependent impact
of the armature reaction (adapted from W. Novender, Elektrische Maschinen, Technische Hochschule

Mittelhessen, 2023 and J. Böcker, Elektrische Antriebstechnik, Paderborn University, 2020)
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Counter measures: compensation winding and interpoles (cont.)

Fig. 3.28: Example of a DC machine with interpole winding (one may identify that the interpole winding
is connected to the brushes and, therefore, excited by the armature current)
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Counter measures: compensation winding and interpoles (cont.)
Compensation winding design: In order to compensate for the armature reaction within the
air gap, the compensation winding MMF θcw must meet the armature MMF θa:

|θcw| =
zcw

2acwp
Ia

!
= α

za
2aap

Ia = |θa|. (3.33)

Above, the following parameters are used:

▶ acw/aa: number of parallel conductors of the compensation and armature windings,

▶ zcw/za: number of conductors of the compensation and armature windings.

In (3.33) α is only related to θa as we assume the armature area to be bigger (or at least the
same size) as the field pole (cf. Fig. 3.27). From (3.33) we can calculate the required
compensation winding conductors

zcw = αza
acw
aa

= 2pQcwNcw (3.34)

which can be met by choosing Qcw slots and Ncw turns per pole.
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Counter measures: compensation winding and interpoles (cont.)

Interpole winding design: As discussed in (3.5), the reactane voltage ur ≈ Lciaωda/(awb2)
is self-induced within the short-circuited coil during commutation. To counteract this, the
interpole winding is designed such that the neutral zone is (over-)compensated leading to an
induced voltage uip which is opposite to ur:

|uip|
!
= |ur|. (3.35)

Assuming a rotational angular velocity ω and some (homogenous) Bip ̸= 0 flux density in the
interpole area, the induced voltage uip is

uip = NcωdalzBip. (3.36)

Here, Nc is the number of armature conductor turns per coil assuming that exatly one coil is
placed in the interpole area.

Oliver Wallscheid Electrical machines and drives 114



Counter measures: compensation winding and interpoles (cont.)

From (3.35) and (3.36) we can calculate the
required interpole flux density Bip:

Bip =
ur

Ncωdalz
=

Lcia
2Nclzawb

. (3.37)

Applying the compensation winding design approach
(3.33) results in:∮

∂S
H ·ds = θip+θcw−θa = θip−θa(1−α). (3.38)

The MMFs per pole are:

θip = Nipia, θa = Naia. (3.39)

Fig. 3.29: Integration contour ∂S and related
MMF components for the interpole winding
design (adapted from J. Böcker, Elektrische
Antriebstechnik, Paderborn University, 2020)
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Counter measures: compensation winding and interpoles (cont.)
Assuming that the air gap reluctance is dominating
the magnetic circuit, we receive∮

∂S
H ·ds = 2δHip = Nipia−Naia(1−α). (3.40)

The flux density in the interpole area is then

Bip = µ0
Nip −Na(1− α)

2δ
ia. (3.41)

The comparison with (3.37) reveals:

µ0
Nip −Na(1− α)

2δ
ia

!
=

Lc

2Nclzawb
ia

⇔ Nip = Na(1− α) +
Lcδ

µ0Nclzawb
.

(3.42)
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Connection types of DC machines

NS

(a) Separately excited (or perm. magnet) DC machine (b) Series DC machine

(c) Shunt DC machine (d) Compound DC machine

Fig. 3.29: Connection types of DC machines incl. terminal block designations (note: the not shown
interpole winding has the terminal block designation B1-B2 and the compensation winding C1-C2)
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Steady-state behavior: separately excited DC machine
Assuming a fixed excitation ψ′

f (e.g., by a permanent magnet or constant field current), the
separately excited DC machine’s voltage demand for a certain speed is:

Ua = RaIa + ωψ′
f . (3.43)

On the other hand, the speed-torque characteristic for a fixed armature voltage supply Ua is

T =
(
Ua − ωψ′

f

) ψ′
f

Ra
= Ua

ψ′
f

Ra
− ω

ψ′2
f

Ra
. (3.44)

Fig. 3.30: Steady-state
characteristics curves (adapted
from J. Böcker, Elektrische
Antriebstechnik, Paderborn
University, 2020)
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Steady-state behavior: separately excited DC machine (cont.)

For Ua = const. > 0, the starting torque (i.e.,
the torque at zero speed) and the
corresponding armature current are:

T (ω = 0) = T0 = Ua
ψ′
f

Ra
,

Ia(ω = 0) = Ia,0 =
Ua

Ra
.

(3.45)

On the other hand for T = 0, the no-load
speed ω0 is:

ω0 =
Ua

ψ′
f

. (3.46)

Fig. 3.31: Starting torque and no-load speed of
a separately excited DC machine (adapted
from J. Böcker, Elektrische Antriebstechnik,

Paderborn University, 2020)
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Steady-state behavior: separately excited DC machine (cont.)
As the start up of a DC machine with a fixed armature voltage Ua can lead to very high
armature currents, which potentially cause damage, dropping resistors can be used to limit the
armature current. While this approach was historically very common (e.g., in rail vehicles), its
additional power losses and the necessity to carry bulky resistors are obvious drawbacks.

Fig. 3.32: Operation with dropping resistor during start up to limit the armature voltage (adapted from
J. Böcker, Elektrische Antriebstechnik, Paderborn University, 2020)
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Operation constraints: separately excited DC machine
Now we consider Ua being controllable (e.g., via buck converter), that is, we can also change
Ia. Nevertheless, the machine is still limited by the voltage and current constraint:

Umax ≤ Ua =
Ra

ψ′
f

T + ωψ′
f , Imax ≤ Ia. (3.47)

For sake of simplicity we only consider the first quadrant (cf. Fig. 1.6), that is, positive torque
and speed mode. From (3.47) T ≤ ψ′

fImax follows. Also, the maximum speed is limited:

ω ≤ Umax

ψ′
f

− Ra

ψ′2
f

T. (3.48)

Hence, for a constant excitation ψ′
f , the torque must be reduced starting at ω1 while ω0

represents the no-load speed where no torque can be generated anymore:

ω1 =
Umax

ψ′
f

− Ra

ψ′
f

Imax, ω0 =
Umax

ψ′
f

. (3.49)
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Operation constraints: separately excited DC machine (cont.)

Fig. 3.33: Maximum achievable torque and mechanical power for the separately excited DC machine
with a fixed excitation ψ′

f but controllable armature voltage Ua and current Ia
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Field weakening of the separately excited DC machine

In the previous scenario, the no-load speed ω0 is limited by the maximum armature voltage
Umax. However, if the field winding current If is also controllable, the no-load speed can be
increased by decreasing the excitation ψ′

f (so-called field weakening). Consider an armature
operation both at the voltage and current constraint:

Umax = RaImax + ωψ′
f = RaImax + ωL′

fif . (3.50)

For ω > ω1 the field weakening is applied by reducing if to stay exactly at the armature voltage
constraint:

if =
1

ω

Umax −RaImax

L′
f

. (3.51)

Hence, we need to reduce the excitation with 1/ω resulting in the torque and mechanical power

T =
1

ω

(
UmaxImax −RaI

2
max

)
, Pme = UmaxImax −RaI

2
max. (3.52)
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Field weakening of the separately excited DC machine (cont.)

Constant torque area
Constant power 

area

Fig. 3.34: Maximum achievable torque and mechanical power for the separately excited DC machine
with a variable excitation ψ′

f as well as controllable armature voltage Ua and current Ia
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Steady-state behavior: shunt DC machine
The shunt DC machine is characterized by:

U = Ua = Uf , I = Ia + If . (3.53)

The steady-state currents are:

If =
Uf

Rf
,

Ia =
Ua − ωL′

fIf
Ra

=
1− L′

f/Rfω

Ra
U,

I = Ia + If =

(
1

Ra
+

1

Rf
−

L′
fω

RaRf

)
U.

(3.54)

The resulting steady-state torque is:

T = L′
fIfIa = L′

f

1− L′
f/Rfω

RaRf
U2. (3.55)
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Steady-state behavior: series DC machine
The series DC machine is characterized by:

U = Ua + Uf , I = Ia = If . (3.56)

We can rewrite the terminal voltage as

U = (Ra +Rf) I + ωL′
fI = R′(ω)I (3.57)

with the effective speed-dependent resistance

R′(ω) = Ra +Rf + ωL′
f . (3.58)

The steady-state torque is then

T = L′
fI

2 = L′
f

(
U

R′(ω)

)2

. (3.59)
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Steady-state behavior: series DC machine (cont.)

If the series DC machine is operated at the negative
mechanical speed

ωr = −Ra +Rf

L′
f

, (3.60)

the current and the torque get (theoretically)
infinite. This is due to the fact that the back EMF
is exactly compensating the resistive voltage drop.
Moreover, for from (3.59) we can observe that

T → 0 ⇒ ω → ∞ (3.61)

holds for any DC voltage U ̸= 0. This is due to
inherent, load-dependent flux weakening effect of
the series DC machine.

Fig. 3.35: Steady-state torque-speed
characteristics for different DC voltage levels
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Universal machine: series DC machine with sinusoidal excitation

From (3.59) it becomes clear that T ∼ I2 holds
and, hence, the torque is independent of the sign of
the current. Hence, the series DC machine can be
also operated with an AC voltage supply (so-called
universal machine).

Consider the sinusoidal excitation

u(t) = û cos(ωelt+ φu) = Re
{
ûej(ωelt+φu)

}
= Re

{
Uejωelt

}
,

which is represented by the complex phasor

U = Uejϕu =
1√
2
ûejφu . (3.62) Fig. 3.36: Qualitative voltage, current and

torque signals for a universal motor
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Universal machine: series DC machine with sinusoidal excitation (cont.)
From (3.26) and (3.56) we can derive the complex voltage and current relations:

U = R′(ω)I + jωelLI (3.63)

with L = Lf + La. The current phasor is

I =
U

R′(ω) + jωelL
(3.64)

resulting in the instantaneous current (setting φu = 0)

i(t) = Re
{√

2Iejωelt
}
=

√
2Re

{
U (R′(ω)− jωelL)

R′(ω)2 + ω2
elL

2
ejωelt

}
(3.65)

=
√
2

U√
R′(ω)2 + ω2

elL
2
cos

(
ωel(t−

L

R′(ω)
)

)
. (3.66)
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Universal machine: series DC machine with sinusoidal excitation (cont.)
The resulting instantaneous torque is

T (t) = L′
fi
2(t)

= 2L′
f

U2

R′(ω)2 + ω2
elL

2
cos

(
ωel(t−

L

R′(ω)
)

)2

= L′
f

U2

R′(ω)2 + ω2
elL

2

[
1 + cos

(
2ωel(t−

L

R′(ω)
)

)]
.

The peak and average torque are

T̂ = 2L′
f

U2

R′(ω)2 + ω2
elL

2
= L′

f

û2

R′(ω)2 + ω2
elL

2
,

T =
ωel

2π

∫ 2π
ωel

0
T (t)dt =

1

2
T̂ . (3.67)
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Universal machine: series DC machine with sinusoidal excitation (cont.)

▶ Only if the reactance ωelL impact on the voltage
demand is negligible, the universal machine
average torque at AC mode is identical to the
series DC machine torque in DC mode applying
the same effective voltage.

▶ Due to the AC field current, both the armature
and stator should be based on a laminated iron
core design to reduce iron losses.

▶ The peak armature and field currents are
√
2

times higher in the AC case than in DC
operation. To prevent magnetic saturation, the
iron paths must be designed larger than for an
equivalent DC machine (i.e., leading to more
volume and weight).

Fig. 3.37: Steady-state torque-speed
characteristics for different AC voltage
frequencies at a fixed voltage amplitude
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Commutation of the universal machine

Assuming that the entire air gap field ϕδ is linked by the
commutation coil, the time-varying excitation field induces an
additional spark voltage usp within the commutation coil:

usp = −Nc
p

a

dϕδ
dt

. (3.68)

Due to the time-varying excitation current, we have
ϕδ(t) = ϕ̂δ cos(ωelt) and, hence,

usp = Nc
p

a
ωelϕ̂δ sin(ωelt). (3.69)

This additional induced spark voltage is shifted by (approx.)
90 degrees to the excitation field. Consequently, the interpole
winding current is not in phase and does not compensate usp.

Field excitation

Fig. 3.38: Simplified illustration of
the induced voltage within the

short-circuited commutation coil by
the varying excitation field
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Commutation of the universal machine (cont.)

Assuming an ideal inductive behavior of the short-circuited
coil, the induced spark voltage (3.69) leads to the current

isp = −Nc

Lc

p

a
ϕ̂δ cos(ωelt). (3.70)

This additional current will promote commutator sparking
and, hence, the universal machine commutation process is
more challenging than for a pure DC machine.

Conlusion on the universal machine

The drawbacks of the universal machine in terms of siz-
ing and commutation sparking (leading to higher wear)
are the reasons why this machine type is typical limited
to low-cost applications (e.g., household appliances).

Field excitation
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Transformer definition

Transformer

A transformer is a static device that transfers electri-
cal energy between two or more circuits through elec-
tromagnetic induction. It converts the AC voltage levels
between inputs and outputs.

▶ While a transformer is sometimes called a
“static machine”, it does not meet the formal definition of
an electrical machine (compare first chapter).

▶ However, transformers share some working principles with
electrical machines and are also often used as components
of electrical power systems including drives.

Fig. 4.1: Transformer integrated at
a utility pole (source: pxhere.com,

public domain)
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Examples of transformers

(a) Power supply transformer (source: Wikimedia
Commons, R. Spekking, CC BY-SA 4.0)

(b) Single-phase transformer (source: Wikimedia
Commons, Georg, CC BY-SA 4.0)

(c) Three-phase transformer (source: Wikimedia
Commons, Asurnipal, CC BY-SA 4.0)

(d) Variable tapped transformer (source: Wikimedia
Commons, public domain)
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Electromagnetic modeling of the single-phase transformer
Recap from (2.15): for some given current
i, the flux linkages ψ in the transformer
windings are

ψ =

[
ψ1

ψ2

]
=

[
L1 M
M L2

] [
i1
i2

]
= Li

where L1 and L2 are the self-inductances
of the primary and secondary winding,
respectively, and M is the mutual
inductance.

Note: The above equation is an algebraic
relation, that is, it is valid for any time
instant t and applies to both AC and DC
excitation of the transformer.

Primary
winding

turns
 
 turns

 
 

 

Secondary
winding
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Dynamic modeling of the single-phase transformer
The dynamic transformer behavior can be represented by the ECD in Fig. 4.3, which also
considers the internal resistances of the windings. Applying Faraday’s law, the resulting
differential equations are:

u1(t) = R1i1(t) +
dψ1(t)

dt
, u2(t) = R2i2(t) +

dψ2(t)

dt
. (4.1)

Inserting (2.15) delivers:

u1(t) = R1i1(t) + L1
di1(t)

dt
+M

di2(t)

dt
, u2(t) = R2i2(t) + L2

di2(t)

dt
+M

di1(t)

dt
. (4.2)

Fig. 4.3: General equivalent circuit diagram
(ECD) of a transformer (note: that both ports
of the transformer are denoted in the load
convention reference frame which is an
arbitrary representation decision).
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Dynamic modeling of the single-phase transformer (cont.)

The model (4.2) can be represented by the T-type ECD in Fig. 4.4. It may be noted that
L1 −M and L2 −M can have negative values due to the model representation.

By rearranging (4.2), we can also write the dynamic transformer model in vector-matrix form:[
u1(t)
u2(t)

]
= u(t) =

[
R1 0
0 R2

] [
i1(t)
i2(t)

]
+

[
L1 M
M L2

]
d

dt

[
i1(t)
i2(t)

]
= Ri(t) +L

d

dt
i(t). (4.3)

Fig. 4.4: T-type ECD of a transformer (note
that the model (4.3) assumes linear
time-invariant (LTI) behavior, which among
other effects neglects magnetic saturation).
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Dynamic modeling of the single-phase transformer (cont.)
Rearranging (4.3) gives the state-space representation of the transformer model

d

dt
i(t) = L−1 (u(t)−Ri(t)) (4.4)

with

L−1 =
1

L1L2 −M2

[
L2 −M
−M L1

]
=

1

σ

[
1
L1

−M
L1L2

−M
L1L2

1
L2

]
.

Above, σ is the leakage coefficient defined as (compare also (2.18))

σ =
L1L2 −M2

L1L2
= 1− M2

L1L2
= 1− k2. (4.5)

Finally, the state-space representation of the transformer model (with the currents as states) is

d

dt
i(t) =

[
− R1

σL1

R2M
σL1L2

R1M
σL1L2

− R2
σL2

]
i(t) +

[
1

σL1
− M

σL1L2

− M
σL1L2

1
σL2

]
u(t) = Ai(t) +Bu(t). (4.6)
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Steady-state modeling of the single-phase transformer
Assuming that the transformer operates in steady state and that all quantities are sinusoidal,
the state-space model (4.6) can be simplified and represented by complex phasors:

x(t) = x̂ cos(ωelt+ φx) = Re
{
x̂ej(ωelt+φx)

}
= Re

{
Xejωelt

}
.

From (4.3) we receive

U =

[
U1

U2

]
= RI + jωelLI = Z I =

[
R1 + jωelL1 jωelM

jωelM R2 + jωelL2

] [
I1
I2

]
. (4.7)

For some given U we can calculate the current phasor I (i.e., the steady-state current
response) by solving:

I = Z−1U . (4.8)

Alternative scenarios can be also considered, e.g., defining U1 (input voltage) and I2 (load
current) as given and solving for I1 and U2 by rearranging (4.7).
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Steady-state modeling of the single-phase transformer (cont.)
Assuming that the transformer is not loaded (I2 = 0) and that it is lossless (R1 = 0), (4.7)
simplifies to [

U1

U2

]
=

[
jωelL1

jωelM

]
I1. (4.9)

The voltage transformation ratio in this case results in

U1

U2
=

jωelL1I1
jωelMI1

=
L1

M
. (4.10)

Assuming further that the transformer is leakage-free (L1,σ = 0), the voltage transformation
ratio simplifies to (compare also (2.17))

U1

U2
=
L1

M
=

Λ21N
2
1

Λ21N1N2
=
N1

N2
= ü. (4.11)

Hence, this famous result is only valid for the abstract case of a lossless, leakage-free, and,
unloaded transformer – i.e., not (exactly) applicable to real-world transformers.
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Transformation of the secondary side variables

Sometimes it can be helpful to (mathematically) transform the secondary side variables to ease
the mathematical analysis. This can be done by introducing the transformation factor α:

u′2 = αu2, i′2 =
1

α
i2. (4.12)

Here, u′2 and i′2 are the transformed secondary side voltage and current, respectively. The
primary voltage equation reads

u1(t) = R1i1(t) + L1
di1(t)

dt
+M

di2(t)

dt
= R1i1(t) + L1

di1(t)

dt
+ αM

di′2(t)

dt

= R1i1(t) + L1
di1(t)

dt
+M ′di

′
2(t)

dt

(4.13)

with the transformed mutual inductance M ′ = αM .
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Transformation of the secondary side variables (cont.)
Multiplying the secondary voltage equation with α gives

αu2(t) = αR2i2(t) + αL2
di2(t)

dt
+ αM

di1(t)

dt

⇔ u′2(t) = α2R2i
′
2(t) + α2L2

di′2(t)

dt
+ αM

di1(t)

dt

⇔ u′2(t) = R′
2i

′
2(t) + L′

2

di′2(t)

dt
+M ′di1(t)

dt

(4.14)

with the transformed resistance R′
2 = α2R2 and inductance L′

2 = α2L2.

Fig. 4.5: T-type ECD of a
transformer with transformed
secondary side variables for some
arbitrary transformation factor α
(note that k and σ are
transformation invariant.)
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Transformation of the secondary side variables by the turn ratio
With

α = ü = N1/N2

being the turn ratio as the transformation factor, we receive:

M ′ = (N1/N2)M = L1,m, L′
2 = (N2

1 /N
2
2 )L2 (4.15)

with L1,m being the primary magnetizing inductance, cf. (2.17). Moreover, we have

L1 −M ′ = L1,σ, L′
2 −M ′ = (N2

1 /N
2
2 )L2,σ = L′

2,σ (4.16)

with L1,σ and L2,σ being the leakage inductances of the primary and secondary winding.

Fig. 4.6: T-type ECD of a
transformer with α = N1/N2 (note
that all inductances within this
model representation have a direct
physical interpretation.)
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Transformation towards a single stray inductance
With

α =M/L2

as the transformation factor, we receive:

L′
2 −M ′ = α2L2 − αM = L2,σ = 0, (4.17)

that is, the secondary transformed leakage inductance is vanishing. Moreover, we have

L1 −M ′ = L′
1,σ = σL1, M ′ =M2/L2. (4.18)

With the alternative choice α = L1/M , the leakage inductance gets concentrated on the
secondary side (not explicitly shown).

Fig. 4.7: T-type ECD of a
transformer with α =M/L2
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Typical transformer core types
▶ The core of a transformer typical build from laminated steel sheets (cf. Fig. 2.33).

Alternatively, sintered ferrite material is also used for high-frequency applications.
▶ To improve the coupling between primary and secondary winding, it is beneficial to place

the windings around the same leg. Hence, the middle example in Fig. 4.8 will exhibit a
larger leakage.

Shell type (EE) Core type (UU) + distr. windingCore type (UU)

Fig. 4.8: Examples of typical transformer core types
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Toroidal core

Fig. 4.9: Examples of a toroidal core and a transformer made from it – note the laminated, wound up
steel sheets to form the toroid (source: Wikimedia Commons, public domain)
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Typical transformer winding schemes
▶ The below examples show improving magnetic coupling (lower leakage) from left to right

due to the reducing effective distance between the turns of the primary and secondary
winding.

▶ Beyond these examples, various winding variations (e.g., a combination of the below
schemes) are used to optimize the transformer design for specific applications.

Cylindrical winding
Double 

cylindrical winding
Sandwich / 
disc winding

Fig. 4.10: Examples of typical transformer winding schemes
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Core loss model (hysteresis and eddy current losses)
To also consider the iron losses inside the transformer core, a first-order model with the
additional core loss resistance Rc can be introduced:

Pl,c ≈ RcI
2
c ≈ U2

1

Rc
. (4.19)

Here, we consider a pure sinusoidal operation with Ic and U1 being root-mean-square (RMS)
values. Obviously, this is only a very rough model approximation (compare Fig. 2.16 and
Fig. 2.33), but for many transformer designs the core losses can be significant and neglecting
them completely would not be justified.

Fig. 4.11: T-type ECD of a
transformer with an additional core
loss resistance Rc
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Transformer model parameterization via measurements – open-circuit test
Applying a sinusoidal test voltage U1,o and several measurement devices during an open-circuit
arrangement, we can determine

ü ≈ U1,o

U2,o
=
N1

N2
, S1,o = U1,oI1,o, cos(φo) =

P1,o

U1,oI1,o
(4.20)

with P1,o being the active input power consumed by the transformer and cos(φo) is the power
factor. With the assumptions R1 << Rc and L1,σ << M ′, we can approximate

Rc ≈
U2
1,o

P1,o
, XM ′ = ωelM

′ ≈ U1,o

I1,o sin(φo)
(4.21)

given the angular frequency ωel = 2πfel and the reactance XM ′ of the mutual inductance.

V V

A Fig. 4.12: Open-circuit (no-load)
test: measuring circuit and its ECD
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Transformer model parameterization via measurements – short-circuit test
Short-circuiting the secondary and applying a sinusoidal test voltage U1,s, we can determine

Zs =
√

(R1 +R′
2)

2 + (XL1,σ +XL′
2,σ

)2, cos(φs) =
P1,s

U1,sI1,s
(4.22)

with Zs being the short-circuit impedance while assuming that the impedance across M ′ and
Rc is much larger, i.e., the short-circuit current will not flow via this branch. Hence, we have

R1 +R′
2 = Zs cos(φs), XL1,σ +XL′

2,σ
= Zs sin(φs). (4.23)

Since we have four remaining unknown component values but only two independent equations,
we additionally assume a symmetrical transformer design, leading to

R1 = R′
2 =

1

2
Zs cos(φs), ωelL1,σ = XL1,σ = ωelL

′
2,σ = XL′

2,σ
=

1

2
Zs sin(φs). (4.24)

V

A Fig. 4.13: Short-circuit test:
measuring circuit and its ECD
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Further short-circuit considerations
Typically the short-circuit test voltage U1,s is limited such that the short-circuit current I1,s is
reaching its nominal value I1,n:

U1,s = u1,sU1,n, I1,s =
U1,s

Zs
= I1,n. (4.25)

Here, u1,s is the relative short-circuit voltage w.r.t. the nominal voltage U1,n. Typical values
are u1,s = 3 . . . 13%.

While the short-circuit test is conducted with a reduced primary voltage, the prospective
short-circuit (PSC) current during normal operation (typical as a fault result) can be
significantly higher:

I1,psc =
U1,n

Zs
=
U1,s

Zs
=
I1,n
u1,s

. (4.26)

Hence, the transformer parameters Zs and u1,s are crucial for the short-circuit behavior and the
protection coordination of the transformer. Lower bounds are typically enforced by standards to
prevent catastrophic damages, in particular in the electrical energy sector.
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Voltage transformer application: measuring high AC voltages
If the voltage to be measured is too high for direct measurement, a voltage transformer can be
used to step down the voltage to a suitable level:

u2(t) =
1

ü
u1(t).

Hence, we choose ü > 1. Moreover, the voltage sensor on the secondary side comes with a
high internal resistance Ri to avoid a significant current and, therefore, power flow. Neglecting
the leakage inductance, we can model the voltage transformer as shown in Fig. 4.14 with

R′
i = ü2Ri, R′

2 = ü2R2, M ′ = L1,m.

The primary RL circuit represents a high-pass filter for the voltage signal, i.e., the transformer
is only suitable for AC signals with ωel > R1/M

′ (cutoff frequency).

V

Fig. 4.14: Voltage transformer
measuring circuit and its ECD
(represented as transformed
quantities with α = N1/N2)
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Current transformer application: measuring high AC currents
If the current to be measured is too high for direct measurement, a current transformer can be
used to step down the current to a suitable level:

i2(t) = üi1(t).

Hence, we choose ü < 1. Moreover, the current sensor on the secondary side comes with a
minimal internal resistance Ri to avoid a significant ohmic power losses. Likewise, the
transformer should be designed for low R1 and R2 (e.g., N1 = 1 on the primary and sufficiently
large cable cross-sections).

The secondary RL circuit represents a high-pass filter for the current signal, i.e., the
transformer is only suitable for AC signals with ωel > (R′

2 +R′
i)/M

′ (cutoff frequency).

A

Fig. 4.15: Current transformer
measuring circuit and its ECD
(represented as transformed
quantities with α = N1/N2)
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Connection nomenclature and tapped transformer

1.1

1.2

2.1

2.2
3.1

3.2

3.3

Fig. 4.16: Connection nomenclature of
single-phase transformers (the lower secondary
side connection represents a tapped winding)

Fig. 4.17: Tapped transformer with multiple taps on the
secondary side for a train drive application (source:

Wikimedia Commons, Saibo, CC BY-SA 3.0)
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Autotransformer

▶ Uses a common winding for both primary and
secondary side with one or multiple taps.

▶ No galvanic isolation between primary and
secondary side.

▶ The autotransformer can be used to step-up or
step-down the voltage.

Fig. 4.18: Simplified autotransformer representation

Fig. 4.19: Exemplary autotransformer
(source: Wikimedia Commons, R. Spekking,

CC BY-SA 4.0)
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Autotransformer – step-down configuration
Assuming idealized conditions (no leakage, no losses), the apparent power of the standard
transformer S and of the autotransformer Sat are:

S = U1I1 = U2I2, Sat = (U1 + U2)I1 = U2(I2 − I1). (4.27)

1.1

1.2

2.1 2.1

2.2 2.2

1.1

1.2

Fig. 4.20: Step-down autotransformer made from a standard two-winding transformer by connecting 1.2
from the primary to 2.1 on the secondary side
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Autotransformer – step-down configuration (cont.)
From (4.27) we can express the autotransformer apparent power Sat in terms of the standard
transformer apparent power S:

Sat = (U1 + U2)I1 = S + U2I1 = S + U1I1
U2

U1
= S(1 +

1

ü
). (4.28)

Here, ü is the (idealized) voltage transformation ratio of the standard transformer – compare
(4.11). Hence, we can express the apparent power of the autotransformer in terms of the
standard transformer apparent power:

Sat
S

= 1 +
1

ü
= 1 +

N2

N1
. (4.29)

For N2/N1 > 0 the autotransformer can transfer more apparent power than the standard
transformer since the autotransformer combines two power transfer mechanisms:

▶ the apparent power U1I1 is transferred via the magnetic coupling (induction) and
▶ the apparent power U2I1 is transferred via the electrical conduction between primary and

secondary (not available in the galvanically-isolated standard transformer).
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Autotransformer – step-up configuration
The apparent power of the step-up autotransformer is

Sat = U1(I1 − I2) = (U1 + U2)I2 = S(1 +
U1

U2
) = S(1 + ü) = S(1 +

N1

N2
). (4.30)

Likewise to the step-down autotransformer, the step-up autotransformer can transfer more
apparent power than the standard transformer.

1.1

1.2

2.1

2.1

2.2

2.2
1.1

1.2
Fig. 4.21: Step-up autotransformer made from a standard two-winding transformer by connecting 1.1

from the primary to 2.2 on the secondary side

Oliver Wallscheid Electrical machines and drives 165



Autotransformer remarks

The previous analysis has revealed that the
apparent power boost over the standard
transformer is significant if

▶ N2 >> N1 (step-down case) or

▶ N1 >> N2 (step-up case),

that is, the autotransformer’s input and output
voltage have only a small difference. In this
case, the autotransformer can be more efficient
and cost-effective than the standard
transformer (at the drawback of the lacking
galvanic isolation). Fig. 4.22: 750MVA, 380 kV / 230 kV three-phase

autotransformer (source: Wikimedia Commons,
P. Mertens, CC BY-SA 3.0)
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Autotransformer remarks (cont.)

Another challenge of the autotransformer is its short-circuit behavior. From the step-up case
we know:

Sat = S(1 +
N1

N2
).

Dividing both sides by U1 delivers

I1,at = I1(1 +
N1

N2
). (4.31)

Hence, in case of a short circuit the steady-state current of the autotransformer is 1 +N1/N2

times higher than the standard transformer:

I1,at,psc = I1,psc(1 +
N1

N2
). (4.32)

The same applies to the step-down case. Therefore, the autotransformer may require additional
short-circuit protection measures to prevent damages (e.g., additional choke).
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Three-phase transformer

Fig. 4.23: Simple three-phase transformer with three independent single-phase transformers connected in
star both on the primary and secondary side
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Three-phase transformer with five legs

Fig. 4.24: Three-phase five-leg transformer connected in star both on the primary and secondary side
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Three-phase transformer with five legs (cont.)

Obviously, the three-phase five-leg design from Fig. 4.24 can save space and material compared
to the three independent single-phase transformers from Fig. 4.23. However, there might be a
zero flux component

ϕ0(t) = ϕa(t) + ϕb(t) + ϕc(t) (4.33)

flowing via the winding-free legs. This zero flux component can be avoided if the primary and
secondary side are connected both in star configuration

i1a(t) + i1b(t) + i1c(t) = 0, i2a(t) + i2b(t) + i2c(t) = 0

and if the magnetic reluctances Λm of the three main legs are equal (i.e., symmetric design, no
saturation):

ϕ0 = ϕa + ϕb + ϕc = ΛmN1 (i1a(t) + i1b(t) + i1c(t)) + ΛmN2 (i2a(t) + i2b(t) + i2c(t)) = 0.
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Three-phase transformer with three legs (double star connection)

▶ If the flux zero component ϕ0 can
be avoided, a three-leg design as
shown in Fig. 4.25 can be used.

▶ However, if ϕ0 ̸= 0 due to an
asymmetric design, magnetic
saturation or non-ideal
symmetrical operation, the zero
component will act as a stray field
leaving the core.

▶ This can lead to increased losses in
auxiliary components (e.g.,
housing) and electromagnetic
interference issues. Fig. 4.25: Three-phase three-leg transformer connected in star

both on the primary and secondary side
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Three-phase transformer with three legs (star-delta connection)

If the primary or secondary side is
connected in delta configuration, this
side can carry a zero sequence
current:

i0 =
1

3
(ia(t) + ib(t) + ic(t)) ̸= 0.

This zero sequence current would not
be visible in the phase conductors:

iab = ia − ib,

ibc = ib − ic,

ica = ic − ia.

(4.34)

Fig. 4.26: Three-phase three-leg transformer connected in a
star-delta configuration (delta on secondary is exemplary)
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Zero flux and zero current components in three-phase transformers
Based on (4.34) the winding currents on the delta side becomes

ia = i0 +
1

3
(iab − ica) , ib = i0 +

1

3
(ibc − iab) , ic = i0 +

1

3
(ica − ibc) . (4.35)

If the secondary side is connected in delta, the zero sequence current will result from

ϕ0 = ϕa + ϕb + ϕc = ϕ(i1a, i2a, i20) + ϕ(i1b, i2b, i20) + ϕ(i1c, i2c, i20) = 0 (4.36)

where ϕ(·) is the (potentially nonlinear) magnetic flux function (e.g., including saturation).

Fig. 4.27: Substitute model to represent the zero flux component
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Three-phase transformer connection and winding types
Each side of a three-phase transformer can be connected in:

Y/y: star connection, D/d: delta connection, Z/z: zigzag connection.

The winding nomenclature is as follows:

▶ First upper case letter: primary side (high voltage)

▶ Second lower case letter: secondary side (low voltage)

▶ Number (0 . . . 11): phase deviation between the primary and secondary side in ◦30 steps

▶ Optional: N/n for neutral connection of high/low side.

1U1
1V1
1W1
1N

1U2
1V2
1W2

2U2
2V2
2W2

2U1
2V1
2W1
2N

Fig. 4.28: Connection nomenclature of three-phase transformers
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Three-phase transformer connection and winding types (example: Yd1)

Transformer connection Yd1 indicates

▶ Y: star connection on the primary side,

▶ d: delta connection on the secondary side,

▶ 1: phase deviation of 1 · 30◦ = 30◦ between the primary and secondary side.

1W

1V

1U
1U1

2U2

2U1

2V12V2

2W2

2W1
1U2 1V2

1W2
1W1

1V1

2W

2V

2U

U coils: in 
phase on primary

 & secondary

Fig. 4.29: Winding configuration and resulting phasor diagrams for Yd1 connection
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Three-phase transformer connection and winding types (example: Dy11)

The transformer connection Dy11 indicates

▶ D: delta connection on the primary side,

▶ y: star connection on the secondary side,

▶ 11: phase deviation of 11 · 30◦ = 330◦ between the primary and secondary side.

1W

1V

1U
1U1

2U2

2U1

2V1
2V2

2W2

2W1

1U2

1V2

1W2

1W1

1V1
2W

2V

2U U coils: in phase on primary & secondary

Fig. 4.30: Winding configuration and resulting phasor diagrams for Dy11 connection
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Three-phase transformer connection and winding types (example: Dy5)

In this example, the primary and secondary side are still connected in a delta-star configuration,
but, the polarity of the secondary side is reversed compared to the previous Dy11 connection.
Consequently, the phase deviation is 5 · 30◦ = 150◦.

1W

1V

1U
1U1 2U2

2U1

2V1
2V22W2

2W1
1U2

1V2

1W2

1W1

1V1
2W

2V

2U

U coils: 180° 
phase shift
on primary 
& secondary

Fig. 4.31: Winding configuration and resulting phasor diagrams for Dy5 connection
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Three-phase transformer connection symbols (vector groups)

1V 1V

1V

1U
1U

1U

1W

1V

1U 1W

1V

1U 1W
1W 1U 1W

1W

2V

2V

2V

2U

2U

2W 2V

2U

2W

2V

2U

2W

2V

2U

2W

2V

2U
2W

2U 2W

2W 2V2U 2W

1V1U 1W 1V1U 1W1V1U 1W

2V2U 2W 2V2U 2W

1V

1U 1W

1V

1V1U 1W 1V1U 1W

2V2U 2W 2V2U 2W

Yy0 Dd0 Dy5 Yd5 Yz5 Dy11

Fig. 4.32: Exemplary (simplified) connection symbols for three-phase transformers and the resulting
phasor displacement representations
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Three-phase transformer voltage ratio

If the three-phase connection type changes between the primary and secondary side, the
voltage ratio between the primary and secondary side is affected – cf. Tab. 4.1.

primary Y D Y D Y D
secondary y y d d z z

U1,ll/U2,ll 1
√
3 1/

√
3 1

√
3/2 3/2

Tab. 4.1: Idealized voltage ratios between primary and secondary due to different connection types
(assuming N1 = N2) with U1,ll and U2,ll being the line-to-line voltages on the primary and secondary

side, respectively
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Dynamic modeling of the three-phase transformer

Assuming a three-phase transformer without mutual coupling between the phases abc (as in
the three independent single-phase transformers from Fig. 4.23) and without saturation, the
magnetic flux linkage of the primary and secondary side can be expressed as

ψ(t) =



ψ1a(t)
ψ1b(t)
ψ1c(t)
ψ2a(t)
ψ2b(t)
ψ2c(t)

 =



L1a 0 0 Ma 0 0
0 L1b 0 0 Mb 0
0 0 L1c 0 0 Mc

Ma 0 0 L2a 0 0
0 Mb 0 0 L2b 0
0 0 Mc 0 0 L2c





i1a(t)
i1b(t)
i1c(t)
i2a(t)
i2b(t)
i2c(t)

 = Li(t). (4.37)

If the transformer’s magnetic three-phase circuit is ideally symmetric, also

M =Ma =Mb =Mc, L1 = L1a = L1b = L1c, L2 = L2a = L2b = L2c

holds.
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Dynamic modeling of the three-phase transformer (cont.)
Hence, we have

ψ(t) =



ψ1a(t)
ψ1b(t)
ψ1c(t)
ψ2a(t)
ψ2b(t)
ψ2c(t)

 =



L1 0 0 M 0 0
0 L1 0 0 M 0
0 0 L1 0 0 M
M 0 0 L2 0 0
0 M 0 0 L2 0
0 0 M 0 0 L2





i1a(t)
i1b(t)
i1c(t)
i2a(t)
i2b(t)
i2c(t)

 = Li(t). (4.38)

The voltage equation results from Faraday’s law and Ohm’s law:

u(t) = Ri(t) +L
d

dt
i(t) =



R1 0 0 0 0 0
0 R1 0 0 0 0
0 0 R1 0 0 0
0 0 0 R2 0 0
0 0 0 0 R2 0
0 0 0 0 0 R2

 i(t) +L
d

dt
i(t). (4.39)
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Dynamic modeling of the three-phase transformer (cont.)
Due to the ideal three-phase symmetry, the model relation per phase pair on the primary and
secondary side are identical for all three phases, i.e., we can split up the model into:[

u1a(t)
u2a(t)

]
=

[
R1 0
0 R2

] [
i1a(t)
i2a(t)

]
+

[
L1 M
M L2

]
d

dt

[
i1a(t)
i2a(t)

]
, (4.40)[

u1b(t)
u2b(t)

]
=

[
R1 0
0 R2

] [
i1b(t)
i2b(t)

]
+

[
L1 M
M L2

]
d

dt

[
i1b(t)
i2b(t)

]
, (4.41)[

u1c(t)
u2c(t)

]
=

[
R1 0
0 R2

] [
i1c(t)
i2c(t)

]
+

[
L1 M
M L2

]
d

dt

[
i1c(t)
i2c(t)

]
. (4.42)

Hence, under the made assumptions the same ECD from Fig. 4.4 for the single-phase
transformer case can be also used to model the three-phase transformer.
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Conceptual idea of a rotating magnetic field

Fig. 5.1: Animation of a rotating magnetic field produced by three-phase currents in three coils both
physically and electrically displaced by 120◦ (inspired by C. Joubert)
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MMF distribution of a single-phase coil

Fig. 5.2: MMF of a lumped single-phase coil with N turns for some current ia ̸= 0 with the rotating
integration path ∂S along the circumference coordinate ϑ. The rotor is considered an unspecific solid

iron dummy. Both stator and iron have infinite magnetic permeability.
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MMF distribution of a single-phase coil (cont.)
Utilizing Ampère’s law in the magnetic network context from (2.33)∮

∂S
H · ds = if = Ni =

∑
k

θk =
∑
k

lkHk

and assuming that the air gap path along δ is dominating the magnetic circuit, we have

Ha(ϑ) =
1

2δ
θa(ϑ) =

1

2δ

{
Nia for − π/2 ≤ ϑ < π/2,

−Nia for π/2 ≤ ϑ < 3π/2.
(5.1)
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Air gap flux density distribution of a single-phase coil
With B = µ0H in the air gap and an alternating current ia = ia(t), we have

Ba(ϑ, t) =
µ0
2δ

{
Nia(t) for − π/2 ≤ ϑ < π/2,

−Nia(t) for π/2 ≤ ϑ < 3π/2.
(5.2)

(a) ia(t) = î (b) ia(t) = î/2

Fig. 5.3: Air gap flux density
distribution of a lumped
single-phase coil representing a
spatiotemperal function
together with its fundamental
component B(1)
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Fourier analysis of the air gap flux density distribution

Assuming a sinusoidal current ia(t) = î cos(ωt), we have

Ba(ϑ, t) =
µ0Nî

2δ︸ ︷︷ ︸
B̂

{
cos(ωt) for − π/2 ≤ ϑ < π/2,

− cos(ωt) for π/2 ≤ ϑ < 3π/2.
(5.3)

The flux density distribution therefore is periodic and has a sinusoidal shape over t as well as a
rectangular shape over ϑ. To analyze the latter in terms of its fundamental and harmonic
components, we utilize the Fourier series expansion for some arbitrary t ∈ R:

Ba(ϑ, t) = Ba(ϑ) = B̂(0) +

∞∑
k=1

B̂(k)
c cos(kϑ) + B̂(k)

s sin(kϑ), (5.4)

for harmonic order k ∈ N with amplitudes B̂
(k)
c ∈ R and B̂

(k)
s ∈ R as well as offset B̂(0) ∈ R.
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Fourier analysis of the air gap flux density distribution (cont.)
The Fourier coefficients of (5.4) are

B̂(0) =
1

2π

∫ 2π

0
B(ϑ)dϑ,

B̂(k)
c =

1

π

∫ 2π

0
B(ϑ) cos(kϑ)dϑ,

B̂(k)
s =

1

π

∫ 2π

0
B(ϑ) sin(kϑ)dϑ.

(5.5)

Since the positive and negative areas under the MMF curve in Fig. 5.2 are identical in size, the
magnetic field does not have any offset component:

B̂(0) = 0.

Furthermore, (5.3) is an even function, i.e., B(ϑ) = B(−ϑ) (i.e., the function is
mirror-symmetrical to the ϑ axis – cf. Fig. 5.3), leading to

B̂(k)
s = 0.
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Fourier analysis of the air gap flux density distribution (cont.)
Finally, (5.3) is symmetrical w.r.t. the abscissa, i.e., B(ϑ) = −B(ϑ+ π) (mirrored positive and
negative half-wave), leading to

B̂(k)
c = 0 for k = 2, 4, 6, . . . .

Summarizing the above, the Fourier series for the air gap flux density boils down to

Ba(ϑ) =

∞∑
k=1,3,5,...

B̂(k)
c cos(kϑ) with B̂(k)

c =
1

π

∫ 2π

0
B(ϑ) cos(kϑ)dϑ. (5.6)

Utilizing symmetry of the flux distribution as shown in Fig. 5.3, we can calculate B̂
(k)
c for the

remaining odd k = 1, 3, 5, . . . harmonic orders as follows:

B̂(k)
c =

2

π

∫ π/2

−π/2
B(ϑ) cos(kϑ)dϑ =

µ0Nî

δπ
cos(ωt)

∫ π/2

−π/2
cos(kϑ)dϑ

=
µ0Nî

kδπ
cos(ωt)

[
sin(

kπ

2
)− sin(−kπ

2
)

]
=

2µ0Nî

δπk
cos(ωt) sin(

kπ

2
).

(5.7)
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Fourier analysis of the air gap flux density distribution (cont.)
The Fourier series describing the spatiotemperal air gap flux density distribution of a lumped
single-phase coil is therefore

Ba(ϑ, t) =
2µ0Nî

δπ
cos(ωt)

∞∑
k=1,3,5,...

1

k
sin(

kπ

2
) cos(kϑ)

=
4

π
B̂ cos(ωt)

∞∑
k=1,3,5,...

1

k
sin(

kπ

2
) cos(kϑ).

(5.8)

This series can be further decomposed into

sin(
kπ

2
) = 1 for k = 1, 5, 9, . . . , sin(

kπ

2
) = −1 for k = 3, 7, 11, . . . .

Also, the fundamental component B̂(1) of the air gap flux density distribution is 4/π times
higher than the amplitude B̂ of the original square wave function from (5.3) while the
harmonic amplitudes decrease with 1/k.
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Fourier analysis of the air gap flux density distribution (cont.)

Fig. 5.4: Decomposition of B(ϑ, t) for t = 0 into its
fundamental and its first harmonic components

Flux density harmonics

The existence of harmonics is to
be attributed to the spatial layout
of the winding. The phase current
was assumed to be of pure sinu-
soidal form, i.e., is not causing the
flux density harmonics (in our sim-
plified investigation).

Oliver Wallscheid Electrical machines and drives 193



Table of contents

5 Rotating field theory
Single-phase model
Extension to machines with more than one pole pair
Model superposition to three-phase stator windings
Three-phase stator winding schemes and winding factor

Oliver Wallscheid Electrical machines and drives 194



Stators with multiple pole pairs

Fig. 5.5: MMF of a lumped single-phase coil with two pole pairs p and N/p turns per pole pair for some
current ia ̸= 0 with the rotating integration path ∂S along the circumference coordinate ϑ
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Stators with multiple pole pairs (cont.)

Following the same derivation as previously for machines with p ≥ 1 pole pairs, we have

Ba(ϑ, t) =
2µ0Nî

δπp
cos(ωt)

∞∑
k=1,3,5,...

1

k
sin(

kπ

2
) cos(kpϑ)

=
4

πp
B̂ cos(ωt)

∞∑
k=1,3,5,...

1

k
sin(

kπ

2
) cos(kpϑ).

(5.9)

Compared to the single-pole pair case, the flux density

▶ amplitude is reduced by 1/p (due to the winding turns being distributed over p pole pairs),

▶ spatial frequency is increased by p: ϑ→ pϑ.

The latter implies that the fundamental and harmonics of B(ϑ) repeat p times more often over
the (mechanical) stator circumference (compare Fig. 5.4).
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Stators with multiple pole pairs (cont.)
From the previous finding

Ba(ϑ, t) =
4

πp
B̂ cos(ωt)

∞∑
k=1,3,5,...

1

k
sin(

kπ

2
) cos(kpϑ)

we can conclude that the field distribution for p > 1 is repeated p times over the mechanical
stator circumference, assuming that the machine is ideally identical for each pole pair.

Electrical vs. mechanical angle

To simplify the following analysis, we introduce the electrical angle

ϑel = pϑ, (5.10)

i.e., to complete one mechanical revolution, the electrical angle has to complete p rev-
olutions. The field description in the electrical coordinate system is therefore sufficient,
as this is merely repeated in the mechanical system.
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Basic rotating field model

We assume an ideal three-phase stator current:

is,a(t) = îs cos(ωt),

is,b(t) = îs cos(ωt− 2π/3),

is,c(t) = îs cos(ωt+ 2π/3).

(5.11)

The index ’s’ indicates stator quantities, but is
omitted in the following as we will only consider
stator quantities until further notice, i.e.,

is,a(t) = ia(t), is,b(t) = ib(t), is,c(t) = ic(t)

and îs = î.
Fig. 5.6: Elementary three-phase stator

winding with lumped coils displaced by 120◦

(p = 1 pole pair)
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Basic rotating field model (cont.)

Transferring the finding (5.9) to the three-phase stator winding from Fig. 5.6 (considering an
arbitrary number of p ≥ 1 pole pairs), we have

Ba(ϑel, t) =
4

πp
B̂ cos(ωt)

∞∑
k=1,3,5,...

1

k
sin

(
kπ

2

)
cos(kϑel),

Bb(ϑel, t) =
4

πp
B̂ cos

(
ωt− 2π

3

) ∞∑
k=1,3,5,...

1

k

(
kπ

2

)
cos

(
kϑel − k

2π

3

)
,

Bc(ϑel, t) =
4

πp
B̂ cos

(
ωt+

2π

3

) ∞∑
k=1,3,5,...

1

k

(
kπ

2

)
cos

(
kϑel + k

2π

3

)
.

(5.12)
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Basic rotating field model (cont.)

Applying the decomposition

cos(x) cos(y) =
1

2
[cos(x− y) + cos(x+ y)]

to (5.12), we obtain

Ba(ϑel, t) =
2

πp
B̂

∞∑
k=1,3,5,...

1

k
sin

(
kπ

2

)
[cos(ωt− kϑel) + cos(ωt+ kϑel)] ,

Bb(ϑel, t) =
2

πp
B̂

∞∑
k=1,3,5,...

1

k
sin

(
kπ

2

)[
cos(ωt− kϑel −

2π

3
(1− k)) + cos(ωt+ kϑel −

2π

3
(1 + k))

]
,

Bc(ϑel, t) =
2

πp
B̂

∞∑
k=1,3,5,...

1

k
sin

(
kπ

2

)[
cos(ωt− kϑel +

2π

3
(1− k)) + cos(ωt+ kϑel +

2π

3
(1 + k))

]
.
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Positive and negative sequence decomposition
Hence, the decomposition led to two sinusoidal fields rotating in opposite directions:

cos(ωt− kϑel) = cos(kϑel − ωt)︸ ︷︷ ︸
positive sequence

and cos(ωt+ kϑel)︸ ︷︷ ︸
negative sequence

.

Fig. 5.7: Decomposition of the alternating field into positive and negative sequence components for
p = 1 and k = 1
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Resulting field: positive sequence part
To describe the resulting field distribution (as visualized in Fig. 5.1)

B(ϑel, t) = Ba(ϑel, t) +Bb(ϑel, t) +Bc(ϑel, t) (5.13)

we analyze the positive and negative sequences separately. Utilizing

cos(x± y) = cos(x) cos(y)∓ sin(x) sin(y)

we obtain for the positive sequence:

cos(ωt− kϑel) + cos(ωt− kϑel −
2π

3
(1− k)) + cos(ωt− kϑel +

2π

3
(1− k))

= cos(ωt− kϑel) + cos(ωt− kϑel) cos(
2π

3
(1− k)) + sin(ωt− kϑel) sin(

2π

3
(1− k))

+ cos(ωt− kϑel) cos(
2π

3
(1− k))− sin(ωt− kϑel) sin(

2π

3
(1− k)).

Hence, the sine terms cancel out each other.
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Resulting field: positive sequence part (cont.)

Summarizing the above, we have

cos(ωt− kϑel) cos(ωt− kϑel −
2π

3
(1− k)) + cos(ωt− kϑel +

2π

3
(1− k))

= cos(ωt− kϑel)(1 + 2 cos(
2π

3
(1− k))).

Considering cos(n2π) = 1 and cos(4π/3 + n2π) = cos(2π/3 + n2π) = −1/2 for n ∈ Z we
observe the following for the positive sequence

cos(ωt− kϑel)(1 + 2 cos(
2π

3
(1− k))) =

{
3 cos(ωt− kϑel) for k = 1, 7, 13, 19, . . . ,

0 for k = 3, 5, 9, 11, 15, 17, . . . .

(5.14)
Hence, there are multiple harmonic orders which cancel out each other, among others, any
multiple of k = 3. Moreover, the positive sequences of all three phases carries the fundamental
component for k = 1.
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Resulting field: negative sequence part
For the negative sequence part of

B(ϑel, t) = Ba(ϑel, t) +Bb(ϑel, t) +Bc(ϑel, t)

we rewrite the following terms

cos(ωt+ kϑel) + cos(ωt+ kϑel −
2π

3
(1 + k)) + cos(ωt+ kϑel +

2π

3
(1 + k))

= cos(ωt+ kϑel) + cos(ωt+ kϑel) cos(
2π

3
(1 + k)) + sin(ωt+ kϑel) sin(

2π

3
(1 + k))

+ cos(ωt+ kϑel) cos(
2π

3
(1 + k))− sin(ωt+ kϑel) sin(

2π

3
(1 + k))

and find for the negative sequence

cos(ωt+ kϑel)(1 + 2 cos(
2π

3
(1 + k))) =

{
3 cos(ωt+ kϑel) for k = 5, 11, 17, . . . ,

0 for k = 1, 3, 7, 9, 15, . . . .
(5.15)
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Resulting field: summary

Combining the positive and negative sequences, we receive

B(ϑel, t) =
6

πp
B̂

∞∑
k

1

k
sin

(
kπ

2

)
cos(ωt− kϑel) for k = 1, 7, 13, 19, . . . ,

cos(ωt+ kϑel) for k = 5, 11, 17, . . . ,

0 otherwise.

(5.16)

Utilizing cos(−x) = cos(x) and sin(−x) = − sin(x), we can rewrite the above as

B(ϑel, t) =
6

πp
B̂

∞∑
k

1

k
sin

(
kπ

2

)
cos(ωt− kϑel) for k = 1,−5, 7,−11, 13,−17, . . . . (5.17)

Here, the negative sequences are represented by the negative harmonic orders. Finally, one can
note that the amplitudes of the resulting field from the three-phase excitation (5.17) are 3/2
times higher than in the single-phase case from (5.9).
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Stator winding examples

(a) Induction machine with fed-in stator winding
(source: Wikimedia Commons, J. Pharos,

CC BY-SA 3.0)

(b) Hydrogenerator with form-found stator winding
(source: Wikimedia Commons, Astronomyinertia,

CC BY-SA 3.0)

Fig. 5.8: Examples of three-phase stator windings with different configurations
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Winding as a distributed coil system
In contrast to the lumped-coil representation from Fig. 5.6, the stator coils per phase are
distributed over the stator circumference. To describe the winding layout, we (re-)introduce:

Q : number of slots, m : number of phases (usually m = 3),

q =
Q

2pm
: number of notches (number of slots per phase and pole), ρp : pole pitch (elec.).

����� a ����� a����� c ����� b ����� c����� b

Fig. 5.9: Example scheme of a distributed winding with Q = 18, p = 1, q = 3 (adapted from J. Böcker,
Controlled Three-Phase Drives, Paderborn University, 2021)
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Distributed winding: same width coils

(a) Simplified unwound cross-section view (adapted
from J. Böcker, Controlled Three-Phase Drives,

Paderborn University, 2021)

(b) Front view on end winding (adapted from
W. Novender, Elektrische Maschinen, Technische

Hochschule Mittelhessen, 2023)

Fig. 5.10: Realization of a distributed winding through windings of same width y
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Distributed winding: varying width coils

(a) Simplified unwound cross-section view (adapted
from J. Böcker, Controlled Three-Phase Drives,

Paderborn University, 2021)

(b) Front view on end winding (adapted from
W. Novender, Elektrische Maschinen, Technische

Hochschule Mittelhessen, 2023)

Fig. 5.11: Realization of a distributed winding through windings of varying widths yi
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Distribution factor
As a result of the winding distribution, the MMF results in a staircase form as shown in
Fig. 5.12. Hence, the field distribution calculation from (5.8) has to be adapted.

Fig. 5.12: Example of the MMF of a distributed winding scheme
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Distribution factor (cont.)
Starting from

Ba(ϑel) =
∞∑

k=1,3,5,...

B̂(k)
c cos(kϑel)

B̂(k)
c =

2

π

∫ π/2

−π/2
B(ϑel) cos(kϑel)dϑel

we rewrite the integral considering shifted coils by ∆ϑ
steps (i.e., k∆ϑ steps for the k-th harmonic order) with
N/q turns per coil based on the distribution of a single
lumped coil B′ from (5.7):

B̂(k)
c =

2

πq
Re

{
q−1∑
l=0

ej∆ϑlk

∫ π/2

−π/2
B′(ϑel) cos(kϑel)dϑel

}
.

Fig. 5.13: Representation of the coil
displacement by ∆ϑ steps for a

distributed winding with q = 3 and p = 1
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Distribution factor (cont.)

The discrete coil displacement angles are (assuming that the Q slots are evenly distributed over
the stator circumference, i.e., ∆ϑ = p2π/Q)

∆ϑl = −q − 1

2

π

mq
+ l

π

mq
= −q − 1

2
p
2π

Q
+ lp

2π

Q
for l = 0, 1, . . . , q − 1. (5.18)

Hence, we can rewrite the Fourier series coefficient integral as:

B̂(k)
c =

1

q
Re

{
q−1∑
l=0

ej∆ϑlk

}
︸ ︷︷ ︸

ξd,k

2

π

∫ π/2

−π/2
B′(ϑel) cos(kϑel)dϑel︸ ︷︷ ︸

single lumped-coil integral

. (5.19)

Hence, the Fourier coefficient of every harmonic order k is multiplied by the distribution factor
ξd,k.
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Distribution factor (cont.)

To write this ξd,k more compactly, we rearrange

q−1∑
l=0

ej∆ϑlk =

q−1∑
l=0

e
jk(− q−1

2
p 2π

Q
+lp 2π

Q
)
= e

−jk q−1
2

p 2π
Q

q−1∑
l=0

(
e
jkp 2π

Q

)l
(5.20)

and utilize the finite geometric series expression

q−1∑
l=0

xl =
1− xq

1− x

to rewrite
q−1∑
l=0

(
e
jkp 2π

Q

)l
=

1− e
jkqp 2π

Q

1− e
jkp 2π

Q

.

Oliver Wallscheid Electrical machines and drives 215



Distribution factor (cont.)

The latter can be further rewritten as

1− e
jkqp 2π

Q

1− e
jkp 2π

Q

=
e
jkqp 2π

Q
1
2

(
e
−jkqp 2π

Q
1
2 − e

jkqp 2π
Q

1
2

)
e
jkp 2π

Q
1
2

(
e
−jkp 2π

Q
1
2 − e

jkp 2π
Q

1
2

) .

Utilizing the identity

sin(x) =
ejx − e−jx

2j

we can further rewrite

q−1∑
l=0

(
e
jkp 2π

Q

)l
=

1− e
jkqp 2π

Q

1− e
jkp 2π

Q

=
e
jkqp 2π

Q
1
2 (−2j) sin(kqp2πQ

1
2)

e
jkp 2π

Q
1
2 (−2j) sin(kp2πQ

1
2)

= e
jk 2π

Q
q−1
2

sin(kqp2πQ
1
2)

sin(kp2πQ
1
2)
. (5.21)
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Distribution factor (cont.)

Inserting (5.21) into (5.20) we finally receive

ξd,k =
1

q
Re

{
q−1∑
l=0

ej∆ϑlk

}
=

1

q
e
−jkp 2π

Q
q−1
2 e

jk 2π
Q

q−1
2

sin(kqp2πQ
1
2)

sin(kp2πQ
1
2)

=
sin(kqp2πQ

1
2)

q sin(kp2πQ
1
2)

=
sin(kqp π

Q)

q sin(kp π
Q)

=
sin

(
kπ
2m

)
q sin

(
kπ
2mq

) .
(5.22)

▶ |ξd,k| ≤ 1 holds for all parameter combinations.

▶ The factor describes the change of each harmonic component due to the distributed
winding compared to the (idealized) lumped-coil case.
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Pitch factor

If windings are not implemented as diametral winding,
i.e., the winding width y is smaller than the pole pitch
ρp,

y < ρp = π,

the winding is called chorded. Hence, the starting and
end position of the coil are shifted towards
±(y/ρp)(π/2) along the circumference. Consequently,
the Fourier coefficients of the chorded winding are:

B̂(k)
c =

2

π

∫ π
2

y
ρp

−π
2

y
ρp

B(ϑel) cos(kϑel)dϑel. (5.23)
Fig. 5.14: Representation of a chorded
coil for a distributed winding with q = 3

and p = 1
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Pitch factor (cont.)
Continuing from (5.23), we can rewrite the integral as

B̂(k)
c =

2

π

∫ π
2

y
ρp

−π
2

y
ρp

B(ϑel) cos(kϑel)dϑel =
2

π
B̂ cos(ωt)

∫ π
2

y
ρp

−π
2

y
ρp

cos(kϑel)dϑel

=
2

π
B̂ cos(ωt)

1

k

[
sin(k

π

2

y

ρp
)− sin(−kπ

2

y

ρp
)

]
=

4

π
B̂ cos(ωt)

1

k
sin(k

π

2

y

ρp
).

(5.24)

Compared to the unchored case (5.7), the Fourier coefficients are

sin
(
k π
2

y
ρp

)
sin

(
k π
2

)
smaller. As the magnitude of the denominator is always one, we define

ξp,k = sin

(
k
π

2

y

ρp

)
(5.25)

as the pitch factor.
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Winding factor

Considering both, a distributed and chorded winding, we receive

B̂(k)
c =

1

q
Re

{
q−1∑
l=0

ej∆ϑlk

}
2

π

∫ π
2

y
ρp

−π
2

y
ρp

B(ϑel) cos(kϑel)dϑel

= · · ·

=
4

π
B̂ cos(ωt)

1

k
sin

(
k
π

2

y

ρp

)
sin

(
kπ
2m

)
q sin

(
kπ
2mq

)
=

4

π
B̂ cos(ωt)

1

k
ξd,kξp,k︸ ︷︷ ︸

ξw,k

(5.26)

with ξw,k = ξd,kξp,k being the winding factor. It describes the change of each harmonic
component due to the distributed and chorded winding compared to the (idealized)
lumped-coil case (which would be equivalent to ξw,k = 1).
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Winding factor: examples

Machine A Machine B Machine C

q = 1, y/ρp = 2/3, q = 2, y/ρp = 5/6, q = 3, y/ρp = 7/9,
Q/p = 6 Q/p = 12 Q/p = 18

k ξd,k ξp,k ξw,k ξd,k ξp,k ξw,k ξd,k ξp,k ξw,k

1 1 0.866 0.866 0.966 0.966 0.933 0.960 0.940 0.902
3 1 0 0 0.707 -0.707 -0.500 0.667 -0.500 -0.333
5 1 -0.866 -0.866 0.259 0.259 0.067 0.218 -0.174 -0.038
7 1 0.866 0.866 -0.259 0.259 -0.067 -0.177 0.766 -0.136
9 1 0 0 -0.707 -0.707 0.500 -0.333 -1.000 0.333

11 1 -0.866 -0.866 -0.966 0.966 -0.933 -0.177 0.776 -0.136
13 1 0.866 0.866 -0.966 -0.966 0.933 0.218 -0.174 -0.038
15 1 0 0 -0.707 0.707 -0.500 0.667 -0.500 -0.333

Tab. 5.1: Winding factors for different winding configurations for three-phase machines (m = 3)
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Winding factor: remarks

Winding factor interpretation

The winding factor ξw,k mathematically maps a (real-world) distributed (and eventually
chorded) winding with N turns in slots distributed over the stator circumference to an
idealized (abstract) lumped-coil representation with N · ξw,k (effective) turns. For
following calculation steps (e.g., in a three-phase machine model – compare Fig. 5.6),
one can utilize the simplified lumped-coil representation without systematic modeling
errors thanks to the winding factor concept.

▶ With respect to Tab. 5.1 one can also observe that the winding configuration choice has a
direct impact on the harmonic content of the flux density distribution.

▶ As those will also influence the production of torque and induced voltage (harmonics), the
winding factor is a crucial parameter for the design of electrical machines.
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Winding factor: limitations
The winding factor approach leading to (5.26) was based on several (implicit) assumptions:

▶ The number of slots per phase and pole is a (positive) integer: q ∈ N.
▶ The slot distribution is even over the stator circumference.

However, these assumptions do not apply to all (typical) winding configurations, in particular
fractional slot windings where

q =
Q

2pm
∈ Q

is represented by a common fraction, i.e., rational number.

a c a cb a cbc b

�60 �180 �420�−60 �0 �300

Fig. 5.15: Example scheme of a fractional slot concentrated winding with Q = 9, p = 3, q = 1/2
(adapted from J. Böcker, Controlled Three-Phase Drives, Paderborn University, 2021)
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Concentrated winding
▶ Concentrated winding: the coils per phase are wound around single stator teeth.
▶ Allows for smaller end windings (i.e., less copper and reduced motor length) compared to

distributed windings.

Fig. 5.16: Example of a concentrated winding where
conductors form coils centered around single stator teeth
(source: Chan-Ho Baek et al., Iron Loss Analysis of a
Concentrated Winding Type Interior Permanent Magnet
Synchronous Motor with Single and Dual Layer Magnet
Shape, MDPI Machines, 2021, CC BY 4.0)
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Complex winding factor
The complex winding factor (here: for phase a) is defined as

ξ
a,k

=
1

jNa

Q∑
i=1

Na,ie
jkϑel,a,i (5.27)

with Na,i ∈ Z being the number of conductors in slot i at the position ϑel,a,i with

Na =

Q∑
i=1

|Na,i| (5.28)

being the total number of conductors. Moreover, Na,i represents the orientation of each
conductor by

▶ Na,i = 0: no conductor is in slot i,

▶ Na,i > 0: conductor is oriented towards the positive z-axis (directed towards reader),

▶ Na,i < 0: conductor is oriented towards the negative z-axis (directed away from reader).
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Complex winding factor (cont.)
The complex winding factor is a generalization of (5.19) weighting the contribution of each
conductor to the k-th harmonic (compare Fig. 5.17). Hence,

▶ the conductor positions ϑel,a,i are arbitrary and do not need to follow a specific distribution
pattern (i.e., applicable to arbitrary slot configurations),

▶ the magnitude of the complex winding factor |ξ
a,k

| ∈ [0, 1] indicates the dampening of the

harmonic component k due to the winding configuration,
▶ the phase of the complex winding factor ∠ξ

a,k
indicates the phase shift of the harmonic

component k compared to the winding layout.

Ideal current distribution 
3rd harmonic

Ideal current distribution 
fundamental 

Fig. 5.17: Qualitative illustration of the complex winding factor as a comparison of the actual current
distribution compared to the ideal distribution belonging to a certain flux harmonic
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Complex winding factor (cont.)
While (5.27) represents the complex winding factor for phase a, the complex winding factor for
phase b and c can be derived by rotating the coordinate system by ±2π/3:

ξ
b,k

=
1

jNb

Q∑
i=1

Nb,ie
jk(ϑel,a,i+

2π
3 ), ξ

c,k
=

1

jNc

Q∑
i=1

Nc,ie
jk(ϑel,a,i− 2π

3 ). (5.29)

Hence,
ξ
a,k

= e−jk 2π
3 ξ

b,k
= ejk

2π
3 ξ

c,k
(5.30)

applies.

Harmonic orders

While regular symmetrical windings with q ∈ N will only produce certain harmonic
orders (k = 1, 3, 5, 7, . . . – cf. (5.12)), arbitrary winding configurations can produce
further harmonic orders k ∈ Q (in particular if q is a common fraction).
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Complex winding factor: example
Based on the below table describing the winding scheme information from Fig. 5.15 we have

ξ
a,k

=
1

j6

(
−1ej

kπ
3 + 1ej

k5π
3 − ej

k7π
3 + ej

k11π
3 − ej

k13π
3 + ej

k17π
3

)
,

ξ
a,1

=
1

j6

(
−1ej

π
3 + 1ej

5π
3 − ej

7π
3 + ej

11π
3 − ej

13π
3 + ej

17π
3

)
= −0.866,

ξ
a,2

=
1

j6

(
−1ej

2π
3 + 1ej

10π
3 − ej

14π
3 + ej

22π
3 − ej

26π
3 + ej

34π
3

)
= −0.866,

ξ
a,3

=
1

j6

(
−1ejπ + 1ej5π − ej7π + ej11π − ej13π + ej17π

)
= 0.

i-th slot 1 2 3 4 5 6 7 8 9
ϑel,a,i

1
3π π 5

3π
7
3π 3π 11

3 π
13
3 π 5π 17

3 π

Na,i -1 0 1 -1 0 1 -1 0 1
Nb,i 1 -1 0 1 -1 0 1 -1 0
Nc,i 0 1 -1 0 1 -1 0 1 -1
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Basic induction machine (IM) representation

▶ Three-phase stator + three-phase rotor:
“rotating three-phase transformer”
(plus air gap)

▶ Rotor angular speed: ωr

▶ Rotor angular displacement: εr
▶ Index “s” for stator, “r” for rotor quantities

Fundamental wave model

While the previous chapter has revealed that the
magnetic flux distribution in the air gap is sub-
ject to plentiful harmonics, the following model
limits itself to the fundamental wave.

Fig. 6.1: Elementary three-phase induction
machine (IM) lumped-coil representation

(p = 1 pole pair)
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Visualization of the asynchronous IM operation

Fig. 6.2: Exemplary IM operation at ω = 2π50 1
s in motoric operation (positive average torque)
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Visualization of the asynchronous IM operation (cont.)

Fig. 6.3: Exemplary IM operation at ω = 2π50 1
s in no-load operation (zero average torque)
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Dynamical IM model

Based on Faraday’s and Ohm’s laws, we can write the following equations for the stator

us
s,abc(t) = Rsi

s
s,abc(t) +

d

dt
ψs

s,abc(t) ⇔

uss,a(t)uss,b(t)

us,c(t)

 = Rs

iss,a(t)iss,b(t)

iss,c(t)

+
d

dt

ψs
s,a(t)

ψs
s,b(t)

ψs
s,c(t)

 (6.1)

and rotor

ur
r,abc(t) = Rri

r
r,abc(t) +

d

dt
ψr

r,abc(t) ⇔

urr,a(t)urr,b(t)

urr,c(t)

 = Rr

irr,a(t)irr,b(t)

irr,c(t)

+
d

dt

ψr
r,a(t)

ψr
r,b(t)

ψr
r,c(t)

 (6.2)

which are generally applicable as only identical resistances per phase on the stator and rotor
are assumed. Above, the lower index denotes the physical location of the quantities, while the
upper index indicates the coordinate system orientation.
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Flux linkage model

In contrast to the simple three-phase transformer
model (4.38), the flux linkage model of the IM is
more complex:

▶ Due to the spatial 120◦ phase shift between the
windings of the stator and rotor, the abc phases
are all mutually coupled.

▶ The flux paths and physical dimensions of the
stator and rotor are not identical, i.e., the rotor
and stator inductances are different (even if the
winding turns Ns and Nr are identical).

▶ The coupling between the stator and rotor is
rotor position-dependent (not explicitly shown on
the right due to space limitations).

Fig. 6.4: Simplified representation of the
inductive coupling between the stator/rotor

phases of the IM
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Flux linkages of the three-phase model
Based on the previous considerations, the flux linkages are given by

ψs
s,abc(t) =

 Ls −Ms
2 −Ms

2

−Ms
2 Ls −Ms

2

−Ms
2 −Ms

2 Ls

 iss,abc(t) +Mr
Ns

Nr
Rabc(εr,el(t))i

r
r,abc(t),

ψr
r,abc(t) =

 Lr −Mr
2 −Mr

2

−Mr
2 Lr −Mr

2

−Mr
2 −Mr

2 Lr

 irr,abc(t) +Ms
Nr

Ns
Rabc(εr,el(t))

Tiss,abc(t)

(6.3)

with εr,el(t) = pεr(t) and the transformation matrix

Rabc(εr,el(t)) =

 cos(εr,el(t)) cos(εr,el(t) +
2π
3 ) cos(εr,el(t)− 2π

3 )

cos(εr,el(t)− 2π
3 ) cos(εr,el(t)) cos(εr,el(t) +

2π
3 )

cos(εr,el(t) +
2π
3 ) cos(εr,el(t)− 2π

3 ) cos(εr,el(t))

 . (6.4)
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Inductance matrices of the three-phase model
The inductance matrices

Ls,abc =

 Ls −Ms
2 −Ms

2

−Ms
2 Ls −Ms

2

−Ms
2 −Ms

2 Ls

 , Lr,abc =

 Lr −Mr
2 −Mr

2

−Mr
2 Lr −Mr

2

−Mr
2 −Mr

2 Lr


are based on the following considerations.

▶ The self-inductances cover both the leakage and mutual coupling to other windings:
Ls/r = Ls/r,σ +Ms/r.

▶ The mutual inductances on the stator/rotor Ms/r are identical, as all three phases share the
same magnetic paths and have the same winding turns Ns/r.

▶ The mutual inductances on the off diagonal represent the spatial displacement of the
stator/rotor coils by ±120◦, which is why they are multiplied by cos(±120◦) = −0.5.

▶ In (6.3), the coupling term between stator and rotor is multiplied by the turn ratio to
account for the different winding turns Ns/r (i.e., mapping the mutual inductances between
stator/rotor).
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Orthogonal representation: alpha-beta coordinates

▶ The three-phase IM model is obviously quite
unhandy: six differential equations plus a rather
complicated magnetic circuit representation.

▶ Remedy: transform the three-phase model into
the orthogonal αβ coordinates.

▶ Advantage: only four differential equations and a
simpler magnetic circuit representation (as one
will see on the next slides).

Coordinate transformations

The following transformations of the IM model
into different coordinate systems are pure math-
ematical “tricks” to simplify the analysis. The
IM remains a three-phase machine.

Fig. 6.5: Conceptual IM representation within
the orthogonal αβ coordinates (p = 1 pole

pair)
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Clarke transformation

To transform the three-phase model into the orthogonal αβ coordinates, the Clarke
transformation is applied. Consider any xabc ∈ R3, then the Clarke transformation is given by

xαβ0 =

xαxβ
x0

 =

 2/3 −1/3 −1/3

0 1/
√
3 −1/

√
3

√
2/3

√
2/3

√
2/3


xaxb
xc

 = Tcxabc (6.5)

with the inverse transformation

xabc =

 1 0 1/
√
2

−1/2
√
3/2 1/

√
2

−1/2 −
√
3/2 1/

√
2


xαxβ
x0

 = T−1
c xαβ0. (6.6)

Above, Tc ∈ R3×3 is the Clarke transformation matrix and xαβ0 ∈ R3 the transformed vector.
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Clarke transformation: amplitude and power scaling

The transformation (6.5) is amplitude-preserving, i.e., the amplitude of the αβ vector is
identical to the amplitude of the original abc vector. On the other hand, the power is not
preserved, as can be seen from the inner product of the transformed vectors (which commonly
occurs in power calculations):

xTabcyabc = x
T
αβ0

(
T−1
c

)T
T−1
c yαβ0 ⇔ xaya + xbyb + xcyc =

3

2
(xαyα + xβyβ + x0y0) .

The alternative power-preserving Clarke transformation variant is given by

T ′
c =

√
3

2
Tc

(
T ′
c

)−1
=

(
T ′
c

)T
, (6.7)

which utilizes an orthogonal transformation matrix. However, when using T ′
c the amplitude of

the transformed vector is not preserved. While being an arbitrary choice, we will stick to (6.5)
as a convention for the following.
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Clarke transformation: simplification for zero-component-free vectors

If the abc vector xabc is zero-component-free, i.e.,

xa + xb + xc = 0,

e.g., the phase currents of a star connected system, the Clarke transformation simplifies to

xαβ =

[
xα

xβ

]
=

[
2/3 −1/3 −1/3

0 1/
√
3 −1/

√
3

]xaxb
xc

 = T23xabc (6.8)

and

xabc =

 1 0

−1/2
√
3/2

−1/2 −
√
3/2

[
xα

xβ

]
= T32xαβ. (6.9)
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Clarke transformation: simplification for zero-component-free vectors

Fig. 6.6: Geometrical interpretation of the Clarke transformation without zero components: mapping
xabc ∈ R3 to xαβ ∈ R2 without information loss (adapted from J. Böcker, Controlled Three-Phase

Drives, Paderborn University, 2021)

Oliver Wallscheid Electrical machines and drives 243



IM model αβ coordinates

Assuming zero-component-free three-phase quantities, multiplying the three-phase IM model
(6.1) and (6.2) with T23 results in

T23u
s
s,abc(t) = RsT23i

s
s,abc(t) + T23

d

dt
ψs

s,abc(t)

⇔ us
s,αβ(t) = Rsi

s
s,αβ(t) +

d

dt
ψs

s,αβ(t)

(6.10)

and

T23u
r
r,abc(t) = RrT23i

r
r,abc(t) + T23

d

dt
ψr

r,abc(t)

⇔ ur
r,αβ(t) = Rri

r
r,αβ(t) +

d

dt
ψr

r,αβ(t).

(6.11)

Here, it must be noted that the two voltage equations are still represented in their own stator
or rotor coordinate system. In particular, the rotor’s αβ axes are rotating (compare Fig. 6.5).
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IM model αβ coordinates: transformation of rotor quantities
To bring both model parts into the same coordinate system, the rotor quantities will be
transformed into the stator’s αβ coordinates. This is done by applying the Park transformation
with ε(t) = εr,el(t) = pεr(t):

Tp(εr,el(t))u
r
r,αβ(t) = Tp(εr,el(t))Rri

r
r,αβ(t) + Tp(εr,el(t))

d

dt
ψr

r,αβ(t)

⇔ us
r,αβ(t) = Rri

s
r,αβ(t) + Tp(εr,el(t))

d

dt
ψr

r,αβ(t).

(6.12)

The last term of (6.12) is rewritten as

Tp(εr,el(t))
d

dt
ψr

r,αβ(t) = Tp(εr,el(t))
d

dt

[
T−1
p (εr,el(t))ψ

s
r,αβ(t)

]
= Tp(εr,el(t))

[
d

dt

(
T−1
p (εr,el(t))

)
ψs

r,αβ(t) + T−1
p (εr,el(t))

d

dt

(
ψs

r,αβ(t)
)]

= −ωr,el(t)Jψ
s
r,αβ(t) +

d

dt
ψs

r,αβ(t).

Oliver Wallscheid Electrical machines and drives 245



IM model αβ coordinates: transformation of rotor quantities (cont.)
Hence, the IM model voltage equations in the stator-oriented αβ coordinates are

us
s,αβ(t) = Rsi

s
s,αβ(t) +

d

dt
ψs

s,αβ(t),

us
r,αβ(t) = Rri

s
r,αβ(t)− ωr,el(t)Jψ

s
r,αβ(t) +

d

dt
ψs

r,αβ(t).

(6.13)

Furthermore, the flux linkages representation (6.3) should be also transformed into the
stator-oriented αβ coordinates. Hence, (6.3) is multiplied with T23:

ψs
s,αβ(t) = T23ψ

s
s,abc(t) =

Ls,αβ︷ ︸︸ ︷
T23Ls,abcT32 i

s
s,αβ(t) +Mr

Ns

Nr

Rs
αβ(εr,el(t))︷ ︸︸ ︷

T23Rabc(εr,el(t))T32 i
r
r,αβ(t),

ψr
r,αβ(t) = T23ψ

r
r,abc(t) = T23Lr,abcT32︸ ︷︷ ︸

Lr,αβ

irr,αβ(t) +Ms
Nr

Ns
T23Rabc(εr,el(t))

TT32︸ ︷︷ ︸
Rr

αβ(εr,el(t))

iss,αβ(t).(6.14)
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IM model αβ coordinates: transformation of rotor quantities (cont.)

Continuing from the previous slide, we can rewrite the newly defined inductance matrices as

Ls,αβ = T23Ls,abcT32 =

[
Ls + Ms/2 0

0 Ls + Ms/2

]
= (Ls + Ms/2)I,

Lr,αβ = T23Lr,abcT32 =

[
Lr + Mr/2 0

0 Lr + Mr/2

]
= (Lr + Mr/2)I

(6.15)

and the rotation matrices as

Rs
αβ(εr,el(t)) = T23Rabc(εr,el(t))T32 =

3

2

[
cos(εr,el(t)) − sin(εr,el(t))

sin(εr,el(t)) cos(εr,el(t))

]
=

3

2
Tp(εr,el(t)),

Rr
αβ(εr,el(t)) = T23Rabc(εr,el(t))

TT32 =
3

2

[
cos(εr,el(t)) sin(εr,el(t))

− sin(εr,el(t)) cos(εr,el(t))

]
=

3

2
T−1
p (εr,el(t)).

(6.16)
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IM model αβ coordinates: transformation of rotor quantities (cont.)
Inserting (6.15) and (6.16) into the flux linkage model (6.14) yields

ψs
s,αβ(t) = (Ls + Ms/2)iss,αβ(t) +Mr

3

2

Ns

Nr
Tp(εr,el(t))i

r
r,αβ(t),

ψr
r,αβ(t) = (Lr + Mr/2)irr,αβ(t) +Ms

3

2

Nr

Ns
T−1
p (εr,el(t))i

s
s,αβ(t).

(6.17)

Multiplying the second equation with Tp(εr,el(t)) from the left allows transforming the rotor
flux linkage into the stator’s αβ coordinates

Tp(εr,el(t))ψ
r
r,αβ(t) = (Lr + Mr/2)Tp(εr,el(t))i

r
r,αβ(t) +Ms

3

2

Nr

Ns
Tp(εr,el(t))T

−1
p (εr,el(t))i

s
s,αβ(t)

resulting in a mutual flux linkage model in the stator’s αβ coordinates:

ψs
s,αβ(t) = (Ls + Ms/2)iss,αβ(t) +Mr

3

2

Ns

Nr
isr,αβ(t),

ψs
r,αβ(t) = (Lr + Mr/2)isr,αβ(t) +Ms

3

2

Nr

Ns
iss,αβ(t).

(6.18)
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IM model αβ coordinates: torque
To obtain the IM’s torque equation, a power balance is performed w.r.t. (6.13). Dropping the
time dependency for brevity, the power terms (transposed current times voltage) are

(iss,αβ)
Tus

s,αβ = Rs(i
s
s,αβ)

Tiss,αβ(t) + (iss,αβ)
T d

dt
ψs

s,αβ,

(isr,αβ)
Tus

r,αβ = Rr(i
s
r,αβ)

Tisr,αβ − ωr,el(i
s
r,αβ)

TJψs
r,αβ + (isr,αβ)

T d

dt
ψs

r,αβ.

(6.19)

Considering Fig. 1.5 and the Clarke transf. power mapping, one can identify the following:

Input power:
2

3
Pel = (iss,αβ)

Tus
s,αβ + (isr,αβ)

Tus
r,αβ,

Losses:
2

3
Pl = Rs(i

s
s,αβ)

Tiss,αβ +Rr(i
s
r,αβ)

Tisr,αβ,

Change of stored energy:
2

3

d

dt
Ei = (iss,αβ)

T d

dt
ψs

s,αβ + (isr,αβ)
T d

dt
ψs

r,αβ,

Mechanical power:
2

3
Pme = −ωr,el(i

s
r,αβ)

TJψs
r,αβ.

(6.20)
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IM model αβ coordinates: torque (cont.)
From (6.20) one can compare the mechanical power representations

2

3
Pme =

2

3
ωrT = −pωr(i

s
r,αβ)

TJψs
r,αβ (6.21)

and find the torque expression

T = −3

2
p(isr,αβ)

TJψs
r,αβ =

3

2
p
(
ψs
r,βi

s
r,α − ψs

r,αi
s
r,β

)
. (6.22)

As all terms in (6.22) are invariant with respect to the choice of the coordinate system, the
superscript labeling can be omitted:

T =
3

2
p (ψr,βir,α − ψr,αir,β) . (6.23)

If one would transform the model (6.13) into the rotor-oriented αβ coordinates and redo the
torque derivation, one would find the alternative torque expression

T =
3

2
p(is,αβ)

TJψs,αβ =
3

2
p (ψs,αis,β − ψs,βis,α) . (6.24)
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Summary: IM model in stator-oriented αβ coordinates

The most important equations of the IM model in the stator-oriented αβ coordinates are:

Stator voltage: us
s,αβ(t) = Rsi

s
s,αβ(t) +

d

dt
ψs

s,αβ(t),

Rotor voltage: us
r,αβ(t) = Rri

s
r,αβ(t)− ωr,el(t)Jψ

s
r,αβ(t) +

d

dt
ψs

r,αβ(t),

Stator flux linkage: ψs
s,αβ(t) = (Ls + Ms/2)iss,αβ(t) +Mr

3

2

Ns

Nr
isr,αβ(t),

Rotor flux linkage: ψs
r,αβ(t) = (Lr + Mr/2)isr,αβ(t) +Ms

3

2

Nr

Ns
iss,αβ(t),

Torque: T (t) =
3

2
p(iss,αβ)

TJψs
s,αβ = −3

2
p(isr,αβ)

TJψs
r,αβ.

It may be noted that the voltage and torque equations are independent of any linearity
assumption, i.e., also apply to IMs with magnetic saturation. Only if the above flux linkage
models are utilized, magnetic linearity is assumed.
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Transformation of the rotor quantities based on the turn ratio

▶ The previous model depends on the physical parameters of the rotor: Rr, Lr, and Mr.

▶ Those parameters might not be accessible or known in practice (in particular when direct
rotor measurements are not possible).

▶ Remedy: Transform the rotor quantities into the stator side based on the turn ratio Ns/Nr.

▶ Identical procedure to the transformer approach as from Fig. 4.6.

▶ Hence, stator-based measurements can be used to infer the rotor quantities (compare
open-circuit test Fig. 4.12 and short-circuit test Fig. 4.13).
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Transformation of the rotor quantities based on the turn ratio (cont.)
Applying (4.14) with α = Ns/Nr to the IM model interpreting the rotor as the secondary side
results in

u′
r =

Ns

Nr
ur, i′r =

Nr

Ns
ir, ψ′

r,αβ =
Ns

Nr
ψr,αβ,

R′
r =

N2
s

N2
r

Rr, L′
r =

N2
s

N2
r

Lr, M ′
r =

Ns

Nr
Mr.

(6.25)

Above, the indices representing the coordinate system are omitted as the transformation is
independent of the chosen coordinate system.

Utilizing also Ls = Lσ,s +Ms and Lr = Lσ,r +Mr, the flux linkage equations in the
stator-oriented αβ coordinates are then

ψs
s,αβ(t) = (Lσ,s +

3

2
Ms)i

s
s,αβ(t) +M ′

r

3

2
is

′
r,αβ(t),

ψs′
r,αβ(t) = (L′

σ,r +
3

2
M ′

r)i
s′
r,αβ(t) +Ms

3

2
iss,αβ(t).
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Transformation of the rotor quantities based on the turn ratio (cont.)
Analyzing the (magnetic) power balance reveals

3

2
Ms =

3

2
M ′

r =M, (6.26)

that is, the mutual inductance is identical for both the stator and (transformed) rotor side.
Hence, we can rewrite the flux linkage equations as

ψs
s,αβ(t) = (Lσ,s +M)iss,αβ(t) +Mis

′
r,αβ(t), (6.27)

ψs′
r,αβ(t) = (L′

σ,r +M)is
′
r,αβ(t) +Miss,αβ(t). (6.28)

Alternatively, we can express the currents as a function of the flux linkages:

iss,αβ(t) =
(Lσ,s +M)ψs

s,αβ(t)−Mψs′
r,αβ(t)

M(Lσ,s + L′
σ,r) + Lσ,sL′

σ,r

, (6.29)

is
′
r,αβ(t) =

(L′
σ,r +M)ψs′

r,αβ(t)−Mψs
s,αβ(t)

M(L′
σ,r + Lσ,s) + L′

σ,rLσ,s
. (6.30)
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Transformation of the rotor quantities based on the turn ratio (cont.)

Rewriting the transformer’s leakage coefficient definition (4.5) for the IM model as

σ =
(Lσ,s + L′

σ,r)M + L′
σ,rLσ,s

(M + Lσ,s)(M + L′
σ,r)

= 1− M2

(M + Lσ,s)(M + L′
σ,r)

(6.31)

allows expressing the currents as

iss,αβ(t) =
1

σ(Lσ,s +M)

(
ψs

s,αβ(t)−
M

M + L′
σ,r

ψs′
r,αβ(t)

)
, (6.32)

is
′
r,αβ(t) =

1

σ(L′
σ,r +M)

(
ψs′

r,αβ(t)−
M

M + Lσ,s
ψs

s,αβ(t)

)
. (6.33)
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ECD of transformed IM model in general αβ coordinates

Fig. 6.7: T-type ECD of an IM in stator-oriented αβ coordinates with rotor quantities transformed using
α = Ns/Nr
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Summary: transformed IM model in stator-oriented αβ coordinates

The most important equations of the IM model in the stator-oriented αβ coordinates with all
rotor quantities transformed to the stator side are:

Stator voltage: us
s,αβ(t) = Rsi

s
s,αβ(t) +

d

dt
ψs

s,αβ(t),

Rotor voltage: us′
r,αβ(t) = Rri

s′
r,αβ(t)− ωr,el(t)Jψ

s′
r,αβ(t) +

d

dt
ψs′

r,αβ(t),

Stator flux linkage: ψs
s,αβ(t) = (Lσ,s +M)iss,αβ(t) +Mis

′
r,αβ(t),

Rotor flux linkage: ψs′
r,αβ(t) = (L′

σ,r +M)is
′
r,αβ(t) +Miss,αβ(t),

Torque: T (t) =
3

2
p(iss,αβ(t))

TJψs
s,αβ(t) = −3

2
p(is

′
r,αβ(t))

TJψs′
r,αβ(t).

The transformed rotor quantities are u′
r = αur, i

′
r = 1/αir, ψ

′
r = αψr, R

′
r = α2Rr, L

′
r = α2Lr,

and M ′
r = αMr with α = Ns/Nr.
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Park transformation

The Park transform rotates a vector xαβ ∈ R2 by a certain angle ε to obtain xdq ∈ R2, that is,

xdq =

[
xd

xq

]
=

[
cos(ε) sin(ε)

− sin(ε) cos(ε)

][
xα

xβ

]
= T−1

p (ε)xαβ (6.34)

with the counter rotation

xαβ =

[
cos(ε) − sin(ε)

sin(ε) cos(ε)

][
xd

xq

]
= Tp(ε)xdq. (6.35)

Above, Tp ∈ R2×2 is the Park transformation matrix. It might be noted that is a (historical)
convention to define that Tp rotates into the mathematically positive direction. Depending on
the application background and choice of ε, the interpretation of xdq can vary.
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Park transformation (cont.)

Fig. 6.8: Geometrical interpretation of the Park transformation: mapping xαβ ∈ R2 to xdq ∈ R2

(adapted from J. Böcker, Controlled Three-Phase Drives, Paderborn University, 2021)
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Park transformation: some properties
Performing the Park and inverse Park transformation sequentially, does not change the vector:

xαβ = TpT
−1
p xαβ = T−1

p Tpxαβ. (6.36)

A frequent rotation within the electric machines and drives context is

Tp(ε = π/2) =

[
cos(π/2) − sin(π/2)

sin(π/2) cos(π/2)

]
=

[
0 −1

1 0

]
= J (6.37)

leading to the definition of J ∈ R2×2 which will be used for brevity in the following. Moreover,
if ε results from some rotation, i.e., d/dt ε(t) = ω(t), we have:

d

dt
Tp(ε(t)) =

[
− sin(ε(t)) − cos(ε(t))
cos(ε(t)) − sin(ε(t))

]
d

dt
ε(t) = Tp(ε(t))Jω(t), (6.38)

d

dt
T−1
p (ε(t)) =

[
− sin(ε(t)) cos(ε(t))
− cos(ε(t)) − sin(ε(t))

]
d

dt
ε(t) = −T−1

p (ε(t))Jω(t). (6.39)
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Visualization of different coordinate systems

Fig. 6.9: Representation of a rotating phasor (without zero component) in different coordinate systems
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General rotating coordinate system k

▶ In αβ coordinates, all quantities have sinusoidal
trajectory under regular IM operation.

▶ Compare rotating field theory: sinusoidal phase
currents lead to sinusoidal αβ currents.

K coordinate system

To simplify the machine analysis, a general ro-
tating coordinate system k is introduced. The
orientation of the d-axis of that coordinate sys-
tem can be chosen freely, however, if aligned to
the stator or rotor flux linkage vector all quan-
tities become constant during steady state (cf.
Fig. 6.9). Fig. 6.10: Comparison of coordinate systems
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IM model in coordinate system k

Applying the Park transformation to the IM model in the stator-oriented αβ coordinates results
in (dropping the time dependency for brevity):

uk
s,dq = T−1

p (εk,el)u
s
s,αβ, iks,dq= T

−1
p (εk,el)i

s
s,αβ, ψk

s,dq = T−1
p (εk,el)ψ

s
s,αβ,

uk
r,dq = T−1

p (εk,el)u
s
r,αβ, ikr,dq= T

−1
p (εk,el)i

s
r,αβ, ψk

r,dq = T−1
p (εk,el)ψ

s
r,αβ.

(6.40)

The transformed flux linkage model in the k coordinate system remains structurally unaffected
by the coordinate transformation

ψk
s,dq = (Ls + Ms/2)iks,dq +Mr

3

2

Ns

Nr
ikr,dq,

ψk
r,dq = (Lr + Mr/2)ikr,dq +Ms

3

2

Nr

Ns
iks,dq

(6.41)

since both the current and flux linkage vectors are transformed in the same way starting from
(6.18).
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IM model in coordinate system k (cont.)
Likewise, the torque is invariant with respect to the chosen coordinate system:

T =
3

2
p (is,dq)

T Jψs,dq = −3

2
p (ir,dq)

T Jψr,dq. (6.42)

Applying the Park transformation derivative rule (6.39) to the voltage equations in the k
coordinate system yields

uk
s,dq = Rsi

k
s,dq + ωk,elJψ

k
s,dq +

d

dt
ψk

s,dq,

uk
r,dq = Rri

k
r,dq + (ωk,el − ωr,el)Jψ

k
r,dq +

d

dt
ψk

r,dq.

(6.43)

Likewise, the transformation of the rotor quantities based on the turn ratio α = Ns/Nr can be
applied to the k coordinate system:

uk′
r,dq = αuk

r,dq, ik
′

r,dq = 1/αikr,dq, ψk′
r,dq = αψk

r,dq,

R′
r = α2Rr, L′

r = α2Lr, M ′
r = αMr.

(6.44)
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Summary: IM model in general dq coordinates
The most important equations of the IM model in the general k coordinate system with dq
coordinates are:

Stator voltage: uk
s,dq(t) = Rsi

k
s,dq(t) + ωk,el(t)Jψ

k
s,dq(t) +

d

dt
ψk

s,dq(t),

Rotor voltage: uk
r,dq(t) = Rri

k
r,dq(t) + (ωk,el(t)− ωr,el(t))Jψ

k
r,dq(t) +

d

dt
ψk

r,dq(t),

Stator flux linkage: ψk
s,dq(t) = (Ls + Ms/2)iks,dq(t) +Mr

3

2

Ns

Nr
ikr,dq(t),

Rotor flux linkage: ψk
r,dq(t) = (Lr + Mr/2)ikr,dq(t) +Ms

3

2

Nr

Ns
iks,dq(t),

Torque: T (t) =
3

2
p(iks,dq(t))

TJψk
s,dq(t) = −3

2
p(ikr,dq(t))

TJψk
r,dq(t).

Likewise in the stator-oriented αβ coordinates, one can further transform the rotor quantities
based on the turn ratio α = Ns/Nr to infer the rotor parameters from stator-based
measurements (cf. next slide).
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Summary: transformed IM model in general dq coordinates

The most important equations of the IM model in the general k coordinate system with dq
coordinates with all rotor quantities transformed to the stator side are:

Stator voltage: uk
s,dq(t) = Rsi

k
s,dq(t) + ωk,el(t)Jψ

k
s,dq(t) +

d

dt
ψk

s,dq(t),

Rotor voltage: uk′
r,dq(t) = Rri

k′
r,dq(t) + (ωk,el(t)− ωr,el(t))Jψ

k′
r,dq(t) +

d

dt
ψk′

r,dq(t),

Stator flux linkage: ψk
s,dq(t) = (Lσ,s +M)iks,dq(t) +Mik

′
r,dq(t),

Rotor flux linkage: ψk′
r,dq(t) = (L′

σ,r +M)ik
′

r,dq(t) +Miks,dq(t),

Torque: T (t) =
3

2
p(iks,dq(t))

TJψk
s,dq(t) = −3

2
p(ik

′
r,dq(t))

TJψk′
r,dq(t).

The transformed rotor quantities are u′
r = αur, i

′
r = 1/αir, ψ

′
r = αψr, R

′
r = α2Rr, L

′
r = α2Lr,

and M ′
r = αMr with α = Ns/Nr.
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ECD of transformed IM model in general dq coordinates

Fig. 6.11: T-type ECD of an IM in general dq coordinates with rotor quantities transformed using
α = Ns/Nr
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Stator flux orientation in the k coordinate system
Per definition we can assign the stator flux
linkage vector to the d-axis of the k coordinate
system:

ψk
s,dq(t) =

ψk
s,d(t)

ψk
s,q(t)

 =

ψk
s,d(t)

0


=

|ψk
s,dq(t)|

0

 .
(6.45)

In this case, the torque expression simplifies to

T (t) =
3

2
p(iks,dq(t))

TJψk
s,dq(t)

=
3

2
piks,q(t)ψ

k
s,d(t).

(6.46)
Fig. 6.12: Stator flux-oriented coordinate system
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Rotor flux orientation in the k coordinate system
Per definition we can also assign the rotor flux
linkage vector to the d-axis of the k coordinate
system:

ψk
r,dq(t) =

ψk
r,d(t)

ψk
r,q(t)

 =

ψk
r,d(t)

0


=

|ψk
r,dq(t)|

0

 .
(6.47)

In this case, the torque expression simplifies to

T (t) = −3

2
p(ikr,dq(t))

TJψk
r,dq(t)

= −3

2
pikr,q(t)ψ

k
r,d(t).

(6.48)
Fig. 6.13: Rotor flux-oriented coordinate system
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Steady-state behavior
Starting from the general IM model voltage equations in the transformed k coordinate system
(6.44), the steady-state (dx(t)/dt=0) behavior is described by

uk
s,dq = Rsi

k
s,dq + ωk,elJψ

k
s,dq,

uk′
r,dq = R′

ri
k′
r,dq + (ωk,el − ωr,el)Jψ

k′
r,dq.

(6.49)

During steady state the stator is excited by a constant three-phase voltage with the stator
frequency ωs while the rotor is excited with the rotor or slip frequency ωslip:

ωk,el → ωs, ωk,el − ωr,el → ωslip. (6.50)

Dropping the coordinate system indices, we have

us = Rsis + ωsJψs, u′
r = R′

ri
′
r + ωslipJψ

′
r. (6.51)

Rewriting the vectorial quantities as complex phasors Xdq = Xejϕ = Xd + jXq, we obtain

U s = RsIs + jωsΨs, U ′
r = R′

rI
′
r + jωslipΨ

′
r. (6.52)
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Steady-state behavior (cont.)
In (6.52) the complex rotor and stator fluxes rotate with different frequencies. To simplify the
analysis, we introduce the slip ratio

s =
ωslip

ωs
. (6.53)

Multiplying (6.52) with the inverse slip ratio delivers then

U s = RsIs + jωsΨs,
1

s
U ′

r =
1

s
R′

rI
′
r + jωsΨ

′
r. (6.54)

Here, both the stator and rotor fluxes rotate with the same frequency ωs. Additionally, we can
insert the current-to-flux linkage relationships

Ψs = (Lσ,s +M)Is +MI ′r, Ψ′
r = (L′

σ,r +M)I ′r +MIs (6.55)

leading to
U s = RsIs + jωs

[
(Lσ,s +M)Is +MI ′r

]
,

1

s
U ′

r =
1

s
R′

rI
′
r + jωs

[
(L′

σ,r +M)I ′r +MIs
]
.

(6.56)
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Steady-state behavior: equivalent circuit diagram

The complex steady-state phasor model (6.56) can be represented by the following equivalent
circuit diagram. Here, one can note the striking similarity to the T-type ECD of a transformer.

Fig. 6.14: T-type ECD of an IM in steady state represented by complex phasors
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IM rotor types

(a) Squirrel cage rotor (source: Wikimedia Commons,
Zurek, CC BY-SA 3.0)

(b) Wound or
slip ring rotor

Fig. 6.15: IM rotor variants
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Squirrel cage IM torque-speed characteristic
Utilizing the stator flux orientation we define

Ψs = Ψs,d + jΨs,q = Ψs,d = Ψs.

Assuming that the stator ohmic voltage drop is negligible (Rs = 0), we get from (6.54)

U s = Us,d + jUs,q = jωsΨs = jωsΨd (6.57)

and, therefore,

Us,d = 0, Ψs,d =
Us,q

ωs
=
Us

ωs
= Ψs. (6.58)

Hence, the stator voltage phasor is purely imaginary and the stator flux phasor is real due to
the chosen orientation. From (6.55) we can rewrite the flux-to-current relationships as

Is =
1

σ(Lσ,s +M)
Ψs −

M

σ(Lσ,s +M)(L′
σ,r +M)

Ψ′
r,

I ′r =
1

σ(L′
σ,r +M)

Ψ′
r −

M

σ(Lσ,s +M)(L′
σ,r +M)

Ψs.

(6.59)
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Squirrel cage IM torque-speed characteristic (cont.)
Furthermore, the rotor voltage for the squirrel cage IM is

U ′
r = 0

due to the short-circuited rotor winding. The rotor voltage equation (6.54) then simplifies to

0 =
1

s
R′

rI
′
r + jωsΨ

′
r ⇔ Ψ′

r =
j

ωs

R′
r

s
I ′r. (6.60)

Fig. 6.16: T-type ECD of a squirrel cage IM in steady state represented by complex phasors
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Squirrel cage IM torque-speed characteristic (cont.)
Combining (6.58), (6.59), and (6.60) we have a linear equation system resulting in

Is,d =
Us

ωs

σ2ω2
slip(Lσ,s +M)(L′

σ,r +M)3 + (L′
σ,r +M)(Lσ,s +M)(R′

r)
2 −M2(R′

r)
2

σ(Lσ,s +M)2(L′
σ,r +M)ωslip(σ2ω2

slip(L
′
σ,r +M)2 + (R′

r)
2)

, (6.61)

Is,q =
Us

ωs

M2ωslipR
′
r

(Lσ,s +M)2(σ2(L′
σ,r +M)2ω2

slip + (R′
r)

2)
, (6.62)

Ir,d = −Us

ωs

σMω2
slip(L

′
σ,r +M)

(Lσ,s +M)(σ2(L′
σ,r +M)2ω2

slip + (R′
r)

2)
, (6.63)

Ir,q = −Us

ωs

MR′
rωslip

(Lσ,s +M)(σ2(L′
σ,r +M)2ω2

slip + (R′
r)

2)
, (6.64)

Ψr,d =
Us

ωs

M(R′
r)

2

(Lσ,s +M)(σ2(L′
σ,r +M)2ω2

slip + (R′
r)

2)
, (6.65)

Ψr,q = −Us

ωs

σM(L′
σ,r +M)R′

rωslip

(Lσ,s +M)((L′
σ,r +M)2σ2ω2

slip + (R′
r)

2)
. (6.66)
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Squirrel cage IM torque-speed characteristic (cont.)
With the definition of ωmax = R′

r/σ(L′
σ,r+M) we can rewrite and receive

Is,d =
Us

ωs

σ2ω2
slip(Lσ,s +M)(L′

σ,r +M)3 + (L′
σ,r +M)(Lσ,s +M)(R′

r)
2 −M2(R′

r)
2

σ(Lσ,s +M)2(L′
σ,r +M)ωslip(σ2ω2

slip(L
′
σ,r +M)2 + (R′

r)
2)

, (6.67)

Is,q =
Us

ωs

M2

σ(Lσ,s +M)2(L′
σ,r +M)

1
ωslip

ωmax
+ ωmax

ωslip

, (6.68)

Ir,d = −Us
Ms

(Lσ,s +M)R′
r

1
ωslip

ωmax
+ ωmax

ωslip

, (6.69)

Ir,q = −Us

ωs

M

σ(Lσ,s +M)(L′
σ,r +M)

1
ωslip

ωmax
+ ωmax

ωslip

, (6.70)

Ψr,d =
Us

ωs

MR′
r

σ(Lσ,s +M)(L′
σ,r +M)ωslip

1
ωslip

ωmax
+ ωmax

ωslip

, (6.71)

Ψr,q = −Us

ωs

M

(Lσ,s +M)

1
ωslip

ωmax
+ ωmax

ωslip

. (6.72)
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Squirrel cage IM torque-speed characteristic (cont.)
The torque expression is then

T =
3

2
p
√
2Ψs

√
2Is,q =

3

2
p
U2
s

ω2
s

M2

σ(Lσ,s +M)2(L′
σ,r +M)

2
ωslip

ωmax
+ ωmax

ωslip

. (6.73)

Hence, the maximum achievable torque for a constant stator excitation is

Tmax =
3

2
p
U2
s

ω2
s

M2

σ(Lσ,s +M)2(L′
σ,r +M)

(6.74)

since

max
ωslip

{
2

ωslip

ωmax
+ ωmax

ωslip

}
= 1, argmax

ωslip

{
2

ωslip

ωmax
+ ωmax

ωslip

}
= ωmax =

R′
r

σ(L′
σ,r +M)

applies. Above, Ψs and Is,q are RMS values according to the complex phasor definitions, which
is why the factor

√
2 appears in the torque expression.
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Squirrel cage IM torque-speed characteristic (cont.)

The torque expression

T = Tmax
2

ωslip

ωmax
+ ωmax

ωslip

(6.75)

can be also alternatively expressed as a function of the slip ratio s by utilizing

ωslip = sωs, smax =
ωmax

ωs
=

R′
r

σ(L′
σ,r +M)ωs

leading to

T = Tmax
2

s
smax

+ smax
s

. (6.76)

The torque-speed characteristic of a squirrel cage IM is also known as Kloss’s formula. It
should be noted that ωmax and smax are machine-dependent parameters (for a constant stator
excitation), i.e., constants. Contrary, the slip ratio s and slip frequency ωslip depend on the
IM’s shaft speed and vary during operation.
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Kloss’s formula: visual representation

Rotor speed

Starting 
torque

(a) Illustration based on the mechanical speed (b) Illustration based on the slip ratio

Fig. 6.17: Steady-state torque-speed characteristic of a squirrel cage IM for a fixed stator excitation
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Squirrel cage IM torque-speed characteristic: rotor resistance

The starting torque, i.e., the torque at motor standstill (ωr = 0), is given by

T0 = Tmax
2smax

1 + s2max

= Tmax
2ωmax

1 + ω2
max

(6.77)

since
ωslip = ωs − pωr = ωs − 0 = ωs

holds. Depending on the machine design T0 can be significantly lower than Tmax, which might
be a disadvantage for certain applications. Since

ωmax =
R′

r

σ(L′
σ,r +M)

, smax =
R′

r

σ(L′
σ,r +M)ωs

depend on the rotor resistance R′
r, the starting torque can be modified by changing the rotor

resistance, e.g., via a dropping resistor or potentiometer (which would require a slip ring rotor).

Oliver Wallscheid Electrical machines and drives 284



Squirrel cage IM torque-speed characteristic: rotor resistance (cont.)

Rotor speed

Fig. 6.18: Steady-state torque-speed characteristic of a squirrel cage IM for a fixed stator excitation with
varying rotor resistance R′

r – note that the synchronous speed ωr = ωs/p and the maximum torque
Tmax are independent of the rotor resistance variation
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Slip frequency-dependent rotor skin effect

▶ If ωslip ̸= 0, the rotor bars are exposed to a
time-varying magnetic field.

▶ This induces eddy currents leading to an uneven
current distribution within the bars.

▶ As a result, the effective rotor resistance
increases with the slip frequency:

Rr(ωslip)

Rr,DC
= δ

sinh(2δ) + sin(2δ)

cosh(2δ)− cos(2δ)
(6.78)

with

δ = hbar

√
ωslip

µ0κ

2

wbar

wslot

being the skin depth. Here, µ0 is the vacuum
permeability and κ is the bar’s conductivity.

Fig. 6.19: Rotor bar with eddy currents
induced by the rotating magnetic field
(inspired from A. Binder, Elektrische

Maschinen und Antriebe, Vol. 2, Springer,
2017)
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Slip frequency-dependent rotor skin effect (cont.)

0 10 20 30 40 50
fslip in Hz

1.0

1.5

2.0

2.5

3.0
R

r(
ω

sl
ip

)
R

r,
D

C

Fig. 6.20: Rotor resistance of a squirrel cage IM as a function of the slip frequency (example based on
the following values: κ = 3.7 · 107 S

m , hbar = 50mm, wbar = 10mm, wslot = 15mm)
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Squirrel cage IM torque-speed characteristic: varying stator frequency

▶ Adaption of rotor resistance might be
technically tricky.

▶ Alternative: vary stator frequency ωs.

▶ Shift of the torque-speed characteristic
along the speed axis, i.e., the synchronous
speed ωr = ωs/p.

▶ Allows utilizing Tmax at different speeds
(including initial starting torque).

▶ Requires a variable frequency source, e.g., a
power electronic converter. Fig. 6.21: Steady-state torque-speed characteristic

of a squirrel cage IM with varying ωs while keeping
Us/ωs = const.
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Squirrel cage IM torque-speed characteristic: flux weakening

▶ The previous consideration from Fig. 6.21
assumed that Us/ωs = const. applies, that
is, the stator voltage amplitude is adjusted
according to the frequency.

▶ Obviously, this is only possible to a certain
extent due to the voltage source limitations.

▶ Hence, at some point, the torque-speed
characteristic is limited by the available
voltage leading to a flux weakening
operation mode (cf. right figure).

Fig. 6.22: Steady-state torque-speed characteristic
of a squirrel cage IM with varying ωs while keeping

Us = const., i.e., field weakening operation
(Ψs ∼ 1/ωs)
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Squirrel cage IM torque-speed characteristic: air gap harmonics

▶ The rotating field analysis (5.17)
revealed that the air gap magnetic field
contains harmonics:

B =
6

πp
B̂

∞∑
k

1

k
sin

(
kπ

2

)
cos(ωt− kϑel)

▶ This induces rotor currents with the
harmonic slip frequency ω

(k)
slip.

▶ Likewise the IM fundamental torque,
these air gap field and rotor current
harmonics lead to constant, i.e.,
non-harmonic, torque contributions
distorting the torque-speed
characteristic.

Fig. 6.23: Steady-state torque-speed characteristic of a
squirrel cage IM considering torque harmonics due to

stator magnetic field harmonics of order k = 1,−5, 7,−11
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Synchronous machine (SM) rotor types

(a) Salient pole rotor (b) Cylindrical rotor

Fig. 7.1: Major rotor types of synchronous machines (SM)
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SM application examples

(a) 2MVA generator from 1920 (source: Wikimedia
Commons, Kolossos, CC BY-SA 3.0)

(b) 36MVA Pelton wheel generator (source:
Wikimedia Commons, Asurnipal, CC BY-SA 4.0)

Fig. 7.2: SM examples with salient pole rotor type
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SM application examples (cont.)

(a) 650MVA turbogenerator from Cernavodă nuclear
power plant (source: Wikimedia Commons, R. Lavinia,

CC BY-SA 4.0)

(b) 1GVA turbogenerator SM rotor from Balakovo
nuclear power plant (source: Wikimedia Commons, A.

Seetenky, CC BY-SA 3.0)

Fig. 7.3: SM examples with cylindrical rotor type
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Visualization of the synchronous machine operation

Fig. 7.4: Exemplary SM operation at ω = 2π50 1
s in motoric operation (positive average torque)
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Visualization of the synchronous machine operation (cont.)

Fig. 7.5: Exemplary SM operation at ω = 2π50 1
s in no-load operation (zero average torque)
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Dynamical SM model

Based on Faraday’s and Ohm’s laws, we can write the following equations for the stator

us
s,abc(t) = Rsi

s
s,abc(t) +

d

dt
ψs

s,abc(t) ⇔

uss,a(t)uss,b(t)

us,c(t)

 = Rs

iss,a(t)iss,b(t)

iss,c(t)

+
d

dt

ψs
s,a(t)

ψs
s,b(t)

ψs
s,c(t)

 (7.1)

and rotor field winding

urf(t) = Rfi
r
f(t) +

d

dt
ψr
f (t) (7.2)

which are generally applicable as only identical resistances per phase on the stator are assumed.
In contrast to the induction motor, only a single rotor field winding is present.
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Flux linkage model

The SM flux linkage model is similar to the IM
model:

▶ Assuming a cylindrical rotor, the self-induced
stator flux remains identical to the IM model
(derived from rotating field theory chapter).

▶ In contrast to the IM model Fig. 6.4, the SM’s
rotor field coil is a represented by a single
winding.

▶ The coupling of the stator and rotor remains
rotor position-dependent (not explicitly shown on
the right due to space limitations). Fig. 7.6: Simplified representation of the

inductive coupling between the stator/rotor
phases of the cylindrical rotor SM
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Flux linkages of the three-phase model

Based on the previous considerations, the flux linkages of the cylindrical SM are given by

ψs
s,abc(t) =

 Ls −Ms
2 −Ms

2

−Ms
2 Ls −Ms

2

−Ms
2 −Ms

2 Ls

 iss,abc(t) +Mr
Ns

Nr

 cos(εr,el(t))

cos(εr,el(t)− 2π
3 )

cos(εr,el(t) +
2π
3 )

 irf(t),
ψr
f (t) = Lfi

r
f(t)

+Ms
Nr

Ns

[
cos(εr,el(t)) cos(εr,el(t)− 2π

3 ) cos(εr,el(t) +
2π
3 )

]
iss,abc(t)

(7.3)

with εr,el(t) = pεr(t). Consequently, (7.3) is a reduced representation of the IM’s flux linkage
model (6.3).
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Cylindrical SM model in alpha-beta coordinates: voltage equations

Similar to the IM, we can represent the SM model is
orthogonal αβ-coordinates. For the SM this only
applies to the three-phase stator, as the rotor has
only a single phase winding. The αβ-coordinates
voltage equation is given by (compare to (6.10))

us
s,αβ(t) = Rsi

s
s,αβ(t) +

d

dt
ψs

s,αβ(t) (7.4)

while the rotor field winding voltage equation
remains identical to (7.2):

urf(t) = Rfi
r
f(t) +

d

dt
ψr
f (t). Fig. 7.7: Conceptual cylindrical SM

representation within the orthogonal αβ
coordinates (p = 1 pole pair)
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Cylindrical SM model in alpha-beta coordinates: flux linkage

For the flux linkage model in αβ-coordinates, we multiply the stator flux equations from (7.3)
with T23 from the right

ψs
s,αβ(t) = T23ψ

s
s,abc(t) =

Ls,αβ︷ ︸︸ ︷
T23Ls,abcT32 i

s
s,αβ(t) +Mr

Ns

Nr
T23

 cos(εr,el(t))
cos(εr,el(t)− 2π

3 )
cos(εr,el(t) +

2π
3 )

 irf(t)
= (Ls + Ms/2)iss,αβ(t) +Mr

Ns

Nr

[
cos(εr,el(t))
sin(εr,el(t))

]
irf(t)

(7.5)

and utilize iss,abc(t) = T32i
s
s,αβ(t) to modify the rotor flux linkage equation accordingly:

ψr
f (t) = Lf i

r
f(t) +Ms

Nr

Ns

[
cos(εr,el(t)) sin(εr,el(t))

]
iss,αβ(t). (7.6)

In contrast to the IM αβ-coordinates flux linkage model, the SM flux-to-current coupling is
rotor position-dependent.
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Cylindrical SM model in alpha-beta coordinates: flux linkage (cont.)

Analyzing the (magnetic) power balance reveals

Mr
Ns

Nr
=Ms

Nr

Ns

!
=Mfs, (7.7)

and with the shorter notation
L′
s = (Ls + Ms/2) (7.8)

we can rewrite the flux linkage model in αβ-coordinates to

ψs
s,αβ(t) = L′

si
s
s,αβ(t) +Mfs

[
cos(εr,el(t))
sin(εr,el(t))

]
irf(t),

ψr
f (t) = Lfi

r
f(t) +Mfs

[
cos(εr,el(t))
sin(εr,el(t))

]T
iss,αβ(t).

(7.9)
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Cylindrical SM model in alpha-beta coordinates: torque

Following the same power balance approach as from the IM, the SM’s torque equation is given
by

T (t) =
3

2
p(iss,αβ(t))

TJψs
s,αβ(t). (7.10)

The equivalent representation with the rotor current and flux linkage as in the IM case is not
applicable in the SM case, as the rotor has only a single field winding, i.e., is lacking an αβ
representation. Inserting the linear flux linkage model from (7.9) into the torque equation yields

T (t) =
3

2
p(iss,αβ(t))

TJψs
s,αβ(t)

=
3

2
p(iss,αβ(t))

TJ

(
L′
si

s
s,αβ(t) +Mfs

[
cos(εr,el(t))
sin(εr,el(t))

]
irf(t)

)
=

3

2
pMfsi

r
f

(
cos(εr,el(t))i

s
s,β(t)− sin(εr,el(t))i

s
s,α(t)

)
.

(7.11)
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Cylindrical SM model in alpha-beta coordinates: torque interpretation
In (7.11) the term

Mfs

[
cos(εr,el(t))
sin(εr,el(t))

]
irf(t) = ψ

s
f (t) (7.12)

can be interpreted as the field winding flux linkage
coupled with the stator winding. Hence, the torque
expression can be rewritten as:

T (t) =
3

2
p
∥∥ψs

f (t)× iss,αβ(t)
∥∥

=
3

2
p
∥∥ψs

f (t)
∥∥∥∥iss,αβ(t)∥∥ sin(θ(t)) (7.13)

with θ being the angle between the field winding
flux linkage and the stator current vectors, also
known as the load angle.

Fig. 7.8: Interpretation of the torque as the
parallelogram area spannend by the vectors of
the field winding flux and the stator current
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Summary: cylindrical SM model in αβ coordinates

The most important equations of the cylindrical SM model in the αβ coordinates are:

Stator voltage: us
s,αβ(t) = Rsi

s
s,αβ(t) +

d

dt
ψs

s,αβ(t),

Rotor / field winding voltage: urf(t) = Rfi
r
f(t) +

d

dt
ψr
f (t),

Stator flux linkage: ψs
s,αβ(t) = L′

si
s
s,αβ(t) +Mfs

[
cos(εr,el(t))
sin(εr,el(t))

]
irf(t),

Rotor / field winding flux linkage: ψr
f (t) = Lfi

r
f(t) +Mfs

[
cos(εr,el(t))
sin(εr,el(t))

]T
iss,αβ(t),

Torque: T (t) =
3

2
p(iss,αβ)

TJψs
s,αβ.
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Rotor flux orientation: the dq coordinate system

▶ In the SM case the rotor flux orientaton is
directly related to the rotor position (cf.
Fig. 7.1).

▶ Hence, to transfer the rotor and stator
equations into a mutual coordinate system,
the rotor flux orientation is typically used as
a reference.

▶ In contrast to the αβ-coordinates, where the
stator quantity signals are of sinusoidal
shape during steady state, the rotor
flux-oriented signals are constant during
steady state. Fig. 7.9: Rotor flux-oriented coordinate system
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Rotor flux orientation: the dq coordinate system (cont.)

Transferring the stator voltage equation into the dq coordinate system results in

us
s,αβ(t) = Rsi

s
s,αβ(t) +

d

dt
ψs

s,αβ(t)

⇔ T−1
p (εr,el)u

s
s,dq(t) = RsT

−1
p (εr,el)i

s
s,dq(t) +

d

dt
(T−1

p (εr,el)ψ
s
s,dq(t))

⇔ ur
s,dq(t) = Rsi

r
s,dq(t) + ωr,el(t)Jψ

r
s,dq(t) +

d

dt
ψr

s,dq(t).

(7.14)

Since the dq coordinate system is always aligned with the rotor flux in the SM case, one can
also drop the superscript r:

us,dq(t) = Rsis,dq(t) + ωr,el(t)Jψs,dq(t) +
d

dt
ψs,dq(t).
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Rotor flux orientation: the dq coordinate system (cont.)
The stator flux linkage model in the dq coordinate system is given by

ψs
s,αβ(t) = L′

si
s
s,αβ(t) +Mfs

[
cos(εr,el(t))
sin(εr,el(t))

]
irf(t),

⇔ T−1
p (εr,el)ψs,dq(t) = L′

sT
−1
p (εr,el)is,dq(t) +Mfs

[
cos(εr,el(t))
sin(εr,el(t))

]
if(t)

⇔ ψs,dq(t) = L′
sis,dq(t) +Mfs

[
1
0

]
︸ ︷︷ ︸

Mfs

irf(t) = L′
sis,dq(t) +Mfsi

r
f(t).

(7.15)

while the field winding flux results in

ψr
f (t) = Lfi

r
f(t) +Mfs

[
cos(εr,el(t)) sin(εr,el(t))

]
iss,αβ(t)

⇔ ψr
f (t) = Lfi

r
f(t) +Mfs

[
cos(εr,el(t)) sin(εr,el(t))

]
T−1
p (εr,el)i

s
s,dq(t)

⇔ ψr
f (t) = Lfi

r
f(t) +Mfs

[
1 0

]
is,dq(t) = Lfi

r
f(t) +M

T
fsis,dq(t).

(7.16)
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Summary: cylindrical SM model in dq coordinates

The most important equations of the cylindrical SM model in the dq coordinates are:

Stator voltage: us,dq(t) = Rsis,dq(t) + ωr,el(t)Jψs,dq(t) +
d

dt
ψs,dq(t),

Rotor / field winding voltage: uf(t) = Rf if(t) +
d

dt
ψf(t),

Stator flux linkage: ψs,dq(t) = L′
sis,dq(t) +Mfsif(t),

Rotor / field winding flux linkage: ψf(t) = Lf i
r
f(t) +M

T
fsis,dq(t),

Torque: T (t) =
3

2
p(is,dq)

TJψs,dq.

Here, one can observe that the d component of the stator flux linkage is directly coupled with
the field winding flux and vice versa, which was to be expected due to the rotor flux orientation
of the chosen coordinate system.
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ECD of cylindrical SM model in dq coordinates

Fig. 7.10: T-type ECD of a cylindrical
SM in dq coordinates (note that this
ECD is represented with scalar values and
not as vectors or complex numbers as in
the IM case).
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Salient pole SM model

▶ The cylindrical rotor SM model (7.15)
considered an identical stator inductance L′

s

for the d and q axis.

▶ In the cylindrical SM case this is a valid
assumption, as the rotor is symmetrical.

▶ However, in the case of a salient pole SM,
the rotor is not symmetrical and the flux
path per axis is different (cf. Fig. 7.11).

▶ The q-axis reluctance is larger than the
d-axis reluctance due to the larger air gap in
the q-axis direction.

▶ Consequently, the inductance per axis is
different.

d reluctance 
path

 q reluctance 
path

Fig. 7.11: Effective reluctance paths of the salient
pole SM in the dq coordinate system
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Salient pole SM model (cont.)
From Fig. 7.11 we derive the following stator flux linkage model for the salient pole SM:

ψs,dq(t) =

[
L′
s,d 0

0 L′
s,q

]
︸ ︷︷ ︸

Ls,dq

is,dq(t) +Mfs

[
1
0

]
if(t) = Ls,dqis,dq(t) +Mfsif(t) (7.17)

while the rotor field winding flux linkage remains identical to the cylindrical SM case. Inserting
the stator flux linkage model into the torque equation yields

T (t) =
3

2
p(is,dq)

TJψs,dq =
3

2
pis,q

[
Mfsif +

(
L′
s,d − L′

s,q

)
is,d

]
=

3

2
pMfsis,qif︸ ︷︷ ︸

main torque

+
3

2
pis,qis,d

(
L′
s,d − L′

s,q

)
︸ ︷︷ ︸

reluctance torque

. (7.18)

The latter part is specific to the salient pole SM since L′
s,d ̸= L′

s,q holds, while
L′
s,d = L′

s,q = L′
s applies to the cylindrical SM, that is, the reluctance torque is zero.
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Summary: salient pole SM model in dq coordinates

The most important equations of the salient pole SM model in the dq coordinates are:

Stator voltage: us,dq(t) = Rsis,dq(t) + ωr,el(t)Jψs,dq(t) +
d

dt
ψs,dq(t),

Rotor / field winding voltage: uf(t) = Rf if(t) +
d

dt
ψf(t),

Stator flux linkage: ψs,dq(t) = Ls,dqis,dq(t) +Mfsif(t),

Rotor / field winding flux linkage: ψf(t) = Lf i
r
f(t) +M

T
fsis,dq(t),

Torque: T (t) =
3

2
p(is,dq)

TJψs,dq

=
3

2
pis,q

[
Mfsif +

(
L′
s,d − L′

s,q

)
is,d

]
.
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Damper winding

damper
winding

(a) Salient pole SM with damper winding

(b) Salient pole with dismantled damper winding
(source: L. Frosini, Novel Diagnostic Techniques for
Rotating Electrical Machines – A Review, Energies,

2020, CC BY 4.0)

Fig. 7.12: SM with damper winding
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Damper winding (cont.)

▶ The damper winding is a short-circuited
winding in the rotor slots of the SM.

▶ The damper winding is used to dampen the
rotor oscillations during transients.

▶ This is important for synchronous generators
in power systems, where the rotor
oscillations can lead to instabilities.

Damper winding model

The SM damper winding can be interpreted
as the IM squirrel cage, i.e., the rotor model
can be extended accordingly (superposi-
tion).

Fig. 7.13: SM rotor with solid damper bars (source:
J. Cros et al., Simulation Methods for the Transient
Analysis of Synchronous Alternators, Renewable

Energy, 2016, CC BY 3.0)

Oliver Wallscheid Electrical machines and drives 319

https://creativecommons.org/licenses/by/3.0/


SM model with damper winding
From the IM model in dq-coordinates (compare Fig. 6.11) we introduce the short-circuited
damper winding voltage equation:

0 = Rr,DQir,DQ(t) +
d

dt
ψr,DQ(t) =

[
Rr,D 0
0 Rr,Q

] [
ir,D(t)
ir,Q(t)

]
+

d

dt

[
ψr,D(t)
ψr,Q(t)

]
. (7.19)

Here, the following applies:

▶ Capital indices represent the damper winding.

▶ ir,DQ(t) and ψr,DQ(t) are the current as well as flux linkage in the damper winding.

▶ Rr,DQ represents the resistance matrix: Since the damper winding eventually does not cover
the entire rotor circumference, Rr,D ̸= Rr,Q can apply (compare Fig. 7.12).

The stator and field winding voltage equations remain unchanged:

us,dq(t) = Rsis,dq(t) + ωr,el(t)Jψs,dq(t) +
d

dt
ψs,dq(t), uf(t) = Rfif(t) +

d

dt
ψf(t).
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SM model with damper winding (cont.)

The flux linkage equations become

ψs,dq(t) = Ls,dqis,dq(t) +Mfsif(t) +Mrsir,DQ(t)

=

[
L′
s,d 0

0 L′
s,q

] [
is,d(t)
is,q(t)

]
+Mfs

[
1
0

]
if(t) +

[
MdD 0
0 MqQ

] [
ir,D(t)
ir,Q(t)

]
,

ψf(t) = Lfif(t) +M
T
fsis,dq(t) +M

T
frir,DQ(t)

= Lfif(t) +Mfs

[
1 0

] [is,d(t)
is,q(t)

]
+Mfr

[
1 0

] [ir,D(t)
ir,Q(t)

]
,

ψr,DQ(t) = Lr,DQir,DQ(t) +Mrsis,dq(t) +Mfrif(t)

=

[
LD 0
0 LQ

] [
ir,D(t)
ir,Q(t)

]
+

[
MdD 0
0 MqQ

] [
is,d(t)
is,q(t)

]
+Mfr

[
1
0

]
if(t).

(7.20)
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SM model with damper winding (cont.)

The torque equation results in

T (t) =
3

2
p(is,dq)

TJψs,dq

=
3

2
p
[
Mfsifis,q +

(
L′
s,d − L′

s,q

)
is,dis,q +MdDis,qir,D −MqQis,dir,Q

]
.

(7.21)

Here, the last two terms represent the torque contribution of the damper winding:

▶ In steady state, that is, the stator field rotates synchronously with the rotor, the damper
winding current is zero, cf. (7.19). Consequently, the damper torque is zero.

▶ Only during transients, when a changing flux linkage induces a voltage within the damper
winding, non-zero damper currents occur.

▶ The resulting damper torque will oppose the transient and, e.g., dampen mechanical rotor
oscillations in generator applications.
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Permanent magnet synchronous machine (PMSM)

N

S

(a) Surface-mounted PMSM (SPMSM)

N

S

(b) Interior PMSM (IPMSM)

Fig. 7.14: SM with permanent magnet excitation
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PMSM characteristics

▶ Field winding is replaced by permanent
magnets (PMs) in the rotor.

▶ Typically increases efficiency and power
density, since no field winding losses occur.

▶ However, PMs are often more expensive
than field windings and the machine is less
flexible in terms of field weakening.

PMSM applications

Due to weight and size advantages, PMSMs
are often used in automotive applications
(e.g., electric vehicles) and in highly dy-
namic industrial applications (e.g., servo
drives).

Fig. 7.15: PMSM with external rotor (source:
Wikimedia Commons, R. Spekking, CC BY-SA 4.0)

Oliver Wallscheid Electrical machines and drives 325

https://commons.wikimedia.org/wiki/File:General_Technic_GT_9840_-_capstan_motor-6683.jpg
https://creativecommons.org/licenses/by-sa/4.0/deed


PMSM model
Due to the absence of a field winding, the PMSM model simplifies: The general stator voltage
equation in the dq coordinate system remains identical to the SM model

us,dq(t) = Rsis,dq(t) + ωr,el(t)Jψs,dq(t) +
d

dt
ψs,dq(t)

while the field winding voltage equation is omitted. The stator flux linkage model becomes

ψs,dq(t) = Ls,dqis,dq(t) +ψpm =

[
L′
s,d 0

0 L′
s,q

] [
is,d(t)
is,q(t)

]
+

[
ψpm

0

]
. (7.22)

Here, ψpm represents the (constant) permanent magnet flux linkage. By definition of the dq
coordinate system, the permanent magnet flux linkage is directed exclusively along the d-axis
(cf. Fig. 7.14). The rotor flux linkage model is omitted, since no field winding is present. Also,
a damper winding is very uncommon for PMSMs. Hence, torque equation results in

T (t) =
3

2
p(is,dq)

TJψs,dq =
3

2
pis,q

[
ψpm +

(
L′
s,d − L′

s,q

)
is,d

]
. (7.23)
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Isotropic vs. anisotropic PMSM

From (2.23) we know that the relative permeability of the PM material is nearly as that of air,
i.e.,

µr,PM ≈ 1

applies. Consequently, the PM flux path can be considered as an (additional) air gap. Against
this background, the two types for PMSM rotors as in Fig. 7.14 show different characteristics:

▶ SPMSM: The PMs are distributed over the entire rotor circumference.
▶ The PM flux path is isotropic, i.e., the same in all directions.
▶ Consequently, the relucance paths in the d and q axis are identical.
▶ L′

s,d = L′
s,q = L′

s applies.

▶ IPMSM: The PMs are concentrated inside the rotor core.
▶ The PM flux path is anisotropic, i.e., different in the d and q axis.
▶ Consequently, the effective reluctance along the d axis is much higher than along the q axis.
▶ L′

s,d < L′
s,q applies.
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Synchronous reluctance machine (SynRM)

▶ SynRM: utilizes only the reluctance torque.

▶ No field winding or PMs are present.

▶ The rotor is designed such that the
reluctance difference in the d and q axis is
maximized.

▶ PMSM model equations can be used, but
the PM flux linkage is zero.

ψs,dq(t) = Ls,dqis,dq(t),

T (t) =
3

2
p(is,dq)

TJψs,dq

=
3

2
pis,q

(
L′
s,d − L′

s,q

)
is,d.

(7.24)

Flux barriers

Fig. 7.16: Example of a SynRM with rotor flux
barriers (no PMs or field winding present)
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Steady-state behavior
We limit the following discussion to the isotropic case

L′
s,d = L′

s,q = L′
s

which covers the SPMSM and the cylindrical SM. In steady state (dx/dt = 0), the flux linked
with possibly present damper windings is constant, i.e., no voltage is induced within the
damper windings and

Ir,DQ = 0

applies. Hence, the damper winding can be neglected in steady state. Furthermore, in steady
state the field winding current is constant:

If =
Uf

Rf
= const.

Consequently, the stator flux linkage share resulting from the field winding MfsIf is constant
and can be interpreted as an equivalent permanent magnet flux linkage. Hence, we will focus
on the steady-state behavior of the cylindrical SM in the following, which implicitly covers the
SPMSM case as well. The steady-state characteristics of the other SM types are not covered.
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Steady-state behavior (cont.)
In steady state, the flux linkage equation remains

ψs,dq = L′
sIs,dq +MfsIf ⇔

[
ψs,d

ψs,q

]
=

(
Ls +

Ms

2

)[
Is,d
Is,q

]
+Mfs

[
If
0

]
.

With the decomposition of Ls into its leakage part Lσ,s and the mutual part Ms,

Ls = Lσ,s +Ms, (7.25)

we obtain [
ψs,d

ψs,q

]
=

(
Lσ,s +

3

2
Ms

)[
Is,d
Is,q

]
+Mfs

[
If
0

]
. (7.26)

In the context of simplified modeling, the assumption is (often) made that the (scaled) mutual
inductances are equal, i.e.,

Mfs = 3/2Ms =M

leading to
ψs,d = (Lσ,s +M) Is,d +MIf , ψs,q = (Lσ,s +M) Is,q. (7.27)
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Steady-state behavior (cont.)
The steady-state voltage equation is

Us,dq = RsIs,dq + ωr,elJψs,dq ⇔
[
Us,d

Us,q

]
= Rs

[
Is,d
Is,q

]
+ ωr,el

[
−ψs,q

ψs,d

]
. (7.28)

Inserting the (simplified) flux linkage equation (7.27) yields[
Us,d

Us,q

]
= Rs

[
Is,d
Is,q

]
+ ωr,el

[
− (Lσ,s +M) Is,q

(Lσ,s +M) Is,d +MIf

]
. (7.29)

Rewriting the vectorial quantities as complex phasors Xdq = Xejϕ = Xd + jXq rotating with
the angular frequency ωr,el → ωs, we obtain

U s = RsIs + jωs [(Lσ,s +M) Is +MIf ] = RsIs + jωs (Lσ,s +M)︸ ︷︷ ︸
Xs

Is + jωsMIf︸ ︷︷ ︸
U i

(7.30)

with U i being the internal voltage, i.e., the induced voltage due to the field winding excitation
and Xs being the synchronous reactance (which can be empirically identified using open-circuit
and short-circuit tests, cf. after next slide).
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Steady-state behavior (cont.)
The ECD of the cylindrical SM is sown in Fig. 7.17. Here, the following can be noted:

▶ The internal voltage U i is purely imaginary as the field winding current is a DC current and
defined as real (convention).

▶ If U s is fixed, e.g., by a stiff grid voltage, the stator current Is is determined by the voltage
difference ∆U = U s − U i.

▶ Hence, in grid operation the field winding current If is adjusted to reach a certain operation
point, that is, the field excitation is controlled.

Fig. 7.17: ECD of a (simplified) cylindrical SM in steady state represented by complex phasors
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Short-circuit and open-circuit tests

From Fig. 7.17 the open-circuit voltage is

U s,oc = U i = jωsMIf . (7.31)

Here, the stator current is zero. On the other hand, the short-circuit current is given by

Is,sc = − U i

jXs
= − ωsMIf

jωs (Lσ,s +M)
=

jM

(Lσ,s +M)
If . (7.32)

Here, the stator voltage is zero and one can observe that the short-circuit current Is,sc can be
interpreted as the excitation current If converted via the inductance ratio. Finally, the
synchronous reactance can be calculated by the ratio of the open-circuit voltage and the
short-circuit current:

Xs =
U s,oc

Is,sc
. (7.33)
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Steady-state torque
The steady-state torque of the cylindrical SM is given by

T =
3

2
p
√
2Is,qMIf =

3√
2
pIs,qMIf .

Here, the factor
√
2 results from the RMS value representation of the AC stator current in the

complex phasor component Is,q. Note that If is a DC quantity, i.e., its RMS value is equal to
the DC value in the time domain. From (7.30) we obtain the stator current as

Is =
U s − U i

Rs + jωs (Lσ,s +M)
. (7.34)

Assuming that the ohmic voltage drop is negligible (Rs ≈ 0), which typically applies to high
power machines, the stator current simplifies to

Is = j
U i − U s

ωs (Lσ,s +M)
. (7.35)
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Steady-state torque (cont.)

The q part from Is = Is,d + jIs,q is

Is,q =
|U i − U s|

ωs (Lσ,s +M)
. (7.36)

From Fig. 7.18 we identify

sin(θ) =
|U i − U s|

|U s|

and can rewrite Is,q as

Is,q =
|U s|

ωs (Lσ,s +M)
sin(θ). (7.37)

Here, θ is the load angle counted from U i to U s.

Fig. 7.18: Exemplary phasor diagram of the
cylindrical SM

Oliver Wallscheid Electrical machines and drives 336



Steady-state torque (cont.)

Moreover, from (7.30) we can express the field winding current (amplitude, DC quantity) as

If =
√
2
|U i|
ωsM

. (7.38)

Inserting the expressions for Is,q and If into the torque equation yields

T = 3p
|U s| |U i|

ω2
s (Lσ,s +M)

sin(θ) = 3p
UsUi

ω2
s (Lσ,s +M)

sin(θ). (7.39)

Hence, the load angle θ determines the torque of the cylindrical SM:

▶ For θ < 0◦, the torque is negative (generator mode, if ωr > 0).

▶ For θ = 0◦, the torque is zero.

▶ For θ > 0◦, the torque is positive (motor mode, if ωr > 0).

▶ For θ = ±90◦, the absolute torque is maximal.
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Stable steady-state operation (with fixed stator excitation)

▶ From (7.39) we see that the torque depends on
sin(θ).

▶ Beyond θ = ±90◦, the absolute torque decreases
again.

▶ If the SM is operated with a fixed stator
excitation, e.g., by a stiff grid voltage, the load
angle θ is determined by the mechanical load.

▶ If the absolute mechanical load is increased such
that |θ| > 90◦ applies, the SM will lose
synchronicity and stall.

▶ Hence, the stable operation range is limited to
|θ| ≤ 90◦ (while in practice an additional safety
margin is considered).

stable operation

Fig. 7.19: Torque vs. load angle for the
cylindrical SM
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Power balance

The SM’s complex power is given by

S = 3U sIs = 3(P + jQ) = 3Sejφ (7.40)

with X being the complex conjugate and the factor 3 results from the representation of the
three-phase machine in an orthogonal coordinate system (cf. Clarke transf.) plus the RMS
phasor representation of currents and voltages. Above, S is the apparent power, P and Q are
the active and reactive power, respectively. The active power is

P = 3Re
{
U sIs

}
= 3UsIs cos(φ) (7.41)

and the reactive power is
Q = 3Im

{
U sIs

}
= 3UsIs sin(φ). (7.42)

Here, φ is the power factor angle, that is, the phase change between stator voltage and current
(compare Fig. 7.18).

Oliver Wallscheid Electrical machines and drives 339



Power balance (cont.)
From (7.39) we receive the active power as

P = Tωr = T
ωs

p
= 3

UsUi

ωs (Lσ,s +M)
sin(θ). (7.43)

For the reactive power we insert (7.35) in (7.42) and obtain (after some rewritting)

Q = 3
Us

ωs (Lσ,s +M)
(Us − Ui cos(θ)) . (7.44)

Four quadrant operation

Due to a combination of θ and Ui, which are adjustable via the field winding current If ,
the (cylindrical) SM can cover all four quadrants of operation (i.e., combine positive
/ negative signs of both the active and reactive power). This is why the externally-
excited SM is often used in generator / power plant applications.
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Phasor diagrams for the cylindrical SM in all four quadrants
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English-German dictionary I

AC machine . . . . . . . . . . . . . . . . . . . Wechselstrommaschine

acceleration . . . . . . . . . . . . . . . . . . . . Beschleunigung

active power . . . . . . . . . . . . . . . . . . . Wirkleistung

air gap . . . . . . . . . . . . . . . . . . . . . . Luftspalt

angle . . . . . . . . . . . . . . . . . . . . . . . Winkel

apparent power . . . . . . . . . . . . . . . . . . Scheinleistung

armature . . . . . . . . . . . . . . . . . . . . . Anker / Läufer

autotransformer . . . . . . . . . . . . . . . . . Spartransformator

back pitch . . . . . . . . . . . . . . . . . . . . Spulenweite

braking . . . . . . . . . . . . . . . . . . . . . . bremsend

brush . . . . . . . . . . . . . . . . . . . . . . . Bürste
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English-German dictionary II
brushless . . . . . . . . . . . . . . . . . . . . . bürstenlos

capacitance . . . . . . . . . . . . . . . . . . . . Kapazität [Größe]

capacitor . . . . . . . . . . . . . . . . . . . . . Kondensator [Bauelement]

circuit . . . . . . . . . . . . . . . . . . . . . . Schaltkreis

commutation . . . . . . . . . . . . . . . . . . . Kommutierung

commutator pitch . . . . . . . . . . . . . . . . Kollektorschritt

compensation winding . . . . . . . . . . . . . . Kompensationswicklung

conductance . . . . . . . . . . . . . . . . . . . Leitwert

conductivity . . . . . . . . . . . . . . . . . . . Leitfähigkeit

control . . . . . . . . . . . . . . . . . . . . . . Regelung

copper . . . . . . . . . . . . . . . . . . . . . . Kupfer

current . . . . . . . . . . . . . . . . . . . . . . Strom
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English-German dictionary III
damper winding . . . . . . . . . . . . . . . . . Dämpferwicklung

DC machine . . . . . . . . . . . . . . . . . . . Gleichstrommaschine

differential equation . . . . . . . . . . . . . . . Differentialgleichung

displacement . . . . . . . . . . . . . . . . . . . Verschiebung

displacement current . . . . . . . . . . . . . . . Verschiebestrom

displacement field . . . . . . . . . . . . . . . . Elektrische Flussdichte

drive . . . . . . . . . . . . . . . . . . . . . . . Antrieb

driving . . . . . . . . . . . . . . . . . . . . . . antreibend

eddy currents . . . . . . . . . . . . . . . . . . . Wirbelströme

efficiency . . . . . . . . . . . . . . . . . . . . . Wirkungsgrad

energy . . . . . . . . . . . . . . . . . . . . . . Energie

equivalent circuit diagram . . . . . . . . . . . . Ersatzschaltbild
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English-German dictionary IV
excitation . . . . . . . . . . . . . . . . . . . . . Erregung

fan . . . . . . . . . . . . . . . . . . . . . . . . Lüfter

fed-in winding . . . . . . . . . . . . . . . . . . Träufelwicklung

field . . . . . . . . . . . . . . . . . . . . . . . Feld

field weakening . . . . . . . . . . . . . . . . . . Feldschwächung

field winding . . . . . . . . . . . . . . . . . . . Erreger(-wicklung)

flux . . . . . . . . . . . . . . . . . . . . . . . . Fluss

flux linkage . . . . . . . . . . . . . . . . . . . . Flussverkettung

force . . . . . . . . . . . . . . . . . . . . . . . Kraft

form-wound winding . . . . . . . . . . . . . . . Formspulenwicklung

frequency . . . . . . . . . . . . . . . . . . . . . Frequenz

friction . . . . . . . . . . . . . . . . . . . . . . Reibung
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English-German dictionary V
front pitch . . . . . . . . . . . . . . . . . . . . Schaltschritt

fundamental wave . . . . . . . . . . . . . . . . Grundwelle

heat . . . . . . . . . . . . . . . . . . . . . . . Wärme

inductance . . . . . . . . . . . . . . . . . . . . Induktivität [Größe]

induction machine . . . . . . . . . . . . . . . . Asynchronmaschine

inductor . . . . . . . . . . . . . . . . . . . . . Spule [Bauelement]

innere voltage . . . . . . . . . . . . . . . . . . Polradspannung

interpoles . . . . . . . . . . . . . . . . . . . . . Wendepolwicklung

inverter . . . . . . . . . . . . . . . . . . . . . . Wechselrichter

iron . . . . . . . . . . . . . . . . . . . . . . . . Eisen

jerk . . . . . . . . . . . . . . . . . . . . . . . . Ruck

lap winding . . . . . . . . . . . . . . . . . . . . Schleifenwicklung
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English-German dictionary VI
leakage . . . . . . . . . . . . . . . . . . . . . . Streuung

load . . . . . . . . . . . . . . . . . . . . . . . Last / Belastung

losses . . . . . . . . . . . . . . . . . . . . . . . Verluste

machine . . . . . . . . . . . . . . . . . . . . . Maschine

magnetic domain . . . . . . . . . . . . . . . . . Weiss-Bezirk

magnetomotive force . . . . . . . . . . . . . . . magnetische Spannung

mass . . . . . . . . . . . . . . . . . . . . . . . Masse

momentum . . . . . . . . . . . . . . . . . . . . Impuls

nameplate . . . . . . . . . . . . . . . . . . . . Typenschild

oscillation [quantity depending on time] . . . . . Schwingung [Größe in Zeit]

permanent magnet . . . . . . . . . . . . . . . . Permanentmagnet

permeance . . . . . . . . . . . . . . . . . . . . Permeanz
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English-German dictionary VII
phasor . . . . . . . . . . . . . . . . . . . . . . Zeitunabh. komplexer Zeiger

power . . . . . . . . . . . . . . . . . . . . . . . Leistung

power electronics . . . . . . . . . . . . . . . . . Leistungselektronik

power factor . . . . . . . . . . . . . . . . . . . Leistungsfaktor

reactive power . . . . . . . . . . . . . . . . . . Blindleistung

rectifier . . . . . . . . . . . . . . . . . . . . . . Gleichrichter

reluctance . . . . . . . . . . . . . . . . . . . . Reluktanz

resistance . . . . . . . . . . . . . . . . . . . . . Widerstand [Größe]

resistor . . . . . . . . . . . . . . . . . . . . . . Widerstand [Bauelement]

root mean square . . . . . . . . . . . . . . . . . Effektivwert

rotor . . . . . . . . . . . . . . . . . . . . . . . Rotor

salient pole rotor . . . . . . . . . . . . . . . . . Schenkelpolläufer
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English-German dictionary VIII
saturation . . . . . . . . . . . . . . . . . . . . Sättigung

separately excited DC machine . . . . . . . . . . Fremderregte Gleichstrommaschine

series DC machine . . . . . . . . . . . . . . . . Reihenschlussmaschine

shaft . . . . . . . . . . . . . . . . . . . . . . . Welle

shut DC machine . . . . . . . . . . . . . . . . . Nebenschlussmaschine

slip . . . . . . . . . . . . . . . . . . . . . . . . Schlupf

slip ring . . . . . . . . . . . . . . . . . . . . . Schleifring

slot . . . . . . . . . . . . . . . . . . . . . . . . Nut

slot wedge . . . . . . . . . . . . . . . . . . . . Nutkeil

speed . . . . . . . . . . . . . . . . . . . . . . . Geschwindigkeit

squirrel cage . . . . . . . . . . . . . . . . . . . Käfigläufer

starting torque . . . . . . . . . . . . . . . . . . Anlaufdrehmoment
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English-German dictionary IX
stator . . . . . . . . . . . . . . . . . . . . . . . Stator

steady state . . . . . . . . . . . . . . . . . . . Stationärer Zustand

steel . . . . . . . . . . . . . . . . . . . . . . . Stahl

synchronous machine . . . . . . . . . . . . . . . Synchronmaschine

tap . . . . . . . . . . . . . . . . . . . . . . . . Anzapfung

terminal . . . . . . . . . . . . . . . . . . . . . Anschlussfeld

three phase machine . . . . . . . . . . . . . . . Drehstrommaschine

torque . . . . . . . . . . . . . . . . . . . . . . Drehmoment

transformer . . . . . . . . . . . . . . . . . . . . Transformator

transient . . . . . . . . . . . . . . . . . . . . . Transienter Zustand

turn . . . . . . . . . . . . . . . . . . . . . . . Windung

unit . . . . . . . . . . . . . . . . . . . . . . . . Maßeinheit
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English-German dictionary X

velocity . . . . . . . . . . . . . . . . . . . . . . Geschwindigkeit

voltage . . . . . . . . . . . . . . . . . . . . . . Spannung

wave [quantity depending on time and space] . . . Welle [Größe in Zeit und Raum]

wave winding . . . . . . . . . . . . . . . . . . . Wellenwicklung

windage . . . . . . . . . . . . . . . . . . . . . Luftwiderstand

work . . . . . . . . . . . . . . . . . . . . . . . Arbeit

yoke . . . . . . . . . . . . . . . . . . . . . . . Joch
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Nomenclature I

x(t) . . . . . . . . . . time-dependent, scalar quantity

x̂ . . . . . . . . . . . . (fundamental) amplitude of a signal x(t)

x̂(k) . . . . . . . . . . k-th harmonic amplitude of a signal x(t)

x(t) . . . . . . . . . . time-dependent, vectorial quantity

X . . . . . . . . . . . constant, scalar quantity (e.g., root mean square value)

X . . . . . . . . . . . matrix

x . . . . . . . . . . . . average

X . . . . . . . . . . . complex quantity

X∗ . . . . . . . . . . . complex conjugate

d
dtx(t) . . . . . . . . . derivative (first derivative w.r.t. time)
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